On Geometric Properties of Smooth Maps That Preserve $H^{2}\left(\mathbb{B}_{n}\right)$

Warren R. Wogen

Introduction

Suppose that Ω is a domain in \mathbb{C}^{n} and that $\phi: \Omega \rightarrow \Omega$ is analytic on Ω. If X is a Banach space of analytic functions on Ω, let $C_{\phi} f=f \circ \phi$ for $f \in X$; here C_{ϕ} is the composition operator on X with symbol ϕ. A great deal of research has been done (see e.g. [CoM; S] and their extensive references) on composition operators for many choices of Ω and X. In particular, when Ω is the unit disk in \mathbb{C} and X is the Hardy space $H^{p}(p \geq 1)$, it is classical that every C_{ϕ} is bounded on H^{p}.

The situation is different for $\Omega \subset \mathbb{C}^{n}$ with $n>1$. We restrict our attention to $\Omega=\mathbb{B}_{n}=\mathbb{B}$, the open unit ball in \mathbb{C}^{n}. Write $\mathbb{S}_{n}=\mathbb{S}$ for the unit sphere in \mathbb{C}^{n}. Several authors [CSW; CW; M1] have constructed examples of analytic self-maps ϕ of \mathbb{B} such that C_{ϕ} is unbounded on $H^{p}(\mathbb{B})$. Versions of most of these examples appear in [CoM, Chap. 6]. In particular, one can even take ϕ to be a univalent polynomial map (see [CW] and [CoM, Chap. 6.3]).

In [W1] the author proved a necessary and sufficient condition for boundedness of C_{ϕ} on $H^{2}(\mathbb{B})$ for the case when ϕ is a C^{3} map on $\mathbb{B} \cup \mathbb{S}=\overline{\mathbb{B}}$; this paper is a sequel to [W1]. We first describe the main result of [W1] in Theorem 1. Then we establish an analytic consequence (Theorem 2) and a geometric consequence (Theorem 3). We also produce some new examples of symbols that induce unbounded composition operators.

Results

We begin by setting some notation. Suppose that $\psi: \mathbb{B} \rightarrow \mathbb{C}$ is a C^{1}-map and that $\xi \in S$. Then $D_{\xi}(z)$ denotes the (complex) directional derivative of ψ at z in the ξ direction.

Suppose that $\phi: \overline{\mathbb{B}} \rightarrow \mathbb{C}^{n}$ is analytic on \mathbb{B} and is C^{1} on $\overline{\mathbb{B}}$. For $z \in \overline{\mathbb{B}}, D \phi(z)$ is the (complex) Jacobian matrix. Also, if $\eta \in S$ then $\phi_{\eta}(z)=\langle\phi(z), \eta\rangle$ will denote the coordinate of ϕ in the η direction.

We state the result of [W1]. See also [CoM, Chap. 6.2] for a discussion of this theorem.

Theorem 1. Suppose that $\phi: \overline{\mathbb{B}} \rightarrow \overline{\mathbb{B}}$ is analytic on \mathbb{B} and is C^{3} on $\overline{\mathbb{B}}$. Then the following statements are equivalent.

[^0](i) C_{ϕ} is unbounded on $H^{2}(\mathbb{B})$.
(ii) There exist points ξ_{1}, ξ_{2}, and η in S such that ξ_{1} and ξ_{2} are orthogonal, $\phi\left(\xi_{1}\right)=\eta$, and
\[

$$
\begin{equation*}
D_{\xi_{1}} \phi_{\eta}\left(\xi_{1}\right)=\left|D_{\xi_{2} \xi_{2}} \phi_{\eta}\left(\xi_{1}\right)\right| . \tag{1}
\end{equation*}
$$

\]

Thus, to test C_{ϕ} for boundedness, find all $\xi_{1} \in S$ such that $\phi\left(\xi_{1}\right) \in S$. Then, letting $\eta=\phi\left(\xi_{1}\right)$, compare $D_{\xi_{1}} \phi_{\eta}\left(\xi_{1}\right)$ with $\left|D_{\xi_{2} \xi_{2}} \phi_{\eta}\left(\xi_{1}\right)\right|$.

The proof of Theorem 1 uses Carleson measures. Equality (1) yields a collapse of the surface measure on S near ξ_{1} under the mapping ϕ that violates the Carleson measure condition [M2] for boundedness of C_{ϕ}.

Remark 1. Let $\left\{e_{k}\right\}_{k=1}^{n}$ be the standard basis for \mathbb{C}^{n}. By pre- and post-composing ϕ by unitary maps of \mathbb{C}^{n}, we may assume the following normalization: $\xi_{1}=\eta=$ e_{1} and $\xi_{2}=e_{2}$. Then write $D_{e_{k}}=D_{k}$ and $\phi_{k}=\phi_{e_{k}}, 1 \leq k \leq n$. Replacing e_{2} by λe_{2} for an appropriate $\lambda(|\lambda|=1)$, we can also assume that $D_{22} \phi_{1}\left(e_{1}\right) \geq 0$ (cf. [CoM, pp. 231, 232]). Given this normalization, equality (1) becomes

$$
\begin{equation*}
D_{1} \phi_{1}\left(e_{1}\right)=D_{22} \phi_{1}\left(e_{1}\right) \tag{2}
\end{equation*}
$$

Finally we note that one always has $D_{k} \phi_{1}\left(e_{1}\right)=0$ and $\left|D_{k k} \phi_{1}\left(e_{1}\right)\right| \leq D_{1} \phi_{1}\left(e_{1}\right)$ for $k \geq 2$; see [CoM, Lemma 6.6].

Theorem 2. Suppose ϕ satisfies the hypotheses of Theorem 1 and that C_{ϕ} is unbounded on $H^{2}(\mathbb{B})$. If (1) holds at $\xi_{1} \in S$, then $D \phi\left(\xi_{1}\right)$ is singular.

Proof. We assume the normalization as in Remark 1. We will analyze the secondorder Taylor expansions about e_{1} for the coordinate functions of ϕ.

Let $A_{j}=D_{j} \phi_{1}\left(e_{1}\right)$ and $A_{i j}=D_{i j} \phi_{1}\left(e_{1}\right), 1 \leq i, j \leq n$. Also, let $g(t)=$ $(\cos t) e_{1}+(\sin t) e_{2}=(\cos t, \sin t, 0, \ldots, 0)$. Here g parameterizes a smooth unit speed complex tangential curve in S, with $g(0)=e_{1}$. Suppose that $\phi(g(t))=$ $h(t)=\left(h_{1}(t), \ldots, h_{n}(t)\right)$. Recall that $A_{2}=D_{2} \phi_{1}\left(e_{1}\right)=0$ and that ϕ is a C^{3}-map. From the Taylor expansion of ϕ_{1} about e_{1}, we have

$$
\begin{align*}
h_{1}(t)= & 1+A_{1}(\cos t-1) \\
& +\frac{1}{2}\left[A_{11}(\cos t-1)^{2}+2 A_{12}(\cos t-1) \sin t+A_{22} \sin ^{2} t\right]+O\left(t^{3}\right) \tag{3}
\end{align*}
$$

Substitute the Maclaurin series for $\sin t$ and $\cos t$ into (3). Then

$$
\begin{equation*}
h_{1}(t)=1+\left(-\frac{1}{2} A_{1}+\frac{1}{2} A_{22}\right) t^{2}+O\left(t^{3}\right)=1+O\left(t^{3}\right) \tag{4}
\end{equation*}
$$

since (2) gives $A_{1}=A_{22}$.
Next let $B_{k}=D_{2} \phi_{k}\left(e_{1}\right)$ for $k \geq 2$. Using the second Taylor polynomial for ϕ_{k} about e_{1}, we see that

$$
\begin{equation*}
h_{k}(t)=\phi_{k}(g(t))=B_{k} \sin t+O\left(t^{2}\right)=B_{k} t+O\left(t^{2}\right) \tag{5}
\end{equation*}
$$

From (4) and (5) it follows that

$$
\|h(t)\|^{2} \geq\left|h_{1}(t)\right|^{2}+\left|h_{k}(t)\right|^{2}=1+\left|B_{k}\right|^{2} t^{2}+O\left(t^{3}\right)
$$

so if $B_{k} \neq 0$ then $\|h(t)\|^{2}>1$ for small t, a contradiction. We have shown that all entries in the second column of $D \phi\left(e_{1}\right)$ are zero, so that $D \phi\left(e_{1}\right)$ is singular.

Remark 2. Condition (2) is key for the Carleson measure estimates that prove (ii) implies (i) in Theorem 1.

Theorem 2 may significantly simplify the use of Theorem 1 in testing a specific C_{ϕ} for boundedness. Namely, given a smooth ϕ, one need only check condition (1) at those $\xi \in S$ such that $\phi(\xi) \in S$ and such that $D \phi(\xi)$ is singular. This may be most useful in case ϕ is univalent on \mathbb{B} or at least locally univalent. Then $D \phi(z)$ will be invertible for all $z \in \mathbb{B}$, and invertibility of $D \phi(z)$ may well persist at points $z \in S$.

Next we analyze the geometry of the smooth mapping ϕ for C_{ϕ} unbounded. We continue to assume the normalization of Remark 1. Thus, in the terminology of the proof of Theorem 2, we have $A_{1}=A_{22}$.

Fix λ with $|\lambda|=1$ and $\lambda \neq \pm 1$, and let $g_{\lambda}(t)=(\cos t) e_{1}+\lambda(\sin t) e_{2}$. Let $h_{\lambda}(t)=\phi\left(g_{\lambda}(t)\right)$. The same computation that led to (4) gives us

$$
\begin{equation*}
\left(h_{\lambda}\right)_{1}(t)=1+\frac{1}{2}\left(-A_{1}+\lambda^{2} A_{22}\right) t^{2}+O\left(t^{3}\right) \tag{6}
\end{equation*}
$$

Let $T_{1}=\frac{1}{2}\left(-A_{1}+\lambda^{2} A_{22}\right)$, and note that $T_{1} \neq 0$. For $k \geq 2$, we saw in Theorem 2 that $B_{k}=D_{2} \phi_{k}\left(e_{1}\right)=0$ and so $\left(h_{\lambda}\right)_{k}(t)=T_{k} t^{2}+O\left(t^{3}\right)$, where $T_{k}=$ $\frac{1}{2}\left(-D_{1} \phi_{k}\left(e_{2}\right)+\lambda^{2} D_{22} \phi_{k}\left(e_{1}\right)\right)$. Thus we have shown that

$$
\begin{equation*}
h_{\lambda}(t)-h_{\lambda}(0)=T t^{2}+O\left(t^{3}\right) \tag{7}
\end{equation*}
$$

where $T=\left(T_{1}, \ldots, T_{n}\right)$. This means that h_{λ}, the image of g_{λ} under ϕ, has a cusp at $\phi\left(e_{1}\right)=e_{1}$. The "tangent" vector of this cusp is T. Note that $T_{1} \neq 0$ (in fact $\operatorname{Re} T_{1} \neq 0$), so T is transverse to the tangent plane to S at e_{1}.

Now let's suppose in addition that ϕ is univalent on $\overline{\mathbb{B}}$. We have seen that the smooth curves $g_{\lambda}\left(\lambda^{2} \neq 1\right)$ are "pinched" by ϕ into cusps h_{λ}. This pinching can be quantified in another way. For $t>0$ and t small, $\left\|g_{\lambda}(t)-g_{\lambda}(-t)\right\| \approx 2 t$. By (7) we have

$$
\left\|\phi\left(g_{\lambda}(t)\right)-\phi\left(g_{\lambda}(t)\right)\right\|=\left\|h_{\lambda}(t)-h_{\lambda}(-t)\right\|=O\left(t^{3}\right)
$$

It follows that, if $\psi=\phi^{-1}$, then $\psi: \phi(\overline{\mathbb{B}}) \rightarrow \overline{\mathbb{B}}$ cannot be in the class $\operatorname{Lip} \alpha$ for any $\alpha>\frac{1}{3}$.

Now we apply the work of Mercer (see [Me, Prop. 2.6] and also [FSte, Prop. 12.2]) to deduce that $\phi(\mathbb{B})$ cannot be convex. In fact, the results of [Me] show that, for any proper map ψ of a convex domain Ω in \mathbb{C}^{n} onto \mathbb{B}_{n}, we must have that ψ is in Lip $\frac{1}{2}$. As Mercer has pointed out to the author, the proof requires taking $\alpha=1$ and $m=2$ in the proof of Proposition 2.6 of [Me]. We omit further details.

The preceding discussion proves the following conjecture of J. A. Cima.
Theorem 3. If ϕ is a biholomorphic map of \mathbb{B} into \mathbb{B} that extends to be C^{3} on $\overline{\mathbb{B}}$ and if $\phi(\mathbb{B})$ is convex, then C_{ϕ} is bounded on $H^{2}(B)$.

Examples

We begin by constructing a simple example that we then use to construct new unbounded operators C_{ϕ} with univalent symbols.

For $n \geq 2$, define $f: \overline{\mathbb{B}}_{n} \rightarrow \mathbb{C}$ by $f(z)=z_{1}+\frac{1}{2} z_{2}^{2}$. For $z \in \mathbb{B}_{n}$, let $r=\left|z_{1}\right|$ and note that $|f(z)| \leq r+\frac{1}{2}\left(1-r^{2}\right)$. Elementary arguments show that $|f(z)|<$ 1 unless $r=1$. So we see that $f\left(\mathbb{B}_{n}\right) \subset \mathbb{B}_{1}$ and $\left|f\left(\lambda e_{1}\right)\right|=1$ if $|\lambda|=1$. Also, $D_{1} f\left(e_{1}\right)=1=D_{22} f\left(e_{1}\right)$. In fact, if $\xi_{1}=\lambda e_{1}$ and $\xi_{2}=\mu e_{2}$ where $|\lambda|=|\mu|=$ 1, then $D_{\xi_{1}} f\left(\xi_{1}\right)=\left|D_{\xi_{2} \xi_{2}} f\left(\xi_{1}\right)\right|$.

Example 1. Let $\phi=(f, 0, \ldots, 0): \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}$. Then C_{ϕ} is unbounded on $H^{2}\left(\mathbb{B}_{n}\right)$. This is immediate from Theorem 1 and our preceding discussion of f. This ϕ qualifies as the simplest possible example such that C_{ϕ} is unbounded.

Next we construct a new univalent example that illustrates Theorem 2.
Example 2. For $n \geq 2$, define ϕ on $\overline{\mathbb{B}}_{n}$ by

$$
\phi(z)=\frac{1}{2}\left(1+f(z), z_{2}(1-f(z)), \ldots, z_{n}(1-f(z))\right)
$$

If $|z|<1$, then

$$
\begin{aligned}
|\phi(z)|^{2} & =\frac{1}{4}\left\{|1+f(z)|^{2}+|1-f(z)|^{2} \sum_{2}^{n}\left|z_{k}\right|^{2}\right\} \\
& \leq \frac{1}{4}\left\{|1+f(z)|^{2}+|1-f(z)|^{2}\right\}=\frac{1}{2}\left(1+|f(z)|^{2}\right)<1 .
\end{aligned}
$$

Thus $\phi\left(\mathbb{B}_{n}\right) \subset \mathbb{B}_{n}$. Next we show that ϕ is univalent on $\overline{\mathbb{B}}_{n}$. Suppose that $z, w \in$ $\overline{\mathbb{B}}_{n}$ and that $\phi(z)=\phi(w)$. Then $\phi_{1}(z)=\phi_{1}(w)$, so $f(z)=f(w)$. Also $\phi_{k}(z)=$ $\phi_{k}(w)$ for $2 \leq k \leq n$ implies that $f(z)=f(w)=1$ or $z_{k}=w_{k}$. But $f(z)=$ $f(w)=1$ yields $z=w=e_{1}$. If $z_{k}=w_{k}$ for $2 \leq k \leq n$, then from $f(z)=f(w)$ we see that $z_{1}=w_{1}$ also.

Finally, observe that $\phi\left(e_{1}\right)=e_{1}$ and that $D_{1} \phi_{1}\left(e_{1}\right)=D_{22} \phi_{1}\left(e_{1}\right)=\frac{1}{2}$. Thus ϕ is a univalent polynomial map such that C_{ϕ} is unbounded. More complicated such maps may be found in [CW] and in [CoM, Chap. 6.3]. One can check that the singular matrix $D \phi\left(e_{1}\right)$ is $\frac{1}{2} P$, where P is the orthogonal projection of \mathbb{C}^{n} onto $\mathbb{C} e_{1}$. Thus rank $D \phi\left(e_{1}\right)=1$. We show in the next example how to modify this ϕ so that if $2 \leq k \leq n-1$ then $\operatorname{rank} D \phi\left(e_{1}\right)=k$.

Example 3. We outline an example for the case $k=n-1$. Let

$$
\phi(z)=\frac{1}{2}\left(1+f(z), z_{2}(1-f(z)), z_{3}, \ldots, z_{n}\right)
$$

for $z \in \overline{\mathbb{B}}_{n}$. By modifying the arguments of Example 2, we see that ϕ is univalent on $\overline{\mathbb{B}}_{n}, \phi\left(e_{1}\right)=e_{1}$, and $D_{1} \phi\left(e_{1}\right)=D_{22} \phi\left(e_{1}\right)=\frac{1}{2}$. We show that $\phi\left(\mathbb{B}_{n}\right) \subset \mathbb{B}_{n}$. For $z \in \mathbb{B}_{n}$ write $z=\left(z^{\prime}, z^{\prime \prime}\right)$, where $z^{\prime}=\left(z_{1}, z_{2}\right)$. Then

$$
\begin{aligned}
\left|\phi_{1}(z)\right|^{2}+\left|\phi_{2}(z)\right|^{2} & \leq \frac{1}{4}\left\{|1+f(z)|^{2}+|1-f(z)|^{2}\right\} \\
& =\frac{1}{2}\left(1+|f(z)|^{2}\right) \leq \frac{1}{2}\left(1+\left|z^{\prime}\right|^{2}\right)
\end{aligned}
$$

Thus $|\phi(z)|^{2} \leq \frac{1}{2}\left(1+\left|z^{\prime}\right|^{2}\right)+\frac{1}{4}\left|z^{\prime \prime}\right|^{2}<1$.

It follows that C_{ϕ} is unbounded on $H^{2}\left(\mathbb{B}_{n}\right)$. Note that $D \phi(e)=\frac{1}{2} Q$, where Q is the orthogonal projection of \mathbb{C}^{n} onto $\left\{e_{2}\right\}^{\perp}$. Thus $D \phi(e)$ has rank $n-1$. It should be clear that we can interpolate Examples 2 and 3 to achieve rank $D \phi\left(e_{1}\right)=k$ for any k with $1 \leq k \leq n-1$.

We also point out that the previous constructions can be modified to produce families of symbols ϕ that induce unbounded C_{ϕ}. To illustrate, refer to Example 2. Given $0<r<1$, if we define ϕ by

$$
\phi(z)=\left(r+(1-r) f(z), \sqrt{r(1-r)} z_{2}(1-f(z)), \ldots, \sqrt{r(1-r)} z_{n}(1-f(z))\right)
$$

then one can show that ϕ satisfies the same conditions as the mapping of Example 2. See also [CoM, Chap. 6.3].

Example 4. In the discussion preceding Theorem 3 we saw that, with the normalization of Remark 1, if C_{ϕ} is unbounded then ϕ maps the family of complex tangential curves $g_{\lambda}(\lambda \neq \pm 1)$ into cusps. This might be expected since the tangent vectors to g_{λ} at e_{1} lie in the kernel of $D \phi\left(e_{1}\right)$ and since the affine approximation $L(z)=\phi\left(e_{1}\right)+D \phi\left(e_{1}\right)\left(z-e_{1}\right)$ carries S into a complex plane of dimension $<$ n. But the following example shows that the special curve g_{1} need not be mapped to a cusp.

Define $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ by $\phi(z)=\frac{1}{2}\left(1+f(z), \frac{1}{2} z_{2}^{3}\right)$. We first verify that $\phi\left(\mathbb{B}_{2}\right) \subset$ \mathbb{B}_{2}. If $|z|<1$ and $\left|z_{1}\right|=r$, then

$$
\begin{aligned}
|\phi(z)|^{2} & \leq \frac{1}{4}\left\{(1+|f(z)|)^{2}+\frac{1}{4}\left(1-r^{2}\right)^{3}\right\} \\
& \leq \frac{1}{4}\left\{\left(1+r+\frac{1}{2}\left(1-r^{2}\right)\right)^{2}+\frac{1}{4}\left(1-r^{2}\right)^{2}\right\} \\
& =\frac{1}{4}\left\{(1+r)^{2}+(1+r)\left(1-r^{2}\right)+\frac{1}{2}\left(1-r^{2}\right)^{2}\right\}=g(r) .
\end{aligned}
$$

Check that g increases on $[0,1]$ and that $g(1)=1$, so $\phi\left(\mathbb{B}_{2}\right) \subset \mathbb{B}_{2}$. Theorem 1 then shows that C_{ϕ} is unbounded, since $D_{1} \phi_{1}\left(e_{1}\right)=D_{22} \phi_{1}\left(e_{1}\right)$.

Let $h_{1}(t)=\phi\left(g_{1}(t)\right)=\frac{1}{2}\left(1+\cos t+\frac{1}{2} \sin ^{2} t, \frac{1}{2} \sin ^{3} t\right)$. Using Maclaurin expansions for \sin and cos, we obtain $h_{1}(t)-h_{1}(0)=\left(\frac{7}{24} t^{4}, \frac{1}{2} t^{3}\right)+O\left(t^{5}\right)$, so that

$$
\frac{h_{1}(t)-h_{1}(0)}{t^{3}} \rightarrow \frac{1}{2} e_{2} \text { as } t \rightarrow 0 .
$$

Thus the approach of h_{1} to e_{1} as $t \rightarrow 0$ is complex tangential to S_{2}.
The map ϕ is not univalent on \mathbb{B}_{2} (it is 3-to-1). It is an open question whether the phenomenon just described is possible for a univalent map.

References

[CSW] J. A. Cima, C. S. Stanton, and W. R. Wogen, On boundedness of composition operators on $H^{2}\left(\mathbb{B}_{2}\right)$, Proc. Amer. Math. Soc. 91 (1984), 217-222.
[CW] J. A. Cima and W. R. Wogen, Unbounded composition operators on $H^{2}\left(\mathbb{B}_{2}\right)$, Proc. Amer. Math. Soc. 99 (1987), 477-483.
[CoM] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.
[FSte] J. E. Fornæss and B. Stensones, Lectures on counterexamples in several complex variables, Math. Notes, 33, Princeton Univ. Press, Princeton, NJ, 1987.
[M1] B. D. MacCluer, Spectra of compact composition operators on $H^{2}\left(B_{N}\right)$, Analysis 4 (1984), 87-103.
[M2] -, Compact composition operators on $H^{2}\left(B_{n}\right)$, Michigan Math. J. 32 (1985), 237-248.
[Me] P. R. Mercer, A general Hopf lemma and proper holomorphic mappings between convex domains in \mathbb{C}^{n}, Proc. Amer. Math. Soc. 119 (1993), 573-578.
[R] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Grundlehern Math. Wiss., 241, Springer-Verlag, New York, 1980.
[S] J. H. Shapiro, Composition operators and classical function theory, SpringerVerlag, New York, 1993.
[W1] W. R. Wogen, The smooth mappings which preserve the Hardy space $H^{2}\left(\mathbb{B}_{n}\right)$, Oper. Theory Adv. Appl., 35, pp. 249-267, Birkhäuser, Basel, 1988.
[W2] -, Composition operators acting on spaces of holomorphic functions on domains in \mathbb{C}^{n}, Proc. Sympos. Pure Math., 51 (part 2), pp. 361-366, Amer. Math. Sci., Providence, RI, 1991.

Department of Mathematics
University of North Carolina
Chapel Hill, NC 27599-3250
wrw@email.unc.edu

[^0]: Received January 3, 2005. Revision received March 24, 2005.
 The author wishes to thank J. A. Cima and P. R. Mercer for helpful discussions.

