On Geometric Properties of Smooth Maps That Preserve $H^2(\mathbb{B}_n)$

WARREN R. WOGEN

Introduction

Suppose that Ω is a domain in \mathbb{C}^n and that $\phi: \Omega \to \Omega$ is analytic on Ω . If *X* is a Banach space of analytic functions on Ω , let $C_{\phi}f = f \circ \phi$ for $f \in X$; here C_{ϕ} is the composition operator on *X* with symbol ϕ . A great deal of research has been done (see e.g. [CoM; S] and their extensive references) on composition operators for many choices of Ω and *X*. In particular, when Ω is the unit disk in \mathbb{C} and *X* is the Hardy space H^p ($p \ge 1$), it is classical that every C_{ϕ} is bounded on H^p .

The situation is different for $\Omega \subset \mathbb{C}^n$ with n > 1. We restrict our attention to $\Omega = \mathbb{B}_n = \mathbb{B}$, the open unit ball in \mathbb{C}^n . Write $\mathbb{S}_n = \mathbb{S}$ for the unit sphere in \mathbb{C}^n . Several authors [CSW; CW; M1] have constructed examples of analytic self-maps ϕ of \mathbb{B} such that C_{ϕ} is unbounded on $H^p(\mathbb{B})$. Versions of most of these examples appear in [CoM, Chap. 6]. In particular, one can even take ϕ to be a univalent polynomial map (see [CW] and [CoM, Chap. 6.3]).

In [W1] the author proved a necessary and sufficient condition for boundedness of C_{ϕ} on $H^2(\mathbb{B})$ for the case when ϕ is a C^3 map on $\mathbb{B} \cup \mathbb{S} = \overline{\mathbb{B}}$; this paper is a sequel to [W1]. We first describe the main result of [W1] in Theorem 1. Then we establish an analytic consequence (Theorem 2) and a geometric consequence (Theorem 3). We also produce some new examples of symbols that induce unbounded composition operators.

Results

We begin by setting some notation. Suppose that $\psi : \mathbb{B} \to \mathbb{C}$ is a C^1 -map and that $\xi \in S$. Then $D_{\xi}(z)$ denotes the (complex) directional derivative of ψ at z in the ξ direction.

Suppose that $\phi : \overline{\mathbb{B}} \to \mathbb{C}^n$ is analytic on \mathbb{B} and is C^1 on $\overline{\mathbb{B}}$. For $z \in \overline{\mathbb{B}}$, $D\phi(z)$ is the (complex) Jacobian matrix. Also, if $\eta \in S$ then $\phi_{\eta}(z) = \langle \phi(z), \eta \rangle$ will denote the coordinate of ϕ in the η direction.

We state the result of [W1]. See also [CoM, Chap. 6.2] for a discussion of this theorem.

THEOREM 1. Suppose that $\phi : \overline{\mathbb{B}} \to \overline{\mathbb{B}}$ is analytic on \mathbb{B} and is C^3 on $\overline{\mathbb{B}}$. Then the following statements are equivalent.

Received January 3, 2005. Revision received March 24, 2005.

The author wishes to thank J. A. Cima and P. R. Mercer for helpful discussions.

- (i) C_{ϕ} is unbounded on $H^2(\mathbb{B})$.
- (ii) There exist points ξ_1 , ξ_2 , and η in S such that ξ_1 and ξ_2 are orthogonal, $\phi(\xi_1) = \eta$, and

$$D_{\xi_1}\phi_\eta(\xi_1) = |D_{\xi_2\xi_2}\phi_\eta(\xi_1)|.$$
(1)

Thus, to test C_{ϕ} for boundedness, find all $\xi_1 \in S$ such that $\phi(\xi_1) \in S$. Then, letting $\eta = \phi(\xi_1)$, compare $D_{\xi_1}\phi_{\eta}(\xi_1)$ with $|D_{\xi_2\xi_2}\phi_{\eta}(\xi_1)|$.

The proof of Theorem 1 uses Carleson measures. Equality (1) yields a collapse of the surface measure on *S* near ξ_1 under the mapping ϕ that violates the Carleson measure condition [M2] for boundedness of C_{ϕ} .

REMARK 1. Let $\{e_k\}_{k=1}^n$ be the standard basis for \mathbb{C}^n . By pre- and post-composing ϕ by unitary maps of \mathbb{C}^n , we may assume the following normalization: $\xi_1 = \eta = e_1$ and $\xi_2 = e_2$. Then write $D_{e_k} = D_k$ and $\phi_k = \phi_{e_k}$, $1 \le k \le n$. Replacing e_2 by λe_2 for an appropriate λ ($|\lambda| = 1$), we can also assume that $D_{22}\phi_1(e_1) \ge 0$ (cf. [CoM, pp. 231, 232]). Given this normalization, equality (1) becomes

$$D_1\phi_1(e_1) = D_{22}\phi_1(e_1).$$
(2)

Finally we note that one always has $D_k \phi_1(e_1) = 0$ and $|D_{kk} \phi_1(e_1)| \le D_1 \phi_1(e_1)$ for $k \ge 2$; see [CoM, Lemma 6.6].

THEOREM 2. Suppose ϕ satisfies the hypotheses of Theorem 1 and that C_{ϕ} is unbounded on $H^2(\mathbb{B})$. If (1) holds at $\xi_1 \in S$, then $D\phi(\xi_1)$ is singular.

Proof. We assume the normalization as in Remark 1. We will analyze the second-order Taylor expansions about e_1 for the coordinate functions of ϕ .

Let $A_j = D_j\phi_1(e_1)$ and $A_{ij} = D_{ij}\phi_1(e_1)$, $1 \le i, j \le n$. Also, let $g(t) = (\cos t)e_1 + (\sin t)e_2 = (\cos t, \sin t, 0, \dots, 0)$. Here g parameterizes a smooth unit speed complex tangential curve in S, with $g(0) = e_1$. Suppose that $\phi(g(t)) = h(t) = (h_1(t), \dots, h_n(t))$. Recall that $A_2 = D_2\phi_1(e_1) = 0$ and that ϕ is a C^3 -map. From the Taylor expansion of ϕ_1 about e_1 , we have

$$h_1(t) = 1 + A_1(\cos t - 1) + \frac{1}{2} [A_{11}(\cos t - 1)^2 + 2A_{12}(\cos t - 1)\sin t + A_{22}\sin^2 t] + O(t^3).$$
(3)

Substitute the Maclaurin series for $\sin t$ and $\cos t$ into (3). Then

$$h_1(t) = 1 + \left(-\frac{1}{2}A_1 + \frac{1}{2}A_{22}\right)t^2 + O(t^3) = 1 + O(t^3), \tag{4}$$

since (2) gives $A_1 = A_{22}$.

Next let $B_k = D_2 \phi_k(e_1)$ for $k \ge 2$. Using the second Taylor polynomial for ϕ_k about e_1 , we see that

$$h_k(t) = \phi_k(g(t)) = B_k \sin t + O(t^2) = B_k t + O(t^2).$$
(5)

From (4) and (5) it follows that

$$||h(t)||^2 \ge |h_1(t)|^2 + |h_k(t)|^2 = 1 + |B_k|^2 t^2 + O(t^3),$$

so if $B_k \neq 0$ then $||h(t)||^2 > 1$ for small *t*, a contradiction. We have shown that all entries in the second column of $D\phi(e_1)$ are zero, so that $D\phi(e_1)$ is singular.

REMARK 2. Condition (2) is key for the Carleson measure estimates that prove (ii) implies (i) in Theorem 1.

Theorem 2 may significantly simplify the use of Theorem 1 in testing a specific C_{ϕ} for boundedness. Namely, given a smooth ϕ , one need only check condition (1) at those $\xi \in S$ such that $\phi(\xi) \in S$ and such that $D\phi(\xi)$ is singular. This may be most useful in case ϕ is univalent on \mathbb{B} or at least locally univalent. Then $D\phi(z)$ will be invertible for all $z \in \mathbb{B}$, and invertibility of $D\phi(z)$ may well persist at points $z \in S$.

Next we analyze the geometry of the smooth mapping ϕ for C_{ϕ} unbounded. We continue to assume the normalization of Remark 1. Thus, in the terminology of the proof of Theorem 2, we have $A_1 = A_{22}$.

Fix λ with $|\lambda| = 1$ and $\lambda \neq \pm 1$, and let $g_{\lambda}(t) = (\cos t)e_1 + \lambda(\sin t)e_2$. Let $h_{\lambda}(t) = \phi(g_{\lambda}(t))$. The same computation that led to (4) gives us

$$(h_{\lambda})_{1}(t) = 1 + \frac{1}{2}(-A_{1} + \lambda^{2}A_{22})t^{2} + O(t^{3}).$$
(6)

Let $T_1 = \frac{1}{2}(-A_1 + \lambda^2 A_{22})$, and note that $T_1 \neq 0$. For $k \geq 2$, we saw in Theorem 2 that $B_k = D_2 \phi_k(e_1) = 0$ and so $(h_\lambda)_k(t) = T_k t^2 + O(t^3)$, where $T_k = \frac{1}{2}(-D_1\phi_k(e_2) + \lambda^2 D_{22}\phi_k(e_1))$. Thus we have shown that

$$h_{\lambda}(t) - h_{\lambda}(0) = Tt^2 + O(t^3),$$
(7)

where $T = (T_1, ..., T_n)$. This means that h_{λ} , the image of g_{λ} under ϕ , has a cusp at $\phi(e_1) = e_1$. The "tangent" vector of this cusp is *T*. Note that $T_1 \neq 0$ (in fact Re $T_1 \neq 0$), so *T* is transverse to the tangent plane to *S* at e_1 .

Now let's suppose in addition that ϕ is univalent on $\overline{\mathbb{B}}$. We have seen that the smooth curves g_{λ} ($\lambda^2 \neq 1$) are "pinched" by ϕ into cusps h_{λ} . This pinching can be quantified in another way. For t > 0 and t small, $||g_{\lambda}(t) - g_{\lambda}(-t)|| \approx 2t$. By (7) we have

$$\|\phi(g_{\lambda}(t)) - \phi(g_{\lambda}(t))\| = \|h_{\lambda}(t) - h_{\lambda}(-t)\| = O(t^{3}).$$

It follows that, if $\psi = \phi^{-1}$, then $\psi : \phi(\overline{\mathbb{B}}) \to \overline{\mathbb{B}}$ cannot be in the class Lip α for any $\alpha > \frac{1}{3}$.

Now we apply the work of Mercer (see [Me, Prop. 2.6] and also [FSte, Prop. 12.2]) to deduce that $\phi(\mathbb{B})$ cannot be convex. In fact, the results of [Me] show that, for any proper map ψ of a convex domain Ω in \mathbb{C}^n onto \mathbb{B}_n , we must have that ψ is in Lip $\frac{1}{2}$. As Mercer has pointed out to the author, the proof requires taking $\alpha = 1$ and m = 2 in the proof of Proposition 2.6 of [Me]. We omit further details.

The preceding discussion proves the following conjecture of J. A. Cima.

THEOREM 3. If ϕ is a biholomorphic map of \mathbb{B} into \mathbb{B} that extends to be C^3 on $\overline{\mathbb{B}}$ and if $\phi(\mathbb{B})$ is convex, then C_{ϕ} is bounded on $H^2(B)$.

Examples

We begin by constructing a simple example that we then use to construct new unbounded operators C_{ϕ} with univalent symbols.

For $n \ge 2$, define $f: \mathbb{B}_n \to \mathbb{C}$ by $f(z) = z_1 + \frac{1}{2}z_2^2$. For $z \in \mathbb{B}_n$, let $r = |z_1|$ and note that $|f(z)| \le r + \frac{1}{2}(1-r^2)$. Elementary arguments show that |f(z)| < 1 unless r = 1. So we see that $f(\mathbb{B}_n) \subset \mathbb{B}_1$ and $|f(\lambda e_1)| = 1$ if $|\lambda| = 1$. Also, $D_1 f(e_1) = 1 = D_{22} f(e_1)$. In fact, if $\xi_1 = \lambda e_1$ and $\xi_2 = \mu e_2$ where $|\lambda| = |\mu| = 1$, then $D_{\xi_1} f(\xi_1) = |D_{\xi_2 \xi_2} f(\xi_1)|$.

EXAMPLE 1. Let $\phi = (f, 0, ..., 0)$: $\mathbb{B}_n \to \mathbb{B}_n$. Then C_{ϕ} is unbounded on $H^2(\mathbb{B}_n)$. This is immediate from Theorem 1 and our preceding discussion of f. This ϕ qualifies as the simplest possible example such that C_{ϕ} is unbounded.

Next we construct a new univalent example that illustrates Theorem 2.

EXAMPLE 2. For
$$n \ge 2$$
, define ϕ on $\overline{\mathbb{B}}_n$ by
 $\phi(z) = \frac{1}{2}(1 + f(z))z \cdot (1 - f(z))z \cdot z$

$$\phi(z) = \frac{1}{2}(1 + f(z), z_2(1 - f(z)), \dots, z_n(1 - f(z)))$$

If |z| < 1, then

$$\begin{aligned} |\phi(z)|^2 &= \frac{1}{4} \bigg\{ |1 + f(z)|^2 + |1 - f(z)|^2 \sum_{2}^{n} |z_k|^2 \bigg\} \\ &\leq \frac{1}{4} \{ |1 + f(z)|^2 + |1 - f(z)|^2 \} = \frac{1}{2} (1 + |f(z)|^2) < 1. \end{aligned}$$

Thus $\phi(\mathbb{B}_n) \subset \mathbb{B}_n$. Next we show that ϕ is univalent on $\overline{\mathbb{B}}_n$. Suppose that $z, w \in \overline{\mathbb{B}}_n$ and that $\phi(z) = \phi(w)$. Then $\phi_1(z) = \phi_1(w)$, so f(z) = f(w). Also $\phi_k(z) = \phi_k(w)$ for $2 \le k \le n$ implies that f(z) = f(w) = 1 or $z_k = w_k$. But f(z) = f(w) = 1 yields $z = w = e_1$. If $z_k = w_k$ for $2 \le k \le n$, then from f(z) = f(w) we see that $z_1 = w_1$ also.

Finally, observe that $\phi(e_1) = e_1$ and that $D_1\phi_1(e_1) = D_{22}\phi_1(e_1) = \frac{1}{2}$. Thus ϕ is a univalent polynomial map such that C_{ϕ} is unbounded. More complicated such maps may be found in [CW] and in [CoM, Chap. 6.3]. One can check that the singular matrix $D\phi(e_1)$ is $\frac{1}{2}P$, where *P* is the orthogonal projection of \mathbb{C}^n onto $\mathbb{C}e_1$. Thus rank $D\phi(e_1) = 1$. We show in the next example how to modify this ϕ so that if $2 \le k \le n - 1$ then rank $D\phi(e_1) = k$.

EXAMPLE 3. We outline an example for the case k = n - 1. Let

$$\phi(z) = \frac{1}{2}(1 + f(z), z_2(1 - f(z)), z_3, \dots, z_n)$$

for $z \in \overline{\mathbb{B}}_n$. By modifying the arguments of Example 2, we see that ϕ is univalent on $\overline{\mathbb{B}}_n$, $\phi(e_1) = e_1$, and $D_1\phi(e_1) = D_{22}\phi(e_1) = \frac{1}{2}$. We show that $\phi(\mathbb{B}_n) \subset \mathbb{B}_n$. For $z \in \mathbb{B}_n$ write z = (z', z''), where $z' = (z_1, z_2)$. Then

$$\begin{aligned} |\phi_1(z)|^2 + |\phi_2(z)|^2 &\leq \frac{1}{4} \{ |1 + f(z)|^2 + |1 - f(z)|^2 \} \\ &= \frac{1}{2} (1 + |f(z)|^2) \leq \frac{1}{2} (1 + |z'|^2). \end{aligned}$$

Thus $|\phi(z)|^2 \le \frac{1}{2}(1+|z'|^2) + \frac{1}{4}|z''|^2 < 1.$

It follows that C_{ϕ} is unbounded on $H^2(\mathbb{B}_n)$. Note that $D\phi(e) = \frac{1}{2}Q$, where Q is the orthogonal projection of \mathbb{C}^n onto $\{e_2\}^{\perp}$. Thus $D\phi(e)$ has rank n-1. It should be clear that we can interpolate Examples 2 and 3 to achieve rank $D\phi(e_1) = k$ for any k with $1 \le k \le n-1$.

We also point out that the previous constructions can be modified to produce families of symbols ϕ that induce unbounded C_{ϕ} . To illustrate, refer to Example 2. Given 0 < r < 1, if we define ϕ by

$$\phi(z) = \left(r + (1-r)f(z), \sqrt{r(1-r)}z_2(1-f(z)), \dots, \sqrt{r(1-r)}z_n(1-f(z))\right)$$

then one can show that ϕ satisfies the same conditions as the mapping of Example 2. See also [CoM, Chap. 6.3].

EXAMPLE 4. In the discussion preceding Theorem 3 we saw that, with the normalization of Remark 1, if C_{ϕ} is unbounded then ϕ maps the family of complex tangential curves g_{λ} ($\lambda \neq \pm 1$) into cusps. This might be expected since the tangent vectors to g_{λ} at e_1 lie in the kernel of $D\phi(e_1)$ and since the affine approximation $L(z) = \phi(e_1) + D\phi(e_1)(z - e_1)$ carries *S* into a complex plane of dimension < n. But the following example shows that the special curve g_1 need not be mapped to a cusp.

Define $\phi \colon \mathbb{C}^2 \to \mathbb{C}^2$ by $\phi(z) = \frac{1}{2} (1 + f(z), \frac{1}{2}z_2^3)$. We first verify that $\phi(\mathbb{B}_2) \subset \mathbb{B}_2$. If |z| < 1 and $|z_1| = r$, then

$$\begin{split} |\phi(z)|^2 &\leq \frac{1}{4} \Big\{ (1+|f(z)|)^2 + \frac{1}{4}(1-r^2)^3 \Big\} \\ &\leq \frac{1}{4} \Big\{ \Big(1+r+\frac{1}{2}(1-r^2) \Big)^2 + \frac{1}{4}(1-r^2)^2 \Big\} \\ &= \frac{1}{4} \Big\{ (1+r)^2 + (1+r)(1-r^2) + \frac{1}{2}(1-r^2)^2 \Big\} = g(r). \end{split}$$

Check that g increases on [0,1] and that g(1) = 1, so $\phi(\mathbb{B}_2) \subset \mathbb{B}_2$. Theorem 1 then shows that C_{ϕ} is unbounded, since $D_1\phi_1(e_1) = D_{22}\phi_1(e_1)$.

Let $h_1(t) = \phi(g_1(t)) = \frac{1}{2} (1 + \cos t + \frac{1}{2} \sin^2 t, \frac{1}{2} \sin^3 t)$. Using Maclaurin expansions for sin and cos, we obtain $h_1(t) - h_1(0) = (\frac{7}{24}t^4, \frac{1}{2}t^3) + O(t^5)$, so that

$$\frac{h_1(t) - h_1(0)}{t^3} \to \frac{1}{2}e_2 \text{ as } t \to 0.$$

Thus the approach of h_1 to e_1 as $t \to 0$ is complex tangential to S_2 .

The map ϕ is not univalent on \mathbb{B}_2 (it is 3-to-1). It is an open question whether the phenomenon just described is possible for a univalent map.

References

- [CSW] J. A. Cima, C. S. Stanton, and W. R. Wogen, On boundedness of composition operators on H²(B₂), Proc. Amer. Math. Soc. 91 (1984), 217–222.
- [CW] J. A. Cima and W. R. Wogen, Unbounded composition operators on $H^2(\mathbb{B}_2)$, Proc. Amer. Math. Soc. 99 (1987), 477–483.
- [CoM] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.

- [FSte] J. E. Fornæss and B. Stensones, *Lectures on counterexamples in several complex variables*, Math. Notes, 33, Princeton Univ. Press, Princeton, NJ, 1987.
- [M1] B. D. MacCluer, Spectra of compact composition operators on $H^2(B_N)$, Analysis 4 (1984), 87–103.
- [M2] -, *Compact composition operators on* $H^2(B_n)$, Michigan Math. J. 32 (1985), 237–248.
- [Me] P. R. Mercer, A general Hopf lemma and proper holomorphic mappings between convex domains in Cⁿ, Proc. Amer. Math. Soc. 119 (1993), 573–578.
 - [R] W. Rudin, *Function theory in the unit ball of* Cⁿ, Grundlehern Math. Wiss., 241, Springer-Verlag, New York, 1980.
 - [S] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York, 1993.
- [W1] W. R. Wogen, *The smooth mappings which preserve the Hardy space* $H^2(\mathbb{B}_n)$, Oper. Theory Adv. Appl., 35, pp. 249–267, Birkhäuser, Basel, 1988.
- [W2] ——, Composition operators acting on spaces of holomorphic functions on domains in Cⁿ, Proc. Sympos. Pure Math., 51 (part 2), pp. 361–366, Amer. Math. Sci., Providence, RI, 1991.

Department of Mathematics University of North Carolina Chapel Hill, NC 27599-3250

wrw@email.unc.edu