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Linear Symmetric Determinantal Hypersurfaces

Jens Piontkowski

The question of which equations of hypersurfaces in the complex projective space
can be expressed as the determinant of a matrix whose entries are linear forms is
classical. In1844 Hesse [He] proved that a smooth plane cubic has three essentially
different linear symmetric representations. Dixon [Di] showed in 1904 that, for
smooth plane curves, linear symmetric determinantal representations correspond to
ineffective theta-characteristics—that is, ineffective divisor classes whose double
is the canonical divisor. Barth [B] proved the corresponding statement for singu-
lar plane curves. The general case for any hypersurface was treated by Catanese
[C], Meyer-Brandis [M-B], and Beauville [Be].

Any plane curve has a linear symmetric determinantal representation [Be, 4.4],
but every linear symmetric determinantal surface is singular. By 1865 Salmon
knew that such a surface of degree n possesses in general

(
n+1

3

)
nodes [S, p. 495],

and Cayley [Ca] examined the position of these. Catanese [C] studied these sur-
faces with only nodes in a more general context. Here we are dealing mainly with
the question of which combinations of singularities can occur on a linear symmet-
ric determinantal cubic or quartic surface. For the cubics we find all their linear
symmetric representations and obtain in particular the following theorem.

Theorem. There are four types of linear symmetric determinantal cubic sur-
faces with isolated singularities. The combinations of their singularities are given
by the subgraphs of Ẽ6 that are obtained by removing some of the white dots in
Figure 1. In addition, all nonnormal cubics (with the exception of the union of
a smooth quadric with a transversal plane) are linear symmetric determinantal
cubics.

• ◦ • ◦ •

◦

•
Figure 1
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The combination of isolated singularities that occur on a linear symmetric deter-
minantal quartic can be described similarly but with more Dynkin diagrams as
starting points for the splitting process.

The author’s original motivation for this study was the desire to understand lin-
ear maps from a vector space V into the space of symmetric matrices, which occur
for example in the examination of focal varieties (see e.g. [FPi, Sec. 2.2.4]). Such
a map can be understood as a symmetric matrixM whose entries are linear forms
on V, and detM describes the locus of V that is mapped to symmetric matrices
of reduced rank. For dimV = 2 such maps are classified up to the choice of co-
ordinates classically [Ga, Sec. 12.6]. The case of n = 2 and arbitrary dimension
of V is easy, and the case of n = 3 is treated in course of proving the foregoing
Theorem. For n = 4 and dimV = 3, the classification can be obtained with the
methods used here if the linear symmetric determinantal quartic is a normal ratio-
nal surface. However, if the quartic has only rational singularities, these methods
are not constructive because Torelli-type theorems are used. This corresponds to
the fact that, although every possible combination of rational double points on a
quartic is known (by the work of Urabe [U1; U2] and Yang [Y]), equations for
most of these surfaces are unknown.

The author is indebted to Y.-G. Yang for sending his program that enumerates
the combinations of rational singularities on quartics. Further, the author thanks
J. Nagel and D. van Straten for several discussions.

1. General Definitions and Statements

Definition 1.1. LetM ∈ Sym(n,V ∗) be a symmetric n×nmatrix whose entries
are linear forms on a vector spaceV over C. IfF := detM is not zero, then it deter-
mines a linear symmetric (determinantal) hypersurface of degree n in P(V ). Two
matrix representations M and M ′ of F are equivalent if there is a T ∈ GL(n, C)
withM ′ = T tMT . A matrix representationM will be called nondegenerate if the
induced map V → Sym(n, C), v �→ M(v), is injective.

We note that the hypersurface F of a degenerate matrix representation M will be
a cone over the kernel of the induced map.

Often M will be obtained by choosing some matrices A0, . . . ,AN and setting
M :=∑N

i=0 xiAi , where the xi are a basis of (CN+1)∗. The representationM will
be nondegenerate if the matrices A0, . . . ,AN are linearly independent. Choosing
different generators A′

0, . . . ,A′
N of the space span{A0, . . . ,AN} corresponds to a

projective transformation of PN. Thus the hypersurface F = detM is determined
up to projective equivalence by the choice of the linear space A := span{Ai} ⊆
Sym(n, C). In fact, we may view F as the intersection of P(A) ⊆ P(Sym(n, C))
with the general determinantal hypersurface V(det), or as a cone over such a con-
struction if we started with a degenerate representation.

One might expect that the linear symmetric hypersurfaces form a Zariski-closed
subset of all hypersurfaces of degreen. However, this may be false because the map

P(Sym(n,V ∗)) ��� P(polynomials of degree n), [M ] �→ [detM ],
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is only a rational map and is not regular for n ≥ 2. Hence, the set of linear sym-
metric hypersurfaces is only constructible.

As is well known, the locus of corank-1 matrices is precisely singular along the
locus of corank ≥ 2 matrices. Therefore, singularities of F appear if either P(A)
intersects V(det) at a matrix of corank ≥ 2 or tangentially at a corank-1 matrix.
We use this in the following definition.

Definition 1.2. A singular point x ∈ F is called an essential singularity if
the corank of M(x) is greater or equal to 2; otherwise it is called an accidental
singularity.

The accidental singularities are difficult to control. Luckily, we can prove that, for
small sizes of the matrix M , only certain types of singularities can occur.

Proposition 1.3. Let F be a linear symmetric determinantal hypersurface of
degree n in PN. Then the isolated accidental singularities of F are of corank less
than or equal to n−N − 1. (Here corank denotes the corank of the Hesse matrix
of F at the singular point.)

In particular, a linear symmetric cubic in P3 has no isolated accidental singu-
larities, a quartic has only nodes, and a quintic has only Ak-singularities.

Before starting with the proof of this proposition we show the following lemma,
which enables us to identify some of the nonisolated singularities of a linear sym-
metric hypersurface. This statement was known to Salmon [S, p. 495].

Lemma 1.4. Let M = (mij ) be a linear symmetric n × n matrix with m11 = 0.
Then the hypersurface F = detM is singular along V(m12, . . . ,m1n).

Proof. We expand the determinant F by the Leibniz formula. Then each sum-
mand of

∂F

∂xj
=

∑
σ∈S(n)

n∑
i=1

sgn σ ·m1σ(1) · . . . ∂miσ(i)
∂xj

. . . ·mnσ(n)

contains ∂m11/∂xj = 0, m1σ(1), or mσ−1(1)1 = m1σ−1(1); hence, it vanishes on
V(m12, . . . ,m1n).

Proof of Proposition 1.3. Assume that we are examining the point p = (1 : 0 :
. . . : 0). Since p is an accidental singularity, it follows that corankA0 = 1 and we
can choose coordinates on the Cr such that

A0 =




0 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1


.

We set x0 = 1 and write
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M =




f11 f12 f13 · · · f1n

f12 1+ f22 f23 · · · f2n

f13 f23
. . . f3n

...
...

. . .
...

f1n f2n f3n · · · 1+ fnn




with fij ∈C[x1, . . . , xN ].

Obviously, the linear part of F = detM is f11, which must vanish in order for p
to be singular. Looking at

F = detM =
∑
σ∈S(n)

sgn σ ·m1σ(1) · . . . ·mnσ(n),

we see that the quadratic part of F is due to the summands, where n − 2 of the
miσ(i) are of order 0; that is, where σ is a transposition of 1 with i ∈ {2, . . . , n}.
Hence the quadratic part of F is

−
n∑
i=2

(f1i )
2.

The Hessian of F in p is the associated symmetricN×N matrix S of this quadric.
Our task is to show that the rank of S is at least 2N − n+ 1. By Lemma 1.4 there
areN linearly independent forms among f12, . . . , f1n because the point p is an iso-
lated singularity. Let us assume that f12, . . . , f1N+1 are linearly independent; then
the associated symmetric N ×N matrix S̃ of the quadric −∑N+1

i=2 f
2

1i has rank N.
The symmetric matrices SN+2, . . . , Sn associated to f 2

1N+2, . . . , f 2
1n have rank 1 or

0. From S̃ = S +∑n
i=N+2 Si we find

N = rank S̃ ≤ rank S +
n∑

i=N+2

rank Si ≤ rank S + n−N − 1

and so rank S ≥ 2N − n+ 1.

Remark. We will soon see that an essential singularity of a linear symmetric
hypersurface can never be anA2k-singularity, but an accidental singularity may as
well be one. For example, the quintic given as the determinant of the matrix



0 x y z
√−1z

x w + z 0 0 0

y 0 w + y 0 0

z 0 0 w + x
√−1z√−1z 0 0

√−1z w




has anA2-singularity at (1 : 0 : 0 : 0). It seems likely that, as the size of the matrix
increases, all types of singularities will occur as accidental singularities.

We turn now to examining the essential singularities. First, we will count them.
The following statement was known to Salmon [S, p. 495].
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Proposition 1.5. The general linear symmetric determinantal hypersurface F
of degree n has only essential singularities, and its singular locus has codimen-
sion 2 and degree

(
n+1

3

)
.

In particular, a general linear symmetric surface F ⊂ P3 has
(
n+1

3

)
essential

A1-singularities.

Proof. For the first statement we view F as V(det) ∩ P(A) ⊆ P(Sym(n, C)).
A general linear space P(A) ⊆ P(Sym(n, C)) intersects V(det) transversally, so
there are no accidental singularities. The locus of corank ≥ 2 matrices has codi-
mension 3 in P(Sym(n, C)) and degree

(
n+1

3

)
[HTu]. Since its intersection with

P(A) consists of the essential singularities of F, the first statement follows.
For the second statement one must show that a general essential singularity is

a node. This can be done with arguments similar to those used in the proof of
Proposition 1.3.

Cossac [Co] studied these general linear symmetric surfaces in degree 4 by tak-
ing up ideas of Cayley; in particular, he pointed out their connection to Enriques
surfaces. In order to examine the essential singularities further, we localize our
definitions.

Definition 1.6. A local symmetric matrix representation of a power series f ∈
C[[x1, . . . , xN ]] is a symmetric matrixM ∈ Sym(r , C[[x1, . . . , xN ]])with detM =
f. Two matrix representations M and M ′ are equivalent if there exists a T ∈
GL(r , C[[x1, . . . , xN ]]) such that M ′ = T tMT . A matrix representation M is
essential if corankM(0) ≥ 2 and is reduced if M(0) = 0.

If one considers the equation of the power series f only up to a choice of holomor-
phic coordinates, then it is convenient to extend the above definition of equivalence
by allowing changes of coordinates as well. It is enough to consider only reduced
matrix representations by virtue of the following well-known lemma.

Lemma 1.7. Any local symmetric matrix representationM of a power series f ∈
C[[x1, . . . , xN ]] is equivalent to


M̃ 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


,

where M̃ is a reduced local symmetric matrix representation of f.

Not every singularity has an essential local symmetric matrix representation. For
the ADE-singularities we have the following result.

Theorem 1.8. The surface singularities A2k , E6, and E8 have no essential local
symmetric matrix representation. The reduced essential symmetric matrix repre-
sentations for A2k+1, D2k , D2k+1, and E7 are, up to equivalence, as shown in
Table 1. The symbols in parentheses in the first column denote the specific matrix
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Table 1

Singularity X Equation Matrix representation M l(X)

A2k+1 (A
•
2k+1) −x 2 + y2 − z2k+2

(
y + zk+1 x

x y − zk+1

)
k + 1

D2k (D
•
2k) −x 2 + y2z− z2k−1

(
z x

x y2 − z2k−2

)
2

D2k (D
±
2k)

(
y ± zk−1 x

x z(y ∓ zk−1)

)
k

D2k+1 (D
•
2k+1) −x 2 + y2z− z2k

(
z x

x y2 − z2k−1

)
2

E7 (E
•
7) −x 2 + z3 + zy3

(
z x

x z2 + y3

)
3

representation of the singularity from now on. The last column gives the length of
the first Fitting ideal, F1M , of the matrix representation of the singularity, which
is here the ideal generated by the entries of the matrix.

Proof. Let M be a local symmetric matrix representation of an ADE-singularity
that is given by the equation f = detM. We setR = C[[x, y, z]]/(f ). Then M̂ =
cokerM is a maximal Cohen–Macaulay module of rank 1 [Yo, Chap. 7]. Owing
to the symmetry ofM , we obtain a surjection M̂ � HomR(M̂ ,R). Such a module
M̂ is called a contact module; it determines the matrix M up to equivalence (see
[KUl, Sec. 2] or [M-B, Sec. 3.34]). Over the local ring of an ADE-surface singu-
larity there exists only a finite number of irreducible modules. This was proven by
Auslander as follows: Recall that, for each of theADE-surface singularities, there
exists a groupG ⊂ GL(2, C) such that the invariant subring C[[x, y]]G is isomor-
phic to the local ringR of the singularity. Auslander exhibited a bijection between
these irreducible modules and the irreducible representations of G [Yo, Chap. 10].

Because a contact module has rank 1, we are interested only in the irreducible
rank-1 modules that are not isomorphic toR. There are k forAk , three forDk , two
for E6, one for E7, and none for E8 [Yo, p. 95]. This already proves the claim
for D2k , E7, and E8. For the other singularities one uses Auslander’s bijection
to work out the representation matrices in Table 2 for the irreducible modules of
rank 1 (besides those that occur in Table 1).

Kleiman and Ulrich [KUl, 2.2] showed that, if an R-module of rank 1 repre-
sented by an r × r matrix M is a contact module, then there exists a matrix T ∈
GL(r , C[[x, y, z]]) such that TM is symmetric. Since we are dealing only with
2 × 2 matrices, this condition is easy to check. Let
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Table 2

Singularity Standard equation Representation matrix

Ak −xy + zk+1 Mi =
(
zi y

x zk+1−i

)
for 1 ≤ i ≤ k

D2k+1 −x 2 + zy2 + z2k M± =
(
zk ± x yz

y zk ∓ x

)

E6 x 2 − y3 − z4 M± =
(
x ± z2 y2

y x ∓ z2

)

T =
(
g1 g2

f2 f1

)
with g1f1 − g2f2 ∈C[[x, y, z]]∗.

For Ak , the symmetry of TMi is equivalent to

xf1 + zif2 = yg1 + zk+1−ig2.

Clearly we have f1(0) = g1(0) = 0, which implies that f2(0) · g2(0) �= 0 for T to
be invertible. Therefore, i = k + 1 − i; that is, k + 1 is even and i = (k + 1)/2.
Hence, there can be no contact module forA2k and only one forA2k+1. Completely
analogous arguments work for the matrices M± for D2k+1 and E6.

The computation of the length of the Fitting ideals is simple. Denoting S :=
C[[x, y, z]], we have:

l(A•
2k+1) = dim S/(x, y + zk+1, y − zk+1) = dim S/(x, y, zk+1) = k + 1,

l(D•
2k) = dim S/(x, z, y2 − z2k−2) = dim S/(x, z, y2) = 2,

l(D±
2k) = dim S/(x, y ± zk−1, z(y ∓ zk−1)) = dim S/(x, zk , y ± zk−1) = k,

l(D•
2k+1) = dim S/(x, z, y2 − z2k−1) = dim S/(x, z, y2) = 2,

l(E•
7) = dim S/(x, z, z2 + y3) = dim S/(x, z, y3) = 3.

Often it does not make much sense to distinguish between the representationsD+
2k

andD−
2k because the automorphism of the local ring of the singularity induced by

x �→ −x, y �→ −y swaps them. Theorem 1.8 severely restricts the possible com-
binations of essential singularities on a linear symmetric surface, as follows.

Corollary 1.9. Let F be a linear symmetric determinantal surface of degree n
in P3 whose essential singularities X1, . . . ,Xt are ADE-singularities. Then Xi ∈
{A•

2k+1,D
•
2k+1,D

•
2k ,D

±
2k ,E

•
7} and

t∑
i=1

l(Xi) =
(
n+ 1

3

)
.
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Proof. This follows in a manner similar to Proposition 1.5. We view F as
P(A) ∩ V(det) ⊂ P(Sym(n, C)). Let Ii be the vanishing ideal of symmetric ma-
trices of corank ≥ i. Then we find the essential singularities as the intersection
of P(A) and V(I2), so the sum of their intersection multiplicity is degV(I2) =(
n+1

3

)
. By Theorem 1.8 we see that the essential ADE-singularities appear only at

corank-2 matrices and never at matrices of higher corank. Since V(I2) is smooth
outside V(I3), the local intersection multiplicities of P(A) and V(I2) can be found
by computing locally the length of the sum of the ideal I2 and the vanishing ideal
of P(A)—that is, by computing locally the length of the first Fitting ideal of ma-
trix representation. This was done for the various singularities in Theorem 1.8.

Remark. We will see later that linear symmetric cubics and quartics cannot have
D2k+1-singularities. However, here is a quintic with an essentialD5-singularity at
x = y = z = 0, showing that essential D2k+1-singularities are in fact possible:


0 665x −2y + z 3y + z 2y + 4z

665x 2y −2771x 6606x 7138x
−2y + z −2771x 26y − 6z 0 4z+ w

3y + z 6606x 0 w 0
2y + 4z 7138x 4z+ w 0 224y + 136z


.

A linear symmetric representation of F ⊂ P3 is closely related to the contact sur-
faces of F (a surface G is a contact surface if the intersection G ∩ F is twice a
curve C). These partially classical ideas, which are connected with the Hilbert–
Burch theorem, were recently refined by Beauville [Be], Catanese [C], Eisenbud
[E1], Kleiman and Ulrich [KUl], and Meyer-Brandis [M-B]. The next few pages
are devoted to extending Catanese’s results for even sets of nodes to sets of ADE-
singularities.

While studying contact surfaces, one also encounters nonlinear symmetric ma-
trices; hence the following definition will be useful.

Definition 1.10. A symmetric matrix M = (mij ) ∈ Sym(r , C[x0, . . . , xN ]) is
homogeneous if all its entries are homogeneous polynomials and if degmii +
degmjj = 2 degmij for all i, j = 1, . . . , r. The degree of M is degM := (d1, d2,
. . . , dr), where di := degmii. By permutation of the rows and columns, one ob-
tains d1 ≤ d2 ≤ · · · ≤ dr . For a homogeneous matrix M , the determinant F =
detM is a homogeneous polynomial of degree n =∑r

i=1 di. Such an F is called
a symmetric (determinantal) hypersurface.

A matrix M is linear if and only if d1 = · · · = dr = 1. A consequence of the
homogeneity of M is that adjM , the adjoint matrix of M , is also homogeneous.
From the adjoint matrix one obtains contact surfaces. Various versions of the fol-
lowing well-known lemma have appeared in the literature; we repeat the proof for
the reader’s convenience.
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Lemma 1.11. Let F = detM be a symmetric surface in P3 and letmii be a diag-
onal entry of adjM. Assume that no component of divF (mii) is contained in the
essential singular locus of F. Then divF (mii) = 2C, where C is a Cartier divisor
outside the essential singularities of F.

Proof. The proof is based on the Laplace identity (see [KUl, Sec. 2.4] or [C, (1.3)])
stating that

Fmik,jl = mkjmil −mklmij,

where the mij are entries of the adjoint matrix and mik,jl is (−1)i+j+k+l times the
determinant of the matrix M with the rows i, k and columns j , l deleted. Setting
k = j and l = i yields miimjj = (mij )2 modulo F, so

divF (m
ii)+ divF (m

jj ) = 2 divF (m
ij ). (∗)

This formula also implies that, at the zero locus of m11 = · · · = mrr = 0 on F, all
mij (and with them adjM) vanish. Therefore, the divisors divF (mii) cannot have
a common component outside the essential singular locus and hence (∗) shows
that all components in divF (mii) occur with even multiplicity. Finally, miimjj =
(mij )2 mod F shows that C is Cartier outside the essential singularities.

If instead of only M one uses all equivalent matrix representations of F, then
one obtains a whole system of contact surfaces [M-B, Sec. 2.1]. From now on
we restrict our attention to symmetric surfaces whose essential singularities are
ADE-singularities. To understand their contact surfaces it is important to examine
the local symmetric ADE-singularities as described in Theorem 1.8.

Definition 1.12. Let X ∈ {A•
2k+1,D

•
k ,D

±
2k ,E

•
7} be one of the essential symmet-

ric surface singularities with equation f = detM. The Fitting cycle of X on the
minimal resolution π : X̃ → X is defined as

ZX := gcd{divX̃(π
∗g) | for all g ∈F1M}.

Let g be a local contact surface induced by M (e.g., one of the main corank-1
minors). The parity diagram ofX is the minimal resolution graphGX ofX where
the vertices are marked as follows: a vertex of G is drawn as • if the correspond-
ing curve occurs with odd multiplicity in the total transform π∗g of g and is drawn
as ◦ otherwise.

The generalized Laplace identity [M-B, Sec. 2.2] implies that the parity diagrams
are the same for equivalent matrix representations and are thus well-defined. Let
us compute them.

Proposition 1.13. The essential symmetric surface ADE-singularities have the
following parity diagrams and Fitting cycles, where the multiplicity of an excep-
tional rational curve in the Fitting cycle is noted near the vertex representing this
curve in the Dynkin diagram.
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A•
2k+1 • ◦ • ◦ • ◦ •

1 2 3 4 3 2 1

D•
2k+1,D

•
2k

• 1

•
1

◦
2

◦
2

◦
2

◦
2

◦
2

◦
2

D±
2k , k even

• k − 1

◦
k

◦
2k − 2

•
2k − 3

◦
2k − 4

•
3

◦
2

•
1

D±
2k , k odd

◦ k − 1

•
k

◦
2k − 2

•
2k − 3

◦
2k − 4

•
3

◦
2

•
1

E•
7

• 3

◦
2

◦
4

◦
6

•
5

◦
4

•
3

In particular, the number of •-vertices in the parity diagram is the length of the
first Fitting ideal of the matrix representation, and the self–intersection number
of the Fitting cycle is −2 times the length of the Fitting ideal; that is, (ZX)2 =
−2 l(X). Furthermore, ZX · E ≤ 0 for any exceptional curve E.

Proof. By Theorem 1.8 we need only resolve the singularities while keeping track
of the divisors given by the matrix entries. Such a task is traditionally left to the
interested reader.

We return now to the global situation.

Definition 1.14. Let F ⊂ P3 be a surface and let P = {p1, . . . ,pt } ⊂ F be
a set of singular points of type A2k+1, Dk , or E7 on F. To each of these sin-
gularities assign an essential symmetric surface ADE-singularity symbol of the
same underlying type. That is, for A2k+1, D2k+1, and E7 one uses A•

2k+1, D
•
2k+1,

and E•
7 (respectively), but for D2k one may choose between D•

2k and D±
2k. Let

X = {X1, . . . ,Xt } be the resulting set. Further, let π : F̃ → F be the minimal
resolution of F in these points and let H be the pull-back of a hyperplane divisor
of F to F̃.
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The set X is said to be even if, for some δ ∈ {0,1}, the divisor δH +∑ t
i=1ZXi

is divisible by 2 in Pic(F̃ ). The set X is strictly even if δ = 0 and is weakly even
otherwise.

The set X is called (linearly) symmetric if there is a (linearly) homogeneous
symmetric matrix M with F = detM such that X is precisely the set of essential
symmetric singularities of F.

Note that, in the case of a symmetric set ofADE-singularities, the pull-backs of the
entries of the adjoint matrix ofM define the cycle

∑ t
i=1ZXi scheme-theoretically

by the definition of the Fitting cycles.

Proposition 1.15. A symmetric set of ADE-singularities is even.

Proof. Let F = detM be the surface that has X as essential singularities, and
let G be a contact surface given by a main corank-1 minor of M. Set l = degG
and C = 1

2 divF (G). Pulling G back to the minimal resolution π : F̃ → F yields
π∗G = 2C̃+D, where C̃ is the strict transform of C andD is a divisor supported
on the exceptional set. By the definition of the Fitting cycle,D−∑ t

i=1ZXi is ef-
fective as well. Moreover, by Proposition 1.13 we see that, for all singularities, the
parity of the multiplicity of the exceptional rational curves in the Fitting cycle is
the same as the one in the pull-back of a contact surface; hence D −∑ t

i=1ZXi is
divisible by 2, sayD−∑ t

i=1ZXi = 2B. Altogether, with δ = l−2�l/2� we have

divF̃ π
∗G = lH =

t∑
i=1

ZXi + 2(C̃ + B)

�⇒
t∑
i=1

ZXi + δH = 2( l/2!H − C̃ − B);

that is,
∑ t

i=1ZXi + δH is divisible by 2 in Pic(F̃ ).

We want to ensure the existence of contact surfaces for an even set of ADE-
singularities with the same properties as G in the foregoing proof.

Proposition 1.16. Let X be an even set of ADE-singularities on a surface F ⊂
P3, and let π : F̃ → F be the minimal resolution of F in these singular points.
Then there exists a surface G ⊂ P3 such that (a) its pull-back divisor divF̃ π

∗G
on F̃ contains the Fitting cycles ZXi for Xi ∈ X and (b) the effective divisor
divF̃ π

∗G−∑ t
i=1ZXi ∈ Pic(F̃ ) is divisible by 2.

Proof. The proof is the same as the second half of [C, Sec. 3.6]; we repeat it here
because it is short and helps to explain the rest of this section. Let L be a divisor
such that 2L =∑ t

i=1ZXi + δH , and choose l such that lH −L is linearly equiv-
alent to an effective divisor C̃. Then (2 l − δ)H = 2C̃ +∑ t

i=1ZXi ; hence, there
exists a surface of degree 2 l − δ with the required properties.

From now on the theory of the even sets of ADE-singularities is the same as
Catanese’s theory of even nodes [C, Secs. 2.16–2.23]. We shall repeat the state-
ments but leave out the proofs if they are identical to those for the node case.
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Definition 1.17. Let X be an even set of ADE-singularities on F. The order of
X is the smallest degree of a surface with the same properties as G in Proposi-
tion 1.16.

Let S be the graded ring C[x, y, z,w], and let L ∈ Pic(F̃ ) be such that 2L =
δH +∑ t

i=1ZXi . Then the associated graded S-module of X is

R− =
∞⊕
l=0

H 0(F̃, OF̃ (lH − L)) =
∞⊕
l=0

H 0(F, (π∗OF̃ (−L))(l)).

Note that if w ∈H 0(F̃, OF̃ (lH − L)) and w ′ ∈H 0(F̃, OF̃ (l
′H − L)), then ww ′ ∈

H 0(F̃, OF̃ ((l + l ′)H − 2L)) = H 0(F, OF (l + l ′ − δ)). In particular, if l is the
smallest number for which R−

l �= 0 then, by Proposition 1.16, X has order 2 l− δ.
Lemma 1.18. H 0(F̃, OF̃ (lH − L)) ∼= H 0(F̃, OF̃ ((l − δ)H + L)).

Proof (cf. [C, Sec. 2.1.5]). Given the long exact cohomology sequence associ-
ated to

0 → OF̃ (lH − L)→ OF̃ ((l − δ)H + L)→
t⊕
i=0

OZXi
(L)→ 0,

it is enough to show that the cohomology group H 0(ZXi , OZXi
(L)) vanishes. If

there exists a section s ∈ H 0(ZX, OZXi
(L)) then s2 ∈ H 0(ZXi , OZXi

(2L)) =
H 0
(
ZXi , OZXi

(
ZXi + δH +∑

j �=i ZXj
))

, but the last homology group is zero by
[R, Ex. 4.14].

Theorem 1.19. If X is a symmetric set of ADE-singularities on a reduced sur-
face F = detM , then the associated moduleR− is a Cohen–Macaulay S-module.

More precisely: if degM = (d1, . . . , dr) then set ki = (n+ δ − di)/2 and lj =
(n+ δ+dj )/2, where n = degF and δ = n−di mod 2. Then there exists a mini-
mal set of generatorsw1, . . . ,wr ofR− of degrees k1, . . . , kr such thatwiwj = mij,
where (mij ) = adjM. Moreover R− admits the minimal free resolution

0 −→
r⊕
j=1

S [−lj ] (mij )−−−→
r⊕
i=1

S [−ki] (wj )−−→ R− −→ 0.

The order of X is n− max{di}.
Theorem 1.20. Let F be an irreducible and reduced surface of degree n and let
X be an even set of ADE-singularities on F. Then the following conditions are
equivalent.

1. X is symmetric.
2. Let w1, . . . ,wr be a minimal set of homogeneous generators for the S-module
R−, and set mij = wiwj ∈ ⊕∞

l=0 H(F, O(l )) = S/(F ). Then det(mij ) is a
nonzero polynomial of degree n(r − 1).

3. R− is a Cohen–Macaulay S-module.
4. H1(F̃, OF̃ (lH − L)) = 0 for all l ∈Z.
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Catanese’s construction of the symmetric matrix is such that none of the matrix
entries is a nonzero constant, because the set of generators of R− was chosen to
be minimal.

Proposition 1.21. Let F be a surface of degree n with an even set X of ADE-
singularities.

If l(X) :=∑ t
i=1 l(Xi) ≤

(
n+1

3

)
, then X has order ≤ n− 1.

If l(X) = (
n+1

3

)
and n = δ mod 2, then n is divisible by 8.

Proof (following [C, Sec. 2.21]). By the remark that follows Definition 1.17, it
suffices to show that h0(F̃, OF̃ (lH − L)) �= 0 for 2 l − δ ≥ n− 1 or even only for
2 l ≥ n−1, observing that the order of X is an element of 2 l − δ + 2N. By Serre
duality and Lemma 1.18,

h2(F̃, OF̃ (lH − L)) = h0(F̃, OF̃ ((n− 4 − l )H + L))

= h0(F̃, OF̃ ((n− 4 − l + δ)H − L)).

Since n − 4 − l + δ ≤ l − 3 + δ < l it follows that h2(F̃, OF̃ (lH − L)) ≤
h0(F̃, OF̃ (lH − L)), and it is enough to show χ(F̃, OF̃ (lH − L)) > 0. Using(∑

ZXi
)2 = −2 l(X) from Proposition 1.13, the results of Riemann–Roch yield

χ(F̃, OF̃ (lH − L))

= χ(F̃, OF̃ )+
1

2
(lH − L)(lH − L− (n− 4)H )

= χ(F, OF )

+ 1

2

((
l − δ

2

)
H − 1

2

∑
ZXi

)((
l − n+ 4 − δ

2

)
H − 1

2

∑
ZXi

)

= 1+
(
n− 1

3

)
+ 1

2

((
l − δ

2

)(
l − n+ 4 − δ

2

)
n− 1

2
l(X)

)
.

It is not hard to see that this term is positive for 2r ≥ n−1 and l(X) ≤ (
n+1

3

)
. For

further reference we note that, for l(X) = (
n+1

3

)
and n− 1 = δ mod 2,

χ(F̃, OF̃ (�n/2�H − L)) = n and χ(F̃, OF̃ ((�n/2� − 1)H − L)) = 0.

For l(X) = (
n+1

3

)
and n = δ mod 2, we have

χ(F̃, OF̃ (( n/2! − 1)H − L)) = 3n/8 ∈Z,

showing that n is divisible by 8.

Theorem 1.22. LetX be an even set of ADE-singularities on a reduced surface
F ⊂ P3 of degree n. Then X is linearly symmetric if and only if X has length(
n+1

3

)
and order n− 1.

Proof. IfX is linearly symmetric, then its order is n−1 (by Theorem 1.19) and its
length was computed in Corollary 1.9. Alternatively, one can compute the length
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with the arguments in the proof of Proposition 1.21 and using Theorem 1.20. For
the nontrivial reverse implication of the theorem, see Catanese’s proof of [C,
Sec. 2.23].

Catanese showed by example that, in general, the hypothesis on the order of X
cannot be dropped.

2. Cubics

Before studying the determinantal cubics, we recall the following beautiful theo-
rem about cubics in P3; see Bruce and Wall [BrW] or Looijenga [L].

Theorem 2.1. The combinations of singularities that can occur on a normal
cubic surface in P3 are precisely the subgraphs of Ẽ6 that are obtained by remov-
ing some of the points in Figure 2. The nonnormal cubics are the cones over plane
cubic curves, the reducible cubics, and two special irreducible types.

• • • • •

•

•
Figure 2

We want to prove a similar statement for linear symmetric cubics. Since all plane
cubics have a linear symmetric matrix representation (see Section A), we focus
first on nondegenerate linear symmetric representations of the cubic surfaces.

Theorem 2.2. There are three nondegenerate linear symmetric determinantal
cubics with isolated singularities. Their combinations of the singularities are
given by the subgraphs of Ẽ6 that are obtained by removing some—but at least
one—of the white dots in Figure 3. They all have unique matrix representations
up to equivalence.

• ◦ • ◦ •

◦

•
Figure 3
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Moreover : of the nonnormal cubics, both special irreducible types as well as
the smooth quadric with a tangent plane, the quadric cone with a transversal
plane, and the double plane with an additional plane are all nondegenerate linear
symmetric cubics; and all their nondegenerate linear symmetric matrix represen-
tations are unique.

Including the degenerate matrix representations and with them all cubic cones, we
immediately obtain the following corollary.

Corollary 2.3. There are four types of linear symmetric determinantal cubics
with isolated singularities. Their combinations of the singularities are given by the
subgraphs of Figure 3 that are obtained by removing some of the white dots. The
cubics with an elliptic singularity have three matrix representations up to equiva-
lence, the other cubics only one.

In addition, all nonnormal cubics (with the exception of the smooth quadric
with a transversal plane) are linear symmetric cubics.

Proof of Theorem 2.2 (following the outline in [CoD, Prop. 0.5.5], where only the
normal cubics are considered). A nondegenerate linear symmetric representation
is determined up to equivalence by choosing a 4-dimensional linear subspace A ⊂
Sym(3, C); see the discussion near Definition 1.1. Now there is a nondegenerate
symmetric bilinear form on Sym(r , C) given by

〈·, ·〉 : Sym(r , C)× Sym(r , C)→ C, (A,B) �→ tr(A · B) =
r∑

i,j=1

aij bij ,

where tr denotes the trace. Therefore, instead of choosing a 4-dimensional linear
subspace A ⊂ Sym(3, C), we may choose dually a 2-dimensional linear subspace
A⊥ ⊂ Sym(3, C). There is only a finite number of these pencils of A⊥; this can
be extracted from [Ga, Sec. 12.6], where these pencils together with a choice of
basis are classified. However, using the identification of a symmetric 3× 3 matrix
modulo C∗ with a quadric in P2, we can also view A⊥ ⊂ Sym(3, C) as a pencil of
quadrics in P2. Then one can see that prescribing the intersection type of two gen-
eral members of this pencil determines the pencil up to a choice of coordinates.
From there one can compute the corresponding determinantal cubic. We will give
one example of this and summarize the remaining cases in a table.

Let us assume that two quadrics of the pencil intersect with multiplicities 1, 1,
and 2. We choose coordinates such that (0 : 0 : 1) and (0 : 1 : 0) are the sim-
ple intersection points and (1 : 0 : 0) is the point where the quadrics intersect
with multiplicity 2; that is, they have a common tangent. This tangent cannot pass
through (0 : 0 : 1) or (0 : 1 : 0), because otherwise it would intersect every quadric
of the pencil with multiplicity 2+1 = 3: it would (by Bezout’s theorem) thus be a
component of every quadric. Hence, by a further change of coordinates, we may
assume that the tangent is spanned by (1 : 0 : 0) and (1 : 1 : 1). Let (r : s : t) be
the coordinates on P2. Then a quadric q passing through (1 : 0 : 0), (0 : 1 : 0),
and (0 : 0 : 1) has the form ars + brt + cst. Its tangent in the point (1 : 0 : 0) is
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given by grad(1,0,0) q = (0, a, b), so passing through (1 : 1 : 1) implies a = −b.
Therefore, the pencil of quadrics is spanned by 2r(s − t) and 2st. These corre-
spond to the symmetric matrices

 0 1 −1
1 0 0

−1 0 0


 and


 0 0 0

0 0 1
0 1 0




(respectively), which therefore span A⊥. From this, a basis of A can easily be
computed as

 1 0 0
0 0 0
0 0 0


,


 0 0 0

0 1 0
0 0 0


,


 0 0 0

0 0 0
0 0 1


,


 0 1 1

1 0 0
1 0 0


,

and the equation of the cubic is

F = det


w z z

z x 0
z 0 y


 = wxy − xz2 − yz2.

It is easy to see that the singularities of F are the two A1-singularities at (0 : 1 :
0 : 0) and (0 : 0 : 1 : 0) and an A3-singularity at (1 : 0 : 0 : 0).

We summarize all cases in Table 3, whose first column describes the pencil of
quadrics. If it contains only numbers, we consider the pencil whose general mem-
ber is smooth and where two of those intersect with multiplicities given by the
numbers.

One may observe in Table 3 that, whenever the cubic F has only isolated singu-
larities, these singularities are precisely the singularities of the quartic Q that is
the union of the two smooth members of the pencil of the quadrics given by A.
We shall explain this amazing fact.

Recall that a plane A2k+1-singularity is defined to be the intersection of two
smooth branches intersecting with multiplicity k. Thus knowing the singularities
of the quartic Q, which is the union of the two smooth quadrics C1 and C2, is the
same as knowing the intersection multiplicities of C1 ∩C2, whose sum is 4. Now
we embed P2 via the Veronese embedding

v : P2 → V ⊂ P 5 = P(Sym(3, C)), [x] �→ [x · x t ]
as the Veronese surface V into P 5. Then the quadrics C1 and C2 are pull-backs
of two hyperplanes H1 and H2 of P 5. By the projection formula, the intersection
multiplicities ofC1∩C2 are the same as the intersection multiplicities of the curves
H1∩V andH2 ∩V on the Veronese surface V. These are also the intersection mul-
tiplicities of the Veronese surface V and the 3-plane H1 ∩H2 = P(A). Denoting
the affine coordinate ring of Sym2(3, C) by C[x0, . . . , x5], these multiplicities can
be computed as the vector space dimensions of the ring

C[x0, . . . , x5]/(I(V )+ I(H1)+ I(H2))
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Table 3

Description Pencil of Two general Description
of pencil quadrics members F of cubic

(1,1,1,1)
r(s − t)

t(r − s)

wxy + wxz

+ wyz+ xyz
cubic with 4A1

(2,1,1)
r(s − t)

st
wxy − xz2 − yz2 cubic with

2A1 + A3

(2, 2)
r 2

st
−xy2 − wz2 irreducible

type I

(3,1)
2r 2 − 2st

rt
wxz− z3 − xy2 cubic with

A5 + A1

(4)
2s2 − 2rt

r 2

−w3 + 2wxy
− x 2z

irreducible
type II

All quadrics singular;
no fixed line

r 2

s2
−x(wx − 2yz)

nondeg. quadric
+ tangent

plane

Fixed line; pencil
with center outside
line

rt

st
y(wx − z2)

quadric cone
+ transversal

plane

Fixed line; pencil
with center on line

r 2

rs
−wy2 double plane

+ plane

localized at the corresponding points of P(Sym(3, C)). Since H1 and H2 are lin-
ear and since the ideal of the Veronese surface is given by the 2 × 2 minors of the
general symmetric matrix, it follows that the ring just described is isomorphic to

C[w, x, y, z]/(2 × 2 minors of M),

where M is the matrix representation of F ∈C[w, x, y, z].
To determine the singularities of F = detM , we project F from a general

smooth point of F. Then it is classically known that the singularities of F are
stably equivalent to the singularities of the branch curve of the projection. Let us
recall the proof. If

F(w, x, y, z) = w2g1(x, y, z)+ wg2(x, y, z)+ g3(x, y,w)

with deg gi = i and g1 �= 0, then (1 : 0 : 0 : 0) is a smooth point of F and the
branch curve G of the projection is
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G = g2
2 − 4g1g3.

The stable equivalence between the points of F and G can be seen from

F

g1
=
(
w + g2

2g1

)2

− 1

4g2
1

G.

Now we apply this to our F = detM. We know a priori that F has at least
fourA1-singularities or worse in terms of the sum of the Milnor numbers; thus the
branch curve G has these singularities as well and so will be a reducible quartic.
We will show that G is the union of two quadrics. We choose coordinates such
that the general projection point is (1 : 0 : 0 : 0) and

A0 =

 0 0 0

0 1 0
0 0 1


;

then

M =

 f11 f12 f13

f12 w + f22 f23

f13 f23 w + f33


 with fij ∈C[x, y, z] linear.

We denote the adjoint matrix of M by adjM = (mij ). Then

F = w2g1 + wg2 + g3 with

g1 = f11, g2 = m22
w=0 +m33

w=0, g3 = detMw=0,

where the indexw = 0 stands for settingw equal to zero in the polynomial (or ma-
trix, as applies). By the determinantal formula of Laplace (see [KUl, Sec. 2.4]),

F · f11 = m22m33 − (m23)2 �⇒ g1g3 = m22
w=0m

33
w=0 − (m23

w=0)
2

and

G = g2
2 − 4g1g3 = (m22

w=0 +m33
w=0)

2 − 4m22
w=0m

33
w=0 + 4(m23

w=0)
2

= (
m22 −m33 + 2

√−1m23
)(
m22 −m33 − 2

√−1m23
);

here we have used m22
w=0 − m33

w=0 = m22 − m33 and m23
w=0 = m23. Hence, G

is the union of the quadric cones C̃1 = V
(
m22 − m33 + 2

√−1m23
)

and C̃2 =
V
(
m22 −m33 − 2

√−1m23
)

with vertex (1 : 0 : 0 : 0). We consider them as plane
curves and compute their intersection multiplicities, which are given by the vector
space dimensions of the ring

C[x, y, z]/
(
m22 −m33 ± 2

√−1m23
) = C[x, y, z]/(m22 −m33,m23)

localized at the appropriate points. Since

(m22 −m33,m23)+ (m11 = g1w +m11
w=0) ⊆ (2 × 2 minors of M)

and since the sum of the intersection multiplicities is 4 in all cases, it follows that
the intersection multiplicities of C1 ∩C2, V ∩P(A), and C̃1 ∩ C̃2 are equal at cor-
responding points! And by our previous remarks, the intersection multiplicities of
C̃1 ∩ C̃2 would determine the singularities of the branch curve if we knew that C̃1
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and C̃2 were smooth, which we do not. However, the singularities will only get
worse if C̃1 or C̃2 are singular, and we can at least conclude that the singularities
of the branch curve, which are also the singularities of the cubic F, are equal to
or worse than the singularities of the quartic Q = C1 + C2 that we started with.
But the combination of the singularities for C1 + C2 are 4A1, 2A1 + A3, 2A3,
A5 + A1, and A7. By the classification of cubics [BrW], these combinations are
all extremal combinations of isolated singularities on a normal cubic (with the ex-
ception of 2A3, which is impossible). Therefore, the singularities of F are in fact
the singularities of C1 + C2 if F is normal.

3. Quartics

The methods of studying a normal quartic in P3 depend on whether its resolution
is aK3 surface or a rational surface. If the quartic has only rational double points
then its resolution is aK3 surface; for this case, Urabe and Yang used Torelli-type
theorems for K3 surfaces to list all possible combinations of rational singulari-
ties. If the normal quartic surface possesses a nonrational double point or a triple
point, then the quartic is rational and can be examined by studying the projection
of the quartic from this singular point. Degtyarev [De] used this fact to list all pos-
sible combinations of singularities for this case. The proof also yields a method
for producing equations of the quartics. In contrast to this, for quartics with only
rational singularities there is in general no obvious way of constructing an equa-
tion of the quartic for a given possible combination of singularities, and thus most
equations are unknown. In Sections 3.1–3.3 we will adapt all this to the case of
linear symmetric quartics.

A quartic surface with a quadruple point is a cone over a plane curve. Since any
plane curve can be represented by a linear symmetric matrix [Be, 4.4], the same
holds for any such quartic surface, and we will not discuss this case further.

3.1. Linear Symmetric Quartics with Only Rational Double Points

Urabe and Yang [U1; U2; Y] examined the question of which combinations of
rational double points can even occur on a quartic. The general idea is to study
not the quartic in P3 directly but rather its minimal desingularization Y , which
is a K3 surface. For general facts about K3 surfaces see [BPV, Sec. VIII]; we
recall only the following: For all K3 surfaces, the second cohomology group
H 2(Y , Z) is a free abelian group of rank 22. Together with the intersection form,
this group is the unique unimodular even lattice of signature (3,19), which is
Q(−E8)⊕Q(−E8)⊕ H ⊕ H ⊕ H. Here, ⊕ denotes the orthogonal direct sum,
Q(−E8) the rank-8 lattice whose bilinear form is given by the Dynkin graph E8

with sign-reversed weights, and H the hyperbolic plane H = Zu+Zv where (writ-
ing the symmetric bilinear form as multiplication) u2 = v2 = 0 and u · v = 1.
Because H1(Y , O) = 0, the Picard group Pic(Y ) injects into H 2(Y , Z) and is, in
fact, a primitive subgroup there; that is, H 2(Y , Z)/Pic(Y ) is torsion free.

Using Torelli-type theorems forK3 surfaces and the work of Saint-Donat, Urabe
proved the following.
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Theorem 3.1 [U1, Thm. 1.15]. Let G = ∑
akAk +∑

blDl +∑
cmEm be a

Dynkin graph with components of type A, D, or E only. Then the following con-
ditions are equivalent.

1. There is a quartic surface in P3 with only rational double points as singulari-
ties: the combination of singularities corresponding to G.

2. Let Q = Q(G) be the lattice of type G, and let : := Q(−E8)⊕Q(−E8)⊕
H ⊕ H ⊕ H denote the unimodular even lattice with signature (3,19). The lat-
tice S = ZH ⊕Q (H 2 = 4, orthogonal direct sum) has an embedding S ⊆ :

satisfying the following conditions (a) and (b). Let S̃ = {x ∈: | mx ∈ S for
some m∈Z \ {0}} denote the primitive hull of S in :.
(a) If η ∈ S̃, η ·H = 0, and η2 = −2, then η ∈Q.
(b) S̃ does not contain any element u with u2 = 0 and u ·H = 2.

The sum µ :=∑
ak k +∑ bll +∑ cmm is called the Milnor number ofG or X.

For quartic surfaces, one always has µ ≤ 19.
Condition (a) ensures that there exist only the expected singularities G on the

quartic; condition (b) ensures that the linear system given by H induces an em-
bedding into P3.

By this theorem, Urabe reduced the question of the existence of a quartic with a
given combination of singularities to a purely lattice-theoretic problem. We want
a similar theorem for our situation, and we start by providing the Dynkin graph
with additional information.

Definition 3.2. A parity Dynkin graph G is a formal sum of the following
marked Dynkin diagrams.

• The essential parity Dynkin diagrams, which are the marked Dynkin diagrams
of Proposition 1.13. (We do not distinguish between D+

2k and D−
2k or between

D•
4 and D±

4 .)

• The accidental parity Dynkin diagrams, which are the Dynkin diagrams of Ak ,
Dk , E6, E7, and E8 with every vertex drawn as ◦; they are denoted (respec-
tively) by A◦

k , D
◦
k , E

◦
6 , E◦

7 , and E◦
8 .

The number of vertices of G is the Milnor number µ(G) of G, and the number of
•-vertices is the length l(G) of G.

To a linear symmetric surface with only rational singularities we assign a parity
Dynkin diagram whose components correspond to the singularities in the obvious
way: for the essential singularities we use the correspondence of Proposition 1.13,
and to the accidental singularities we assign the corresponding accidental Dynkin
diagrams.

Every parity Dynkin diagram comes with a special divisor in a corresponding
lattice, as described in our next definition.

Definition 3.3. The lattice Q(G) of a parity Dynkin graph has a canonical
basis given by the vertices of the graphG. The parity divisorDG is the sum of the
•-vertices.
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Now we can state the extension of Urabe’s theorem for linear symmetric quartics.

Theorem 3.4. Let G be a parity Dynkin graph. Then the following conditions
are equivalent.

1. There is a linear symmetric quartic in P3 with only rational double points as
singularities: the combination of singularities corresponding to G.

2. Let G satisfy condition 2 of Theorem 3.1 and, in addition:
(c) The length of G is 10 and 1

2H + 1
2DG ∈ S̃, where DG is the parity divisor

of G.

Proof. In Urabe’s correspondence between the lattices and the quartics, the prim-
itive lattices S̃ correspond to the Picard group of the minimal resolution F̃ of the
quartic. Now, on a linear symmetric quartic F, the essential singularities form
an even set X of ADE-singularities of length 10 (by Proposition 1.15 and Theo-
rem 1.22). Let G be the parity Dynkin graph of F. Clearly, by the definitions we
have l(G) = l(X) and that H +DG is divisible by 2 in Pic(F̃ ) = S̃ precisely if
H +∑

ZXi is. Therefore, condition (c) holds.
Starting with a parity Dynkin graph with properties (a)–(c), Urabe’s theorem

yields a quartic F with an even set ofADE-singularities of length 10. Let F̃ be the
minimal resolution ofF (here for all singularities ofF, but this makes no difference
for the statements of Section 1). By Theorem 1.22, the quartic F is linearly sym-
metric if the order ofX is 3. By Proposition 1.21,X is weakly even and so we need
only show that the order of X is not 1. Setting L = 1

2

(
H +∑

ZXi
)∈ Pic(F̃ ) and

using the remark after Definition1.17, this is equivalent toH 0(F̃, OF̃ (H−L)) = 0;
that is, we need to show that H − L = 1

2

(
H −∑

ZXi
)∈ Pic(F̃ ) is not effective.

Assume that H − L is effective. Then we can decompose it into
∑s

j=1Cj +∑
k Bk , where the Cj ,Bk are irreducible curves with H · Cj > 0 and H · Bk = 0.

Recall that, for any curve C on a K3 surface, C2 ≥ −2 and C2 is divisible by 2
[BPV, Sec. VIII, (3.6)]. Because Q is a negative definite lattice and Bk ∈Q ⊗Q,
we get B2

k = −2 and Bk ∈Q by condition (a). We claim that there are at most two
curves Cj , that is, s ≤ 2. Write Cj = ajH + C̃j ∈QH ⊕ Q ⊗Q; then H · Cj =
4aj ∈N and so aj = nj/4 for some nj ∈N. From

∑
Cj = 1

2H modulo Q⊗Q we
find either s = 1 and a1 = 1

2 or s = 2 and a1 = a2 = 1
4 . It is not difficult to obtain

contradictions for s = 1 or s = 2 and C1 �= C2 by completely elementary cal-
culations with divisors, but the C1 = C2 case seems inaccessible by these simple
methods. Hence, we recall more lattice theory.

The primitive hull S̃ of S will always lie in S ∗ = Hom(S, Z) ⊂ Q ⊗ S, so
S̃/S ⊆ S ∗/S. The finite group S ∗/S is well known. If G =∑

Xi is the decompo-
sition of the parity Dynkin graphG into the parity Dynkin diagrams, then S ∗/S =
Z/4Z⊕⊕i Q(−Xi)∗/Q(−Xi), where the first summand is generated byH/4 and
where Q(−Xi)∗/Q(−Xi) depends only on the underlying Dynkin diagram and is
isomorphic to Z/(k + 1)Z for Ak , Z/2Z × Z/2Z for D2k , Z/4Z for D2k+1, and
Z/3Z, Z/2Z, 0 for E6, E7, E8, respectively [U3, Sec. 1.3]. For D ∈Q∗ define

m(D) := max{(D + B)2 | B ∈Q}.
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Because the intersection form is negative definite, m(D) < 0 for D /∈Q. These
numbers were computed by Urabe [U3, Sec. 1.3]. In particular, he found that
m
(

1
2DXi

) = − 1
2 l(Xi) for the parity divisors of the singularities Xi. Since Q ⊗Q

is the orthogonal sum of the Q ⊗Q(Xi), we obtain m
(

1
2DG

) = ∑
m
(

1
2DXi

) =
− 1

2

∑
l(Xi) = −5.

Now, if s = 1 then C1 = H − L −∑
Bk = 1

2H + 1
2DG + B for some B ∈Q

and
C2

1 = (
1
2H + 1

2DG + B
)2

= (
1
2H
)2 + (

1
2DG + B

)2 ≤ 1+m
(

1
2DG

) = 1− 5 = −4,

contradicting C2
1 ≥ −2.

If s = 2 then write

Cj = 1

4
H +

∑
i

Cj,Xi with Cj,Xi ∈Q ⊗Q(Xi).

We see from C1 + C2 = 1
2H + 1

2DG mod Q that C1,Xi + C2,Xi = 1
2DXi mod Q.

Further, we find the estimates

C2
j ≤

(
1

4
H

)2

+
∑
i

m(Cj,Xi ) =
1

4
+
∑
i

m(Cj,Xi ),

C2
1 + C2

2 ≤ 1

2
+
∑
i

(m(C1,Xi )+m(C2,Xi )).

A small computation using Urabe’s values for the function m shows that

m(C1,Xi )+m(C2,Xi ) ≤ m
(

1
2DXi

) = − 1
2 l(Xi)

for any Cj,Xi with C1,Xi + C2,Xi = 1
2DXi mod Q(Xi). This implies C2

1 + C2
2 ≤

1
2 − 5 = −4 1

2 and hence that C2
1 < −2 or C2

2 < −2, which yields the required
contradiction.

From Urabe’s theorem it follows immediately that if there exists a quartic with
Dynkin graph G then one can find a quartic for any complete subgraph G′ ⊂ G.

For linear symmetric quartics, a similar statement holds as follows.

Definition 3.5. A parity Dynkin subgraph G′ of a parity Dynkin graph G
is a complete subgraph G′ ⊂ G that contains all the •-vertices of G; that is,
l(G′) = l(G).

Corollary 3.6 (Parity splitting principle). If there exists a linear symmetric
quartic with parity Dynkin graph G, then there exists a linear symmetric quartic
for any parity Dynkin subgraph G′ of G.

Proof. Because DG′ = DG ∈ QH ⊕ Q ⊗ Q(G′), we can use ZH ⊕ Q(G′) ⊆
ZL⊕Q(G) ⊆ : for the embedding required in the theorem.

This parity splitting principle has amazing consequences, which we state in the
following summarizing theorem.
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Theorem 3.7. Let G be the parity Dynkin graph of a linear symmetric quartic
with only rational double points. Then the following statements hold.

1. 10 ≤ µ(G) ≤ 19 and l(G) = 10.
2. G is a union of the parity Dynkin diagrams A•

2k+1, D
±
2k , and A◦

1.

In particular, the parity Dynkin graph G is determined by its underlying Dynkin
graph.

Proof. l(G) = 10 was stated in Theorem 3.4, andµ(G) ≤ 19 holds for any quartic.
By Proposition 1.3, the only possible accidental singularity on a linear symmetric
quartic is an A1-singularity. Proposition 1.13 has shown that there are no essential
A2k , E6, or E8 singularities. Further, for the parity Dynkin diagrams D•

2k+1 and
D•

2k (except forD•
4 = D±

4 ), there exist parity splittings that have an accidental A◦
l

(l ≥ 2) parity Dynkin diagram as a component, contradicting the parity splitting
principle.

Urabe used his theorem to give a short list of so-called basic Dynkin graphs and
to define two kinds of transformations for Dynkin graphs such that, after apply-
ing two transformations to a basic Dynkin graph, the resulting graph is a possible
combination of rational singularities on a quartic [U1; U2]. This produced a long
list of possible combinations of singularities on a quartic. Unfortunately, these op-
erations are not compatible with our new condition (c). Yet this long list of com-
binations of singularities was not complete, as Urabe himself noted [U2, Sec. 3].
There he also remarked that each Dynkin graphG can be checked individually by
a tedious computation using the lattice theory of Nikulin [N].A computer program
that does precisely this was written by Yang [Y], who was kind enough to make
this program available to the author. The modification to incorporate condition (c)
is not difficult, and the output of the program can be summarized as follows.

Theorem 3.8. For linear symmetric quartics with only rational double points,
only the following parity Dynkin graphs or their parity splittings occur:

D18 + A1, D14 + A5, D14 + A3 + 2A1,
D12 +D6 + A1, D12 + A5 + 2A1, D10 +D8 + A1,
D10 +D6 + A3, D10 + A9, D10 + A7 + 2A1,
D10 + A5 + A3 + A1, 2D8 + 3A1, D8 +D6 +D4 + A1

D8 +D6 + A5, D8 +D6 + A3 + 2A1, D8 +D4 + A5 + 2A1

D8 + A9 + 2A1, D8 + A5 + A3 + 3A1, 3D6 + A1,
2D6 +D4 + 3A1, 2D6 + A7, 2D6 + A5 + 2A1,
D6 + 2D4 + A3 + 2A1, D6 +D4 + A5 + A3 + A1, D6 + A13,
D6 + A9 + A3 + A1, D6 + A7 + A5 + A1, 4D4 + 3A1,
D4 + A9 + A5 + A1, D4 + 2A5 + A3 + 2A1, A19,
A17 + 2A1, A15 + A3 + A1, A13 + A5 + A1,
A11 + A7 + A1, A11 + A5 + 3A1, A11 + 2A3 + 2A1,
2A9 + A1, A9 + A7 + 3A1, 2A7 + A3 + 2A1,
3A5 + 4A1, 4D4 + 2A1, 16A1.
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(Only the underlying Dynkin graphs are listed because, by Theorem 3.7, they de-
termine the parity Dynkin diagrams.)

This theorem shows that the possible combinations of singularities on a linear sym-
metric determinantal quartic are far less than the one of a general quartic, where
one has 27 pages of combinations for the Milnor numbers 19, 18, and 17 alone,
where most combinations are possible for the Milnor numbers16 and15, and where
below that all combinations are possible [Y]. However, one might have hoped for
even fewer possible combinations in the case of Theorem 3.8.

Without the use of the program, it is not clear why one needs only the parity
diagrams of Milnor number 19 as well as 4D±

4 + 2A•
1 and 10A•

1 + 6A◦
1 as starting

points for the parity splitting process.

Example. In general it is difficult to find an explicit matrix representation for
the combinations of rational singularities listed in Theorem 3.8. However, with
some tricks and enough computing power one can find the matrix representation


x iy iy/2 y/2 − iz

iy x y/2 + iz iy/2
iy/2 y/2 + iz w + ix + 3iy/2 i(−2x + y − 4z)/4

y/2 − iz iy/2 i(−2x + y − 4z)/4 w − ix − 3iy/2




of the unique quartic with an A19-singularity reported by Kato and Naruki [KaN].

In the following sections, when the quartic has nonsimple singular point we will
study the quartic by projecting it from a singular point. The referee suggested
that this might also be possible in the case of Theorem 3.8 owing to a result of
Cayley [Ca, Sec. 2.4.3]: we project the quartic from one of its simple singular
double points. Let D be the branch locus of this projection and C the projection
of the tangent cone of this singular point. Cayley proved that, for a linear sym-
metric quartic, the sextic curve B is a union of two cubics and has contact with the
conic C. Enumerating all possible intersection configurations of the cubics and
the conic, especially with respect to their singularities, will lead to the foregoing
classification. This might even yield equations for the quartics.

3.2. Linear Symmetric Quartics with a Nonsimple Double Point

As soon as the normal quartic acquires a nonsimple double point, it is no longer a
K3 surface but instead a rational surface. Hence the techniques of the last section
cannot be used to study this case. Degtyarev [De] studied these quartics by pro-
jecting them from their worst singularity onto a plane. We will use his extensive
study of quartic equations to obtain the following result.

Theorem 3.9. Only the following combinations of double points occur on a ra-
tional linear symmetric quartic with at most double points:

X1,0 + A3 + {X1,0,D6 + A1,D4 + 3A1,A7, 2A3 + A1, 6A1},
X1,2 + A3 + {D6,D4 + 2A1}, {X1,2 + A1,X1,4} + {D6 + A1,A7, 2A3 + A1},
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X1,4 + A3 + {A3 + A1,A3}, X1,6 + A3 + A1, X1,8 + A3,

Y 1
2,2 + A5 + A1, Y 1

2,2 + 2A1 + {D4, 4A1}, Y 1
2,4 + 2A1 + {2A1,A1},

Y 1
4,4 + 2A1 + {A1,∅}, Y 1

2,6 + 2A1.

Here, one must choose one element out of the sets in order to obtain a valid ex-
pression, and the A2k+1- and D2k-singularities may be split in the same manner
as A•

2k+1 and D±
2k in Section 3.1.

Proof. To apply the results of Degtyarev, we need explicit equations. Let us as-
sume that M = wA0 + xA1 + yA2 + zA3, that F = detM , and that the worst
singular point is at p = (1 : 0 : 0 : 0). The rank of A0 is 2 by (Proposition 1.3
and) the obvious fact that the multiplicity of F at p is equal to or higher than the
corank of A0. We can choose a basis of C4 such that

A0 =
(

0 0
0 Ẽ2

)
with Ẽ2 =

(
0 1
1 0

)
.

If we use a 2 × 2 blocking for M ,

M =
(
M11 M12

Mt
12 M22

)
,

then the quadric part of F in p is given by −detM11. Since we are still free to
choose an arbitrary basis in span{e1, e2} or span{x, y, z}, we may think of M11 as
given by a linear subspace in P(Sym(2, C)) ∼= P2. The matrices of rank 1 form a
smooth conic C in this P2, and the linear spaces inside this P2 are characterized
by their intersection with this conic [Ha, Sec. 10]. We obtain the list shown as
Table 4.

In the last two cases of Table 4, we have nonisolated singularities by Lemma 1.4.
In the first two cases, we have Ak-singularities by the the classification of singu-
larities [AGV, Sec. 16.2]. We want to show that onlyDk-singularities occur in the
third case. We write

M =




0 x f13 f14

x y f23 f24

f13 f23 f33 w + f34

f14 f24 w + f34 f44


 with fij ∈C[x, y, z].

After a base change of the type e3 �→ e3−λ3e1−µ3e2 and e4 �→ e4−λ4e1−µ4e2,
we may assume that f13, f14, f23, f24 ∈ C[y, z]. Setting w = 1, computing the
determinant, and performing the substitution x → x − xf34 + f14f23 + f13f24,
we see that the equation of F starts with

x 2 + 2yf13f14 + · · · .
By Lemma 1.4, the linear polynomials f13 and f14 are linear independent; thus, F
has a Dk-singularity in p [AGV, Sec. 16.2].

As a result, the fourth case is the only one in which nonsimple double points
may occur. We have
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Table 4

Subspace Normal form of M11 detM11

P
2

(
x z

z y

)
xy − z2

Secant of C

(
x 0
0 y

)
xy

Tangent to C

(
0 x

x y

)
−x 2

Point outside C

(
0 x

x 0

)
−x 2

Point on C

(
0 0

0 x

)
0

∅
(

0 0

0 0

)
0

M =




0 x f13 f14

x 0 f23 f24

f13 f23 f33 w + f34

f14 f24 w + f34 f44


 with fij ∈C[x, y, z].

The surface F is given as F = w2x 2 + wxP +Q, where

P = 2xf34 − 2(f13f24 + f14f23) and

Q = x 2(f 2
34 − f33f44)+ 2x(f13f23f44 + f14f24f33 − f13f24f34 − f14f23f34)

+ (f13f24 − f14f23)
2.

The branch curve of the canonical projection ofF fromp is (besides the x 2-factor)

D = P 2 − 4Q = 4(xf33 − 2f13f23)(xf44 − 2f14f24) = 4C1C2,

a union of two conics C1,C2. Note that there is no restriction on the equation of
the conics, since we can choose the fij arbitrary so far. Further, let the line L be
the projected tangent cone V(x) of F in p.

According to Degtyarev [De, Sec. 2], p will be an isolated singularity only if
D is smooth at L∩Q. Note thatD cannot contain L owing to the linear indepen-
dence of the linear forms x, f13, f14 and x, f23, f24 (cf. Lemma 1.4). This excludes
singularities of the type N [De, Sec. 3]. Now F has the following singularities.

• To each singular point ofD not lying on L there corresponds a singular point of
F that is stably equivalent to it. In particular, the curve D cannot have a multi-
ple component for a normal surface F.
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Table 5

D ∩ L q Singularity

(1,1,1,1) — X1,0

(2,1,1) q X1,q

(2, 2) q Y1,q

(2, 2) (2, 2) Y 1
2,2

(Ak ,1,1) — X1,k+1

(Ak , 2) q Y 1
k+1,q

(Ak ,Al) — Y 1
k+1,l+1

• To each s-fold point of Q ∩ L not on D there corresponds an exceptional sin-
gular point of F of type As−1.

• The type of the singularity of F at p can be read off Table 5. The first column
describes the intersection configuration of L andD, where 1 (resp. 2) stands for
a transversal (resp. tangential) intersection at a smooth point of D and where
Ak stands for a transversal intersection at an Ak-singularity ofD. IfD ∩L and
Q ∩ L have a common multiple point then its multiplicity in Q ∩ L is denoted
by q; otherwise, we set q = 1. The case of two common double points is writ-
ten loosely as q = (2, 2).

We now apply this to our case, yielding

D ∩ L = V(f13f14f23f24, x).

By Lemma 1.4, the linear forms x, f13, f14 and x, f23, f24 are linear independent,
so D and L may intersect only in the configurations listed in Table 5. Note that

Q ∩ L = V((f13f24 − f14f23)
2, x);

thus, the exceptional singularities are of type A1 or A3 if the corresponding multi-
ple points do not lie onD.We treat separately the cases of the different intersection
configurations of D and L.

Case 1: (1,1,1,1). Our main singularity is an X1,0. Since f13, f14, f23, f24 have
pairwise distinct zeros on L, it follows that Q∩L and D ∩L cannot have a com-
mon multiple zero; thus we can have either an A3 or two A1s as exceptional sin-
gularities. Further, we can change (f14, f24) to (λf14, λ−1f24) with λ∈C∗ without
changing the equation of D, but Q ∩ L changes to V((f13f24 − λ2f14f23)

2, x).
This restricted pencil for λ2 ∈ C∗ contains a quadruple point, because the com-
plete pencil with λ2 ∈ P1 does and we can exclude λ = 0,∞. Therefore, we can
always have two A1 as well as an A3 as exceptional singularities.

Finally, in Figure 4 we sketch all singularities that can occur on a quarticD that
is the union of two conics and also list which singularities (apart from the excep-
tional ones) the surface F has in the corresponding case. In each case, the fat line
represents L.
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X1,0 + A7 X1,0 + A5 + A1 X1,0 + 2A3 X1,0 + A3 + 2A1

X1,0 + 4A1 X1,0 +D6 + A1 X1,0 +D4 + 2A1 X1,0 + 2A3 + A1

X1,0 + A3 + 3A1 X1,0 + 5A1 2X1,0 X1,0 +D4 + 3A1

X1,0 + 6A1

Figure 4

Case 2: (2,1,1). Because L intersectsD tangentially, it follows that one of the
two conics C1,C2 (say, C1) must be smooth and that f13 and f23 are proportional
modulo x. In other words, there exist α ∈ C∗ and β ∈ C with f23 = αf13 + βx.

Therefore,

D ∩ L = V(f 2
13f14f24, x) and Q ∩ L = V(f 2

13(f24 − αf14)
2, x)

have a common double point. This point may become a quadruple point ofQ∩L
and thus the main singularity is either an X1,4 or an X1,2; in the latter case, there
exists an exceptional singularity of type A1. With a similar argument as used for
Case 2, the condition that Q ∩ L has a quadruple point is seen to be independent
of the equation for D. Figure 5 shows the possible singularities of F (apart from
X1,4 or X1,2 + A1) in dependence of the shape of D.

Case 3: (2, 2). Because of the two tangential intersections of L and D, it fol-
lows that both conics C1,C2 must be smooth and that f13 and f23 as well as f14

and f24 are proportional modulo x; hence

D ∩ L = V(f 2
13f

2
14, x) and Q ∩ L = V(f 2

13f
2

14, x)
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A7 A5 + A1 2A3 A3 + 2A1

4A1 D6 + A1 D4 + 2A1 2A3 + A1

A3 + 3A1 5A1

Figure 5

are the same divisor with two double points. Therefore, our main singularity is a
Y 1

2,2 and there are no exceptional singularities. The singularities of F in depen-
dence of the shape of D are shown in Figure 6.

Y 1
2,2 + A5 + A1 Y 1

2,2 + A3 + 2A1 Y 1
2,2 + 4A1

Figure 6

Case 4: (Ak , 1,1). Here D has an Ak-singularity on L, where k is necessarily
odd; its two branches belong to C1 and C2. In particular, if both branches belong
to C1 (i.e., if f13 and f23 are proportional modulo x), then the singular point of
D would belong to Q ∩ L and F would have a nonisolated singularity. Remem-
bering that f13, f14 and f23, f24 are also not proportional modulo x, we find that
f24 = αf13 + βx for some α ∈C∗ and β ∈C (or the same with the indices 1 and 2
exchanged) and that

D ∩ L = V(f 2
13f14f23, x) and Q ∩ L = V((αf 2

13 − f14f23)
2, x).
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Thus D ∩ L and Q ∩ L cannot have a common multiple point. Our usual argu-
ment thatQ∩Lmay have two double points as well as a quadruple point without
changing the equation of D can be adapted to this case also. Thus we can always
have one A3 and two A1 as exceptional singularities. It remains to list all the sin-
gularities of F apart from the exceptional ones that depend on the shape ofD; see
Figure 7.

X1,2 + A5 X1,2 + A3 + A1 X1,2 + 3A1 X1,2 +D6

X1,2 +D4 + A1 X1,2 + A3 + 2A1 X1,2 + 4A1 X1,2 +D4 + 2A1

X1,2 + 5A1 X1,4 + A3 X1,4 + 2A1 X1,4 + A3 + A1

X1,4 + 3A1 X1,6 + A1 X1,8

Figure 7

Case 5: (Ak , 2) and (Ak ,Al). We have already seen that an Ak-singularity of
D on L can occur only as the intersection of both C1 and C2. Hence, no further
tangential intersection of L and C1 or C2 is possible; that is, the case (Ak , 2) does
not occur. For (Ak ,Al) we obtain f23 = α1f14 + β1x and f24 = α2f13 + β2x for
some α1,α2 ∈C∗ and β1,β2 ∈C; thus,

D ∩ L = V(f 2
13f

2
14, x) and

Q ∩ L = V
((√

α2f13 + √
α1f14

)2(√
α2f13 − √

α1f14
)2

, x
)
.
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Y 1
2,2 + A3 Y 1

2,2 + 2A1 Y 1
2,2 +D4 Y 1

2,2 + 3A1

Y 1
2,2 + 4A1 Y 1

2,4 + A1 Y 1
2,4 + 2A1 Y 1

4,4

Y 1
4,4 + A1 Y 1

2,6

Figure 8

Consequently,Q∩L always has two double points outsideD∩L; that is, we have
two exceptional A1-singularities. Figure 8 shows the remaining singularities of F
according to the shape of D.

3.3. Linear Symmetric Quartics with a Triple Point

Similar to the case of Section 3.2, we obtain the following theorem.

Theorem 3.10. Only the following combinations of singularities occur on a nor-
mal linear symmetric quartic with a triple point :

T3,3,3 + A11, T3,3,5 + A9, T3,3,7 + A7, T3,3,9 + A5, T3,3,11 + A3, T3,3,13 + A1,

T3,3,15, T3,5,5 + A5 + A1, T3,5,7 + A5, T3,5,9 + 2A1, T3,5,11 + A1, T3,7,7 + A3,

T3,7,9 + A1, T3,7,11, T5,5,5 + 3A1, T5,5,7 + 2A1, T5,7,7 + A1, T7,7,7,

T3,3,4 + A11, T3,4,4 + A3 + A7, T4,4,4 + 3A3,

Q11 + A9, S1,0 + A5 + A1, S #
1,2 + A5, S #

1,4 + 2A1, S #
1,6 + A1.

Here, the A2k+1-singularities can be split in the same manner as A•
2k+1 was split

before.

Proof. Let p = (1 : 0 : 0) be the triple point of the quartic F. From the first part
of the proof of Theorem 3.9 it follows that the rank of A0 is 1; hence, we choose
a basis of C4 such that
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Table 6

Singularities
of P Triple point of F

— P8 = T3,3,3

A1 P5+q1 = T3,3,q1 , where qi = max{4, 3 + ri}
2A1 Rq1,q2 = T3,q1,q2

3A1 Tq1,q2,q3

A2 Q10,Q11,Q12 for r1 = 0, 2, 3 (respectively)

A3 S11, S12, S1,0 for r1 = 0, 2, 4 (respectively)

S #
1,r1−4 for r1 > 4.

A0 =
(

0 0
0 1

)

in a (3,1) blocking. Then the expansion ofF = det(wA0+xA1+yA2+zA3)with
respect to w is F = wP +Q, where Q is the determinant of the matrix A123 =
xA1 + yA2 + zA3 and P is the upper left 3 × 3 minor of the same matrix. We
therefore consider A123 as a matrix representation of the curve Q, and P is one of
the contact curves of Q (i.e., all intersection multiplicities are even). In order to
determine the singularities of F, we quote the following results of Degtyarev [De,
Sec. 4]:

• The point p is an isolated singularity of F only if P and Q have no common
singularities.

• Apart from the triple point, the normal surface F has only Ar−1-singularities
that are in one-to-one correspondence with points of the r-fold intersection of
P and Q at smooth points of P.

• The type of the double point of F is determined as follows: for a singular point
Si of P, let ri be the intersection multiplicity of P and Q in Si; then we have
the correspondences shown in Table 6.

Now we have to analyze our linear symmetric quartic F for the different pos-
sibilities of P. For the case of a smooth cubic P, we can use abstract arguments
involving the Jacobian of P and the theory of contact curves; for singular P, we
must analyze the equations using the determinantal representations of P (see Sec-
tion A).

Case 1: P smooth cubic. Since P andQ have contact, the results of Degtyarev
say that F has a P8 = T3,3,3-singularity and a combination of Ak-singularities,
which is a splitting of A11 in the usual way. To show that any such splitting is pos-
sible we have to prove that, for any partition

∑
mi = 6 (mi ∈N) of 6, there exists

a quarticQ that intersects P with the multiplicities 2mi. We compute in the Jaco-
bian of the smooth cubic P, which is isomorphic to P. We think of the Jacobian as
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a complex torus given as the wraparound of a parallelogram inside C determined
by the numbers 1, τ ∈ C \ R. Clearly, we can find pairwise distinct points qi in
the interior of the parallelogram given by 1

2 and τ
2 such that

∑
miqi = τ+1

2 in C.

Then
∑

2miqi = 0 in the Jacobian of P ; that is,
∑

2miqi is a principal divisor.
Owing to our choice of the qi , all proper nontrivial subcombinations

∑
niqi (0 ≤

ni ≤ mi) are not principal. Since a plane cubic is projectively normal and since
deg

∑
2miqi = 3 · 4, there exists a quartic Q with P ∩ Q = ∑

2miqi. Now it
remains to show that there is a linear symmetric matrix representation of Q such
that the top 3 × 3 minor of this matrix is P, because we can obtain a matrix repre-
sentation of F from this matrix by adding w to the bottom right entry. Since P is
smooth, we find a self-linked ideal I with respect to (P,Q), that is, (P,Q) : I =
I [M-B, Prop. 4.3]. Note that I does not contain a quadric polynomial. Namely,
if G ∈ I with degG = 2 then G2 ∈ (P,Q); that is, G2 = λQ + LP with λ ∈ C∗
and L∈C[x, y, z]1. We would thus have 2G ∩ P = Q ∩ P and so G ∩ P would
be a principle subdivisor of Q ∩ P on P, which is impossible by the construction
of Q. By [Be, Sec. 2.4] or [M-B, Sec. 4], such a self-linked ideal induces a lin-
ear symmetric matrix representation of Q with a contact cubic P. After a change
of basis we may assume that P is the upper left 3 × 3 minor of this matrix. In
fact, knowing that such a matrix exists, it can be easily constructed using Dixon’s
method [Di].

Case 2: P nodal cubic. From Section A we know that, up to a choice of basis,
there are only two different linear symmetric matrix representations of a nodal
cubic P = x3 + y3 + xyz. In other words, for a matrix M with F = detM we
may assume that

M =




−y 0 x ayy + azz

0 −x y byy + bzz

x y z cyy + czz

ayy + azz byy + bzz cyy + czz w + f


 or

M ′ =




−y 1
2z x ayy + azz

1
2z −x y byy + bzz

x y 0 cyy + czz

ayy + azz byy + bzz cyy + czz w + f


,

where f ∈ C[x, y, z]. The variable x was eliminated from the last column by
adding suitable multiples of the first three columns. Now we can compute Q and
Q′ and obtain that (az, bz) �= 0 (resp. cz �= 0) for Q (resp. Q′) to be smooth
at the singular point (0 : 0 : 1) of P. To compute the intersection multiplicities
of P and the quartics, we choose the parameterization (s : t) �→ (−s2 t : st 2 :
(t − s)(s2 + st + t 2)) of P that maps (1 : 0) and (0 : 1) to the singular point of P.
Plugging it into the quartics yields, respectively,

st(azs
5 − czs

4t + (bz − ay)s
3t 2 + (cy − az)s

2 t 3 + (cz − by)st
4 − bzt

5)2

and
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(− 1
2czs

6 + bzs
5t + (

az + 1
2cy
)
s4t 2

− by s
3t 3 − (bz + ay)s

2 t 4 − (
az − 1

2cy
)
st 5 + 1

2czt
6
)2
.

The first polynomial is of degree 5 and is arbitrary apart from (az, bz) �= 0; we
can distribute its zeros arbitrarily with the exception that we cannot have zeros at
(1 : 0) and (0 : 1) at the same time. The second, sextic polynomial can also have
any combination of multiple zeros, but none of the zeros can be at the points that
map to the singular point of P because cz �= 0. Therefore, by Degtyarev’s results
we obtain the following possible combinations of singularities together with the
usual splitting of the A-singularities:

T3,3,5+2k + A9−2k for k ∈ {0, . . . , 4},
T3,3,15, T3,3,4 + A11.

Case 3: P smooth quadric + secant. Again there are two linear symmetric ma-
trix representations of P = x(x 2 + yz), so we may assume that

M =




y 0 x ayy + azz

0 −x 0 byy + bzz

x 0 −z cyy + czz

ayy + azz byy + bzz cyy + czz w + f


 or

M ′ =




0 y x ayy + azz

y −x 1
2z byy + bzz

x 1
2z 0 cyy + czz

ayy + azz byy + bzz cyy + czz w + f


.

The singularities of P are (0 : 1 : 0) and (0 : 0 : 1). Because Q (resp. Q′) must
be smooth at these points, we find that (az, bz) �= 0 and (by , cy) �= 0 (resp. az �=
0 and cy �= 0). We parameterize the secant of P by (s : t) �→ (0 : s : t) and the
quadric by (s : t) �→ (st : −s2 : t 2); thus, in either case (1 : 0) and (0 : 1) map to
the singular points of P. In order to compute the intersection multiplicities of P
and the quartics Q and Q′, we pull the quartics back via these parameterizations
to obtain

st(by s + bzt)
2 and − st(cy s

3 + ay s
2 t − czst

2 − azt
3)2

for Q and (
cy s

2 + (
cz − 1

2ay
)
st − 1

2azt
2
)2

and(
cy s

4 + by s
3t − (

cz + 1
2ay

)
s2 t 2 − bzst

3 + 1
2azt

4
)2

for Q′. In the first case we can distribute the zeros arbitrarily—with the excep-
tion that the linear and the cubic polynomial cannot both have zeros at points that
are mapped to the same singular point of P. In the second case we cannot have
zeros at the points that are mapped to the singular points of P, yet any combina-
tion of multiple zeros can occur; hence F can have the following combinations of
singularities with the usual splitting of the A-singularities:
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T3,5,5 + A5 + A1, T3,5,7 + A5, T3,5,9 + 2A1, T3,5,11 + A1, T3,7,7 + A3,

T3,7,9 + A1, T3,7,11, T3,4,4 + A3 + A7.

Case 4: P three noncongruent lines. This is the last case where there are two
nonequivalent linear symmetric matrix representations of the cubic. We take P as
xyz and may assume that

M =




x 0 0 ayy + azz

0 y 0 bx x + bzz

0 0 z cx x + cyy

ayy + azz bx x + bzz cx x + cyy w + f


 or

M ′ =




0 x 1
2y azz

x 0 z byy + bzz
1
2y z 0 cx x + cyy + czz

azz byy + bzz cx x + cyy + czz w + f


.

In order for Q (resp. Q′) to be smooth at the singular points of P, we must have
(az, bz) �= 0, (ay , cy) �= 0, and (bx , cx) �= 0 (resp. az �= 0, by �= 0, and cx �=
0). We use the parameterizations (s : t) �→ (0 : s : t), (s : t) �→ (t : 0 : s),
and (s : t) �→ (s : t : 0), which map (1 : 0) and (0 : 1) to the singular points of P.
Pulling Q and Q′ back via these mappings gives

−st(ay s + azt)
2, − st(bzs + bxt)

2, − st(cxs + cyt)
2

for Q and(
1
2by s

2 + 1
2bzst − azt

2
)2

, (azs
2 − czst − cxt

2)2,
(
cxs

2 + cy st − 1
2byt

2
)2

for Q′. The preceding inequalities imply (in the first case) that the linear forms
can contribute to the intersection multiplicities of P ∩Q only at different singu-
lar points of P and (in the second case) that the quadrics cannot have zeros at the
points that map to the singular points of P. Therefore, F can have the following
combinations of singularities with the usual splitting of the A-singularities:

T5,5,5 + 3A1, T5,5,7 + 2A1, T5,7,7 + A1, T7,7,7, T4,4,4 + 3A3.

Case 5: P cuspidal cubic. Up to a choice of coordinates, there is only one rep-
resentation of P = x3 + yz2 as a linear symmetric determinant; hence we may
assume that

M =




−y 0 x ayy + azz

0 −x z byy + bzz

x z 0 cyy + czz

ayy + azz byy + bzz cyy + czz w + f


.

The condition that Q has no singular point at the singular point (0 : 1 : 0) of P
turns out to be cy �= 0. Plugging the parameterization (s : t) �→ (t 2s : −s 3 : t 3)

of P into Q gives

t 2(cy s
5 + by s

4t − ay s
3t 2 − czs

2 t 3 − bzst
4 + azt

5)2.
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Since cy �= 0, the intersection multiplicity of P and Q is always 2 in the singular
point of P ; otherwise, the quintic is arbitrary. Hence F can haveQ11 +A9 as sin-
gularities as well as any combination of singularities obtained by splitting A9 in
the usual way.

Case 6: P smooth quadric + tangent. Because there is only one linear sym-
metric matrix representation of P = z(x 2 + yz), we may assume that

M =




y x 0 ayy + azz

x −z 0 byy + bzz

0 0 −z cx x + cyy

ayy + azz byy + bzz cx x + cyy w + f


 .

The meeting point of the quartic and the tangent is the singular point (0 : 1 : 0)
of P. For Q to be nonsingular at this point means b2

y + c2
y �= 0. In order to com-

pute the intersection multiplicities of P and Q, we parameterize the line and the
quadric of P by (s : t) �→ (t : s : 0) and (s : t) �→ (st : s2 : −t 2); both pa-
rameterizations map (1 : 0) to the singular point of P. Pulling Q back via these
parameterizations yields

t 2(cy s + cxt)
2 and − t 2(by s

3 − ay s
2 t − bzst

2 + azt
3)2.

Since b2
y + c2

y �= 0, both terms cannot simultaneously contribute further to the in-
tersection multiplicities of P and Q at the singular point of F. Therefore, F can
have the following combinations of singularities with the usual splitting of the
A-singularities:

S1,0 + A5 + A1, S #
1,2 + A5, S #

1,4 + 2A1, S #
1,6 + A1.

Case 7: P three congruent lines, double line + line, triple line, empty set. All
these cases lead to nonnormal quartics. Since a linear symmetric matrix represen-
tation M̃ of three congruent lines involves only the variables x and y, the rank of
a 4 × 4 matrix M with M̃ in the upper left corner is only 2 along the line {x =
y = 0}. Therefore, F is singular along this line. For the remaining cases one can
apply Lemma 1.4 after a reshuffling of coordinates.

A. Appendix: Linear Symmetric Matrix Representations
of Plane Cubics

Finding linear symmetric matrix representations of plane cubics is a classical prob-
lem. The three representations of a smooth cubic were found by Hesse [He]. The
matrix representations of the singular cubics are scattered throughout the litera-
ture; most of them were computed by Barth [B] and Meyer-Brandis [M-B]. The
case of the empty cubic is a special case of Atkinson [At]. For the complete list
given as Table 7, the representation matrices of the singular cubics were computed
using the straightforward method of Barth or Taussky [T]. The remarkable fact
is that a reduced singular cubic has two nonequivalent representations if it has
only A1-singularities but only one representation if it has another singularity. The
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Table 7

Number of rank-1
Cubic Equation Representation parameter ranges

Smooth x3 + y3 + z3 − λxyz
−1

µ

(
µx z y

z µy x

y x µz

)
0

µ2 + 2µ−1 = λ

Nodal x3 + y3 + xyz


−y 1

2 z x
1
2 z −x y

x y 0


 0

(−y 0 x

0 −x y

x y z

)
1

Quadric + secant x(x 2 + yz)


 0 y x

y −x 1
2 z

x 1
2 z 0


 0

(
y 0 x

0 −x 0
x 0 −z

)
2

3 lines xyz


 0 x 1

2y

x 0 z
1
2y z 0


 0

(
x 0 0
0 y 0
0 0 z

)
3

Cuspidal x3 + yz2

(−y 0 x

0 −x z

x z 0

)
1

Quadric + tangent z(x 2 + yz)

(
y x 0
x −z 0
0 0 −z

)
1

3 congruent lines x(x 2 + y2)


 0 y x

y −x 1
2y

x 1
2y 0


 1

Double line + line x 2y

(
az x bz

x 0 0
bz 0 −y

)
1 or line
a, b ∈C

Triple line x3

(
az by x

by −x 0
x 0 0

)
0

a, b ∈ {0,1}

Empty cubic ∅
( ∗ ∗ 0
∗ ∗ 0
0 0 0

)
—

Empty cubic ∅
( ∗ ∗ ∗
∗ 0 0
∗ 0 0

)
—
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table’s last column gives the number of accidental singularities—that is, the num-
ber of points of P2 where the matrix has only rank 1; this number distinguishes
the two representations of the cubics with A1-singularities.
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