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One-Dimensional Metric Foliations
on Compact Lie Groups

Marius Munteanu

A k-dimensional metric foliation on a Riemannian manifold M is a decomposi-
tion ofM into locally equidistant (immersed) k-dimensional submanifolds called
leaves. The homogeneous foliations—that is, foliations whose leaves are locally
orbits of an isometric group action—are the primary source of metric foliations. As
is well known, not all metric foliations are homogeneous. Nevertheless, it would
be interesting to determine the spaces on which the homogeneity property does
hold. One has complete results in this direction if the leaves are one-dimensional
and the sectional curvature of the space is constant. Indeed, all one-dimensional
metric foliations on spaces of constant nonnegative sectional curvature are homo-
geneous, whereas spaces of negative sectional curvature admit an abundance of
nonhomogeneous one-dimensional metric foliations [1]. However, less is known
if the constant curvature assumption is dropped. Among the few manifolds with
nonconstant curvature on which it is known that the homogeneity property holds
for one-dimensional foliations, we can mention S 2 × R [2] and the Heisenberg
group [3]. Our main purpose is to show that the class of manifolds just described
also includes the compact Lie groups equipped with bi-invariant metrics and their
quotients by finite groups acting freely and isometrically. It is also interesting
to remark that the result is not valid without compactness. A counterexample on
SL2(R) is given in [7].

1. Introduction

In this section we introduce some notation and recall some well-known facts about
compact Lie groups. Our main concern is the form of the Jacobi vector fields. It is
this form that will play a key role in our investigations of one-dimensional metric
foliations.

Let G be a compact Lie group with Lie algebra g, and consider an inner prod-
uct on g such that Adg : g → g is orthogonal for each g ∈ G. If T is a maximal
torus, then we have the following orthogonal decomposition of g:

g = V0 ⊕
M∑
r=1

Vr ,

where V0 is the Lie algebra of T and each Vr is a two-dimensional subspace, 1 ≤
r ≤ M. Moreover, for each x ∈ V0, adx = [x, ·] : g → g acts trivially on V0 and
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leaves each Vr invariant. In fact, given an orthogonal basis of Vr , the matrix of
adx |Vr in this basis is

2π

(
0 −θr(x)

θr(x) 0

)
,

where {θr}1≤r≤N is a set of roots.
It is easy to see that, for x ∈ V0, ad2

x has eigenvalues 0 and −4π2θ 2
r (x) with

1 ≤ r ≤ M (some values may be repeated). Denote these eigenvalues by 0 =
λ0 > λ1 > · · · > λN and the corresponding eigenspaces byWx(λ0), . . . ,Wx(λN),
where N is a positive integer. Note that, for each 1 ≤ i ≤ N, we have

Wx(λi) =
⊕
r∈Ai

Vr , where Ai = {r | −4π2|θr(x)|2 = λi, 1 ≤ r ≤ M}.

If we extend the inner product on g to a bi-invariant metric on G, then the sec-
tional curvature of the 2-plane spanned by x ∈V0 and y ∈Wi is ki := 1

4 |[x, y]|2 =
− 1

4λi, where |x| = |y| = 1.
Now let γ be a unit-speed geodesic on G endowed with a bi-invariant metric

such that γ (0) = e and γ̇ (0) = x. It can easily be shown that if J is a Jacobi vec-
tor field along γ then

J(t) = E0 + tF0 +
N∑
i=1

(
cos

√
kitEi + sin

√
kitFi

)
, (1)

where Ei,Fi ∈Wx(λi) for 0 ≤ i ≤ N. Here we identify Ei and Fi with their par-
allel translates along γ. In fact, Jacobi vector fields have the same form along any
geodesic. If γ doesn’t start at the identity (say, γ (0) = p) then equation (1) holds
with x replaced by Lp−1∗x, where Lp−1 is the left translation by p−1.

From now on, in order to avoid cumbersome notation, if x is tangent to G at p
we will use λi,N, andWx(λi) to denote the eigenvalues, number of distinct eigen-
values, and eigenspaces corresponding to ad2

Lp−1∗ x , respectively. We will also use
Wx(λi) for the left translation at p of the eigenspace of ad2

Lp−1∗ x corresponding
to λi.

2. Riemannian Submersions, Metric Foliations,
and Homogeneity

We next recall some important properties of Riemannian submersions. Most of
these properties can easily be extended for metric foliations. For a detailed treat-
ment of metric foliations and Riemannian submersions the reader is referred to
[4], [5], and [6].

LetM,B be differentiable manifolds and let π : M → B be a submersion; that
is, π is a surjective differentiable map of maximal rank. For any b ∈B, π−1(b) is
a submanifold ofM of dimension dim(M)− dim(B). Consequently, in the pres-
ence of a Riemannian metric on M, for each m ∈M one has a decomposition of
the tangent spaceMm into a vertical subspace Vm tangent to π−1(π(m)) and a hor-
izontal space Hm = V ⊥

m .
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If M and B are Riemannian manifolds, then a map π : M → B is called a
Riemannian submersion if π is a submersion and if π∗ preserves the length of hor-
izontal vectors; that is, if |π∗x| = |x| for all m∈M and x ∈ Hm.

One can easily check that every Riemannian submersion π : M → B deter-
mines a metric foliation whose leaves are given by the preimages of points in
B. The converse is also true locally. Hence the following definitions and remarks,
which are formulated in the language of Riemannian submersions, can be extended
to metric foliations.

As noted in [4], the crucial factors for understanding a Riemannian submersion
are the integrability tensor A and the second fundamental form S:

A : H × H → V, AXY = (∇XY )v;
S : H × V → V, SXV = −(∇VX)v.

The mean curvature form κ is the horizontal 1-form defined by κ(E) = tr(SEh).
If the leaves are one-dimensional then κ(X) = 〈SXV,V 〉, where X ∈ H and V ∈
V with |V | = 1.

A horizontal vector field X on M is called basic if π∗X = X̃ � π, where X̃ is
a vector field on B. If X is a horizontal vector field along π−1(b) for b ∈ B, then
X will still be called basic if π∗mXm = π∗m′Xm′ for all m,m′ ∈π−1(b). Finally, a
horizontal 1-form onM is called basic if its dual vector field is basic.

Let c be a geodesic in B with c(0) = b and ċ(0) = x, and let X be the unique
basic vector field along π−1(b) with π∗X = x. For each m∈π−1(b), consider the
geodesic γm of M starting at m in direction Xm. In this way we can define a dif-
feomorphism htc : π−1(c(0))→ π−1(c(t)) given by htc(m) = γm(t) and known as
the holonomy displacement map. Observe that every curve φ in π−1(φ(0)) gives
rise to a geodesic variation Hc,φ of γ := γφ(0) given by Hc,φ(t, s) := htc(φ(s)).

The corresponding Jacobi vector field J = (Hc,φ)∗
(
∂
∂s

)∣∣
(t,0) along γ is vertical.

Moreover,
J ′ = J ′v + J ′h = −Sγ̇ J − A∗

γ̇ J, (2)

where A∗
γ̇ is the adjoint of Aγ̇ .

Note that if the leaves have dimension 1 and if |J(0)| = |ċ(0)| = 1, then

〈J(0), J ′(0)〉 = −〈J(0), Sγ̇ (0)J(0)〉 = −κ(γ̇ (0)). (3)

The mean curvature form κ plays a critical role in our investigations. Indeed,
the homogeneity of one-dimensional metric foliations is characterized entirely in
terms of the properties of κ. More precisely, we have the following results.

Theorem [1]. A one-dimensional metric foliation F is homogeneous if and only
if κ is closed.

Theorem [8]. Let F be a one-dimensional metric foliation on a manifold with
sectional curvature bounded either from below or from above. If κ is basic then
it is also closed.

Thus, in order to prove that a one-dimensional metric foliation on a space with
bounded sectional curvature is homogeneous, it is enough to show that the mean
curvature form κ is basic.
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In [5], O’Neill provides a detailed comparison between vector fields along a
curve γ on the top manifoldM and those along the projection π � γ on the base B
of a Riemannian submersion. Special considerations are given to the case when
γ is a horizontal geodesic and the vector field on M is Jacobi. Next we mention
some of the properties that are of interest to us. (Our notation is slightly different
from that in [5] owing to the way we introduced the A- and S-tensors.)

If γ is a horizontal geodesic inM and if E is a vector field along γ, then

π∗E ′ = (π∗E)′ − π∗A∗
γ̇E

v. (4)

If such an E is Jacobi then π∗E is Jacobi along π � γ, provided that

E ′v + Sγ̇Ev + Aγ̇Eh = 0. (5)

Moreover, if (5) is satisfied at one point then it is satisfied everywhere [5, p. 369].
We also have the following result.

Proposition 1 [5]. Let P be a vector field on π � γ with P(t0) = 0 for some
real t0. Then, given any vertical vector v at γ (t0), there exists a unique vector
fieldE on γ such that π∗E = P,E(t0) = v, andD(E) := E ′v+Sγ̇Ev+Aγ̇Eh =
0. Moreover, E is Jacobi if and only if P is.

3. Preliminary Results

Let F be a one-dimensional metric foliation on a compact Lie group G equipped
with a bi-invariant metric.

Lemma 1. If J is a holonomy Jacobi field along a horizontal geodesic γ, then the
length of J is bounded.

Proof. Consider V(t) := 1
|J(t)|J(t) (V is well-defined because J is never zero),

and note that (2) implies |J ′|2 = |J |2(|Sγ̇V |2 + |Aγ̇V |2). Both the left side and
the second factor on the right side of the equality are bounded. If the second fac-
tor vanishes at some point t0 then J ′(t0) = 0 and, using (1), we can easily obtain
that |J | is bounded. If the second factor is never zero then the conclusion follows
immediately.

LetX and Y be two unit basic vector fields along a leafL and let p, p̃ ∈L. Denote
the left translations of Xp,Yp,Xp̃,Yp̃ at e by x, y, x̃, ỹ, respectively.

Lemma 2. y ∈Wx(λ0) if and only if ỹ ∈Wx̃(λ̃0).

Proof. Since left translations are isometries, we may assume that p = e. Observe
that, using Lemma 1, if J is a holonomy Jacobi vector field along the geodesic
starting at e in direction x, then J ′(0) ⊥ Wx(0) and consequently Axy = 0. But
then Kxy + 3|Axy|2 = 0. Since (by [4]) KXY + 3|AXY |2 is constant along L it
follows that KXp̃Yp̃ = Kx̃ỹ = 1

4 |[x̃, ỹ ]|2 = 0, which implies ỹ ∈Wx̃(λ̃0).
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Lemma 2 implies that if X is a unit basic vector field along L then the distribu-
tion p →Wx(λ0) ∩ Hp is basic along L. Next we will show that the same holds
ifWx(λ0) is replaced byWx(λi). However, the proof will be more involved since,
a priori, N and Ñ as well as λi and λ̃i may be different.

Proposition 2. If y is an eigenvector of ad2
x with eigenvalue λi, then ỹ is an

eigenvector of ad2
x̃

with the same eigenvalue.

Proof. Let γ be the unit-speed geodesic starting at p in direction Xp, and let Gi
be the parallel vector field along γ with Gi(0) = Yp. The Jacobi vector field
Ji(t) = Gi sin

(√
kit
)

is projectable because D(Ji)(0) = J ′v
i (0) = 0. If γ̃ is the

unit-speed geodesic in direction Xp̃ then, by Proposition 1, there exists a unique
Jacobi vector field J̃i along γ̃ such that J̃i(0) = 0, D(J̃i) = 0, and J̃i has the
same projection as Ji. Since J ′

i (0) ⊥ Wx(λ0) and since (by Lemma 2) Wx(λ0)

andWx̃(λ̃0) have the same projection, we obtain J̃ ′
i (0) ⊥ Wx̃(λ0). Consequently,

J̃i(t) = ∑Ñ
j=1 sin

√
k̃j tG̃j , where G̃j ∈Wx̃(λ̃j ) for 1 ≤ j ≤ Ñ. Note that some of

the G̃j may be zero.
Since Ji

(
π/

√
ki
) = 0, we obtain that J̃i

(
π/

√
ki
)

must be vertical. Let us show
that this is possible only if J̃i

(
π/

√
ki
) = 0. By Lemma 1, the holonomy Jacobi

vector field J along γ has the form

J(t) = E0 +
N∑
i=1

(
cos

√
kitEi + sin

√
kitFi

)
, (6)

whereE0 ∈Wx(λ0) andEi,Fi ∈Wx(λi) for 1 ≤ i ≤ N. Also, if J̃ is the holonomy
Jacobi vector field along γ̃ then

J̃(t) = Ẽ0 +
Ñ∑
i=1

(
cos

√
k̃i tẼi + sin

√
k̃i t F̃i

)
, (7)

where Ẽ0 ∈Wx̃(λ̃0) and Ẽi, F̃i ∈Wx̃(λ̃i) for 1 ≤ i ≤ Ñ.
Case 1: If E0 �= 0 then

dim(G)− dim(Wx̃(λ̃0) ∩ Hp̃) = dim(G)− dim(Wx(λ0) ∩ Hp)

is odd by Lemma 1 and because dim(G) − dim({z ∈ g | [t, z] = 0}) is even for
any t ∈ g. Consequently, we obtain Ẽ0 �= 0. But then J̃i

(
π/

√
ki
) = 0 since J̃ and

J̃i are vertical (and hence linearly dependent) at t = π/√ki.
Case 2: If E0 = 0 then, since the horizontal component J̃ hi of J̃i vanishes at

π/
√
ki , we can use the equality case of Cauchy–Schwartz on J̃ and J̃i to obtain

∣∣∣∣J̃ hi
(
π√
ki

)∣∣∣∣
2

=
Ñ∑
j=1

(
|G̃j |2 −

〈
J̃
(
π/

√
ki
)
, G̃j

〉2∣∣J̃ (π/√ki )∣∣2
)

sin2

(
π
√
k̃j√
ki

)
= 0.

Each of the terms in the sum just displayed is nonnegative, so it follows that either:
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(i) sin
(
π
√
k̃j /

√
ki
) = 0 for all j with G̃j �= 0; or

(ii) there exists some j0 (1 ≤ j0 ≤ Ñ )with G̃j0 �= 0 such that sin
(
π
√
k̃j0/

√
ki
) �=

0, J̃
(
π/

√
ki
)

is a nonzero multiple of G̃j0 , and sin
(
π
√
k̃j /

√
ki
) = 0 for all j

with G̃j �= 0 and j �= j0.

We will show that only (i) can hold. Indeed, if we assume that (ii) holds then
Ẽl = 0 for any l �= j0 with Ẽl �= 0 and 1 ≤ l ≤ Ñ.Also, observe that J̃ hi vanishes at

2π/
√
ki. Consequently, if we denote cos

(
π
√
k̃j0/

√
ki
)

by c and sin
(
π
√
k̃j0/

√
ki
)

by s, then

cẼj0 + sF̃j0 = a1G̃j0 and 2c(cẼj0 + sF̃j0)− Ẽj0 = a2G̃j0

for some real nonzero a1 and a2. Thus, (2ca1−a2)G̃j0 = Ẽj0 . Note that G̃j0 ⊥ Ẽj0

since J̃ ′
i (0) ⊥ J̃(0). Hence 2ca1 = a2 and Ẽj0 = 0. But this is a contradiction

because Ẽj0 = 0 implies that J̃(0) = 0, which is impossible.

Recall that, given 1 ≤ i ≤ N, there exist Gi ∈Wx(λi) with Gi horizontal such
that Ji(t) = Gi sin

(√
kit
)

is a projectable Jacobi vector field. For each such Ji we

considered the corresponding Jacobi vector field J̃i(t) = ∑Ñ
j=1 sin

√
k̃j tG̃j along

γ̃ having the same projection as Ji. Now let 3̃i := {j | G̃j �= 0}, and observe that
J̃i
(
π/

√
ki
) = 0 implies

√
k̃j /

√
ki ∈ Z for any j ∈ 3̃i . The same argument can be

repeated by starting with projectable Jacobi vector fields along γ̃. Thus we obtain√
kl/
√
k̃j ∈ Z for any j ∈3l , 1 ≤ l ≤ N.

If i = N and j ∈ 3̃N then, for any l ∈3j ,
√
kl/

√
kN = √

kl/
√
k̃j ·

√
k̃j /

√
kN ∈

Z. But kl < kN if l �= N. Thus, l = N and 3̃N contains a single element j for
which k̃j = kN . Since a similar property is satisfied by k̃Ñ , we must have kN =
k̃Ñ . Moreover, if JN(t) = GN sin

(√
kN t

)
for GN ∈Wx(λN) ∩ Hp, then J̃Ñ (t) =

G̃Ñ sin
(√
kN t

)
for some G̃Ñ ∈Wx̃(λÑ ). UsingDJ̃N(0) = 0 and (4), it follows that

G̃N is horizontal and projects to the same vector as GN.
To summarize: Wx(λN) ∩ Hp and Wx̃(λÑ ) ∩ Hp̃ have the same projection. By

induction, it follows that N = Ñ, λi = λ̃i, and the distribution p →Wx(λi)∩ Hp

is basic along the leaf for any 0 ≤ i ≤ N.

4. The Main Theorem

Theorem 1. One-dimensional metric foliations on compact Lie groups endowed
with a bi-invariant metric are homogeneous.

Proof. As before, let X be a basic vector field of unit length along a leaf L, and
let γ and γ̃ be the geodesics with γ (0) = p ∈ L and γ̃ (0) = p̃ ∈ L in directions
Xp and Xp̃, respectively. Also consider the corresponding holonomy Jacobi vec-
tor fields J and J̃ with |J(0)| = |J̃(0)| = 1. Depending on the form (6) of J, we
distinguish two cases as follows.
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Case (i) If there exists an i (1 ≤ i ≤ N) such that Fi is not a (possibly zero)
multiple of Ei, consider the Jacobi vector field Ji(t) = Gi sin

(√
kit
)
, where Gi ∈

Wx(λi), 〈Gi,Fi〉 �= 0, andGi is horizontal at p. By the proof of Proposition 2, the
corresponding Jacobi vector field J̃i along γ̃ is of the form G̃i sin

(√
kit
)
, where

G̃i ∈Wx̃(λi) is horizontal at p̃ and |G̃i | = |Gi |. Because Ji and J̃i have the same
horizontal components, using (6) and (7) yields(

|Gi |2 − 〈Gi,Fi〉2

|J(t)|2
)

sin2
(√
kit
) =

(
|G̃i |2 − 〈G̃i, F̃i〉2

|J̃(t)|2
)

sin2
(√
kit
)

for any t. Dividing by sin2
(√
kit
)

and using continuity arguments, it follows that
〈Gi,Fi〉2/|J(t)|2 = 〈G̃i, F̃i〉2/|J̃(t)|2 for any t. At t = 0 the preceding equality
gives 〈Gi,Fi〉2 = 〈G̃i, F̃i〉2, which implies that |J(t)| = |J̃(t)| for all t. The theo-
rem follows now by (3).

Case (ii) If Fi = αiEi with αi ∈ R for all 1 ≤ i ≤ N then, for any i with Ei �=
0, let ti ∈ R be such that cos

(√
kiti

) + αi sin
(√
kiti

) = 0. It follows thatWx(λi)
is horizontal at γ (ti). Thus, for any Hi ∈Wx(λi), the Jacobi vector field Ai(t) =
Hi sin

√
ki(t− ti) is projectable sinceDAi(ti) = 0. But, by Proposition 2,Wx̃(λi)

must also be horizontal at γ̃ (ti). If Ãi denotes the corresponding Jacobi vector
field along γ̃ with Ãi(ti) = 0 and DÃi = 0, then Ãi must be of the form Ãi(t) =
H̃i sin

√
ki(t − ti), where H̃i ∈Wx̃(λi) and H̃i projects to the same vector as Hi.

Now it is enough to choose Hi ∈Wx(λi) such that 〈Hi,Ei〉 �= 0. The theorem fol-
lows by applying arguments similar to those used in Case (i).

If 6 is a finite group acting freely and isometrically on G and if F is a one-
dimensional metric foliation on G/6, then the lift of F is metric and thus (by
Theorem 1) homogeneous. The corresponding local isometries of G induce local
isometries of G/6 whose orbits are locally the leaves of F. This proves our last
result.

Theorem 2. One-dimensional metric foliations on G/6 are homogeneous.
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