
Michigan Math. J. 53 (2005)

The Rank-2 Lattice-Type Vertex Operator
Algebras V +

L and Their Automorphism Groups

Chongying Dong & Robert L. Griess , Jr .

1. Introduction

This article continues a program to study automorphism groups of vertex operator
algebras (VOAs). See references in the survey [G2] and the more recent articles
[G3], [DG1], [DG2], [DGR], and [DN1].

Here we investigate the fixed point subVOA of a lattice-type VOA with respect
to a group of order 2 lifting the−1 map on a positive definite lattice. We can obtain
a definitive answer for the automorphism group of this subVOA in two extreme
cases. The first is where the lattice has no vectors of norm 2 or 4, and the second
is where the lattice has rank 2.

We use the standard notationVL for a lattice VOA based on the positive definite
even integral lattice L. For a subgroup G of Aut(L), V G

L denotes the subVOA of
points fixed by G. When G is a group of order 2 lifting −1L, it is customary to
writeV +

L for the fixed points (even though, strictly speaking, G is defined only up
to conjugacy; see the discussion in [DGH] or [GH]).

The rank-2 case is a natural extension of work on the rank-1case, whereAut(V G
L )

was determined for all rank-1 lattices L and all choices of finite group G ≤
Aut(VL). The styles of proofs are different. In the rank-1 case, there was heavy
analysis of the representation theory of the principal Virasoro subVOA on the am-
bient VOA. In the rank-2 case, there is a lot of work on idempotents and solving
nonlinear equations as well as work with several subVOAs associated to Virasoro
elements. For rank 2, the case of nontrivial degree-1 part is harder to settle than in
rank 1.

Our strategy follows this model. Let V be one of our V +
L . We get information

about G := Aut(V ) by its action on the finite-dimensional algebra A := (V2 ,1st ).
We take a subset S of A that is G-invariant and understand S well enough to limit
the possibilities for G (usually, there are no automorphisms besides the ones nat-
urally inherited from VL). A natural choice for S is the set of idempotents or con-
formal vectors. Usually, S spans A or at least generates A. In the main case of
a rank-2 lattice, we prove that Aut(V ) fixes a subalgebra of A that is the natural
M(1)+2 . The structure of V is controlled by M(1)+, which is generated by M(1)+2
and its eigenspaces, so we eventually determine G.
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For several results, we give more than one proof. For the case of a lattice L

without roots, the automorphism group of V +
L was studied in [S]. We thank Harm

Derksen for help with computer algebra.

2. Background Definitions and Notation

Notation 2.1. Let L be an even integral lattice. For an integer m, define Lm :=
{x ∈L | (x, x) = 2m}. Let H := C⊗ L, the ambient complex vector space. For
a subset S of L, define rank(S) to be the rank of the sublattice spanned by S.

Definition 2.2. For a lattice L, the group of automorphisms of the free abelian
group L that preserves the bilinear form is called the group of automorphisms, the
isometry group, the group of units, or the orthogonal group of L. This group is de-
noted Aut(L) or O(L). We will use the notation O(L) in this article as well as the
associated SO(L) for the elements of determinant 1, PO(L) for O(L)/{±1}, and
PSO(L) for SO(L)/SO(L) ∩ {±1}.
Definition 2.3. For an even integral lattice L, we let L̂ be the 2-fold cover of
L described in [DGH; FLMe; GH]. We may write bars for the map L̂→ L. The
group of automorphisms, the isometry group, the group of units, or the orthogonal
group is the set of group automorphisms of L̂ that preserve the bilinear form on the
quotient of L̂ by the normal subgroup of order 2; it is denoted Aut(L̂) or O(L̂) and
has shape 2rank(L).O(L). A bar (cf. §3.2) denotes the natural map O(L̂)→ O(L).

We next list some notation that is used for work with lattice-type VOAs.

D(L): the discriminant group of the integral lattice L is D(L) := L∗/L.
eα: standard basis element for C[L].
FVOA: framed vertex operator algebra [DGH].
LVOA: lattice vertex operator algebra [FLMe].
LVOA type: the fixed points of a lattice vertex operator algebra under a finite

group of automorphisms [DG1; DGR].
LVOA+: V +

L for an even lattice L.

LVOAG(L): the subgroup of Aut(VL), for an even integral lattice L, as de-
scribed in [DN1]. It is denoted N(L̂) and is an extension of the form T .Aut(L)
(possibly nonsplit), where T is a natural copy of the torus C⊗L/L∗ obtained
by exponentiating the maps 2πx0 for x ∈ V1; the quotient of this group by
the normal subgroup T is naturally isomorphic to Aut(L). Also, N(L̂) is the
product of subgroups TS, where S ∼= O(L̂) and S ∩ T = {x ∈ T | x 2 = 1} ∼=
Z

rank(L)
2 . We may take S to be the centralizer in LVOAG(L) of a lift of −1;

it has the form 2rank(L).Aut(L), and in fact any such S has this form. Denote
the groups S and T by O(L̂) and T(L̂), respectively.

LVOA group for L: this means LVOAG(L).

LVOAG: this means LVOAG(L) for some L.

LVOAG+(L): this is the centralizer in LVOAG(L) of a lift of −1 modulo the
group of order 2 generated by the lift; it has the form 2rank(L).[Aut(L)/〈−1〉]
and is the inherited group.



Automorphism Groups of Vertex Operator Algebras 693

LVOAG+: this means LVOAG+(L) for some L.

LVOA+ group: same as LVOAG+.
M(1),M(1)+: see Section 3.
N(L̂): see LVOAG(L).

o: linear map from V to End(V ).

O(L̂): see LVOAG(L).

T(L̂): see LVOAG(L).

vα: eα + e−α.

X or X(L): given an even integral lattice L, this is a group of shape 21+rank(L)

for which commutation corresponds to inner products modulo 2; see an ap-
pendix of [GH].

XO or XO(L̂): an extension of X upward by O(L).

XPO or XPO(L̂): a quotient of XO by a central involution that corresponds to
−1L under the natural epimorphism to O(L).

Remark 2.4. If (L,L) ⊂ 2Z , then L̂ ∼= L×〈±1〉. Thus O(L̂) contains a copy of
O(L) that complements the normal subgroup of order 2rank(L) consisting of auto-
morphisms that are trivial on the quotient group L of L̂. This splitting passes to
the groups PO(L̂) and XPO(L).

3. Automorphism Group of V +
L with L1 = L2 = ∅

In this section, we determine the automorphism group of V +
L with L1 = L2 =

∅ and assume only that rank(L) > 1. The automorphism group of V +
L in case

rank(L) = 1 is determined in [DG1] without any restriction on L. The assumption
that L1 = L2 = ∅ ensures that any automorphism of V +

L preserves the subspace
M(1)+2 , which can be identified with the Jordan algebra S2H.

Since M(1)+ is generated by M(1)+2 if dimH > 1 and since V +
L is a direct sum

of eigenspaces for M(1)+2 (cf. [AD]), the structure of Aut(V +
L ) can be determined

easily. We shall use a classic result.

Proposition 3.1. The automorphism group of the Jordan algebra of symmetric
n× n matrices is PO(n, C), acting by conjugation.

Proof. See [J].

3.1. Aut(M(1)+)

We first recall the construction of M(1)+. Let H be an n-dimensional complex
vector space with a nondegenerate symmetric bilinear form (·, ·), and let Ĥ =
H ⊗C[t, t−1]⊕Cc be the corresponding affine Lie algebra. Consider the induced
Ĥ -module

M(1) = U(Ĥ )⊗U(H⊗C[t]⊕Cc) C � S(H ⊗ t−1
C[t−1]) (linearly),

where H ⊗ C[t] acts trivially on C and where c acts as 1. For α ∈ H and n ∈ Z

we set α(n) := α ⊗ t n. Let τ be the automorphism of M(1) such that
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τ(α1(−n1) · · ·αk(−nk)) = (−1)kα1(−n1) · · ·αk(−nk)

for αi ∈H and n1 ≥ · · · ≥ nk ≥ 1. Then M(1)+ is the fixed point subspace of τ.

Proposition 3.2. The automorphism group of M(1)+ is PO(n, C).

Proof. We first deal with the case dimH > 1. Then M(1)+ is generated by M(1)+2
(cf. [DN2]), which is a Jordan algebra under u · v = u1v for u, v ∈M(1)+2 . So any
automorphism ofM(1)+ restricts to an automorphism of the Jordan algebraM(1)+2 .
On the other hand, the automorphism group of M(1) is O(n, C) [DM2], which
preserves M(1)+. Clearly, the kernel of the action of O(n, C) on M(1)+ is {±1}
and so PO(n, C) is a subgroup of the automorphism group of M(1)+. By Propo-
sition 3.1, any automorphism of M(1)+2 extends to an automorphism of M(1)+.

We now assume that dimH = 1. Then M(1)+ is not generated by M(1)+2 . By
Lemma 2.6 and Theorem 2.7 of [DG1], for any nonnegative even integer n there is
a unique lowest weight vector un (up to scalar multiple) of weight n2, and M(1)+
is generated by the Virasoro vector and un. Using the fusion rule given in Lemma
2.6 of [DG1], we immediately see that the automorphism group of M(1)+ in this
case is trivial. Clearly, PO(1, C) = 1. This finishes the proof.

3.2. Aut(V +
L )

First we review from [B] and [FLMe] the construction of a lattice vertex operator
algebraVL for any positive definite even lattice L. Let H = C⊗ZL. Recall that L̂
is the canonical central extension of L by the cyclic group 〈±1〉 such that the com-
mutator map is given by c(α,β) = (−1)(α,β). We fix a bimultiplicative 2-cocycle
ε : L × L → 〈±1〉 such that ε(α,β)ε(β,α) = c(α,β) for α,β ∈ L. Form the
induced L̂-module

C{L} = C[L̂]⊗C[〈±1〉] C � C[L] (linearly),

where C[·] denotes the group algebra and −1 acts on C as multiplication by −1.
For a ∈ L̂, write ι(a) for a ⊗1 in C{L}. Then the action of L̂ on C{L} is given by
a · ι(b) = ι(ab) for a, b ∈ L̂. If (L,L) ⊂ 2Z then C{L} and C[L] are isomorphic
algebras. The lattice vertex operator algebra VL is defined to be M(1)⊗ C{L}, as
a vector space.

It follows that O(L̂) is a naturally defined subgroup of Aut(L̂), that Hom(L,
Z/2Z) may be identified with a subgroup of O(L̂) (see [DN1; FLMe; GH]), and
that there is an exact sequence

1−→ Hom(L, Z/2Z) −→ O(L̂)
−−→ O(L) −→ 1.

It is proved in [DN1] that Aut(VL) has shape N ·O(L̂), where N is the normal sub-
group of Aut(VL) generated by eu0 for u ∈ (VL)1. Observe that Hom(L, Z/2Z)

can furthermore be identified with the intersection of N and O(L̂); see the nota-
tion listed after Definition 2.3.

Let e : L→ L̂ be a section associated to the 2-cocycle ε, written α �→ eα , such
that e0 = 1. Let θ be the automorphism of L̂ of order 2 such that θeα = e−α for
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α ∈ L. Then θ extends to an automorphism of VL, still denoted by θ, such that
θ |M(1) is identified with τ and θι(a) = ι(θa) for all a ∈ L̂. Set eα = ι(eα). Then
θeα = e−α.

Let V +
L be the fixed points of θ. In order to determine the automorphism group

of V +
L , it is important to understand which automorphism of VL restricts to an auto-

morphism of V +
L . Clearly, the centralizer of θ in Aut(VL) acts onV +

L , so we get an
action of O(L̂)/〈±1〉 on V +

L . Let h∈H. Then e2πih(0) preserves V +
L if and only if

(h,α) ≡ (h,−α) modulo Z for any α ∈L. That is: h∈ 1
2L

∗, where L∗ is the dual
lattice of L.

Lemma 3.3. The subgroup of Aut(V +
L ) that preserves M(1)+2 is just the LVOA+

group.

Proof. Let n := dim(H ), and let σ ∈Aut(V +
L ) be such that σM(1)+2 ⊂ M(1)+2 .

Then σ|M(1)+2
∈ PO(n, C) as in Proposition 3.2. Note that M(1)+ is generated

by M(1)+2 as rank(L) > 1 (see the proof of Proposition 3.2). Hence σ preserves
M(1)+.

For anyα ∈L, letV +
L (α) be theM(1)+-submodule generated by vα := eα+e−α.

Then V +
L (α) is an irreducible M(1)+-module, and V +

L (α),V +
L (β) are isomorphic

M(1)+-modules if and only if α = ±β (cf. [AD]). Moreover, if α �= 0 thenV +
L (α)

is isomorphic to M(1)⊗ eα (cf. [AD]).
Note thatV +

L = ∑
α∈LV

+
L (α). Let S be a subset of L such that |S ∩ {±α}| = 1

for any α ∈L. Then, for any two different α,β ∈ S, it follows that V +
L (α),V +

L (β)

are nonisomorphic M(1)+-modules and that

V +
L =

⊕
α∈S

V +
L (α)

is a direct sum of nonisomorphic irreducible M(1)+-modules.
Let α ∈L. Because σ preserves M(1)+, it sendsV +

L (α) toV +
L (β) for some β ∈

L. The vector vα is the unique lowest weight vector (up to a scalar) of V +
L (α).

This implies that σ(vα) = λvβ for some nonzero scalar λ ∈ C (depending on α

and β).

For a vertex operator algebra V and a homogeneous v ∈ V, we set o(v) =
vwt(v−1) and extend to all of V linearly. Note that vα is an eigenvector of o(v) for
v ∈M(1)+2 . In fact, o(h1(−1)h2(−1))vα = (h1,α)(h2 ,α)vα for hi ∈H. Recall the
proof of Proposition 3.2. We can regard the restriction of σ to (V +

L )2
∼= M(1)+2 as

an element of O(n, C) that is well-defined modulo±1. Then σ(h1(−1)h2(−1)) =
(σh1)(−1)(σh2)(−1). Note that σ−1 is the adjoint of σ. Therefore,

(h1,α)(h2 ,α)λvβ = σ((h1,α)(h2 ,α)vα) = σ(o(h1(−1)h2(−1))vα)

= o(σ(h1(−1)h2(−1)))λvβ = (σh1,β)(σh2 ,β)λvβ.

Since the hi are arbitrary, we have σα = ±β. Thus σ maps L onto L and so in-
duces an isometry of L that is well-defined modulo 〈±1〉.

Multiplying σ by an element from LVOAG+(L) (which comes from N(L̂)), we
can assume that σ|M(1)+ = idM(1)+ . Then σvα = λαvα for some nonzero λα ∈C.
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Since V +
L (α) is an irreducible M(1)+-module, we see that σ acts as the scalar λα

on V +
L (α). Clearly, λα = λ−α. Note that

Y(vα , z)vβ = E−(−α, z)ε(α,β)eα+βz(α,β) + E−(−α, z)ε(α,−β)eα−βz−(α,β)

+ E−(α, z)ε(−α,β)e−α+βz−(α,β) + E−(α, z)ε(α,β)e−α−βz(α,β),

where

E−(α, z) = exp

( ∑
n<0

α(n)z−n

n

)
.

Thus, if n is sufficiently negative, (vα)n(vβ) = u + v for some nonzero u ∈
V +
L (α + β) and v ∈V +

L (−α + β). This gives λαλβ = λα+β = λα−β by applying
σ to (vα)n(vβ) = u + v. So α �→ λα defines a character of abelian group L/2L
of order 2n. Clearly, any character λ : L/2L→ 〈±1〉 defines an automorphism σ

that acts on V +
L (α) as λα. Therefore, the subgroup of Aut(V +

L ) that acts trivially
on M(1)+ is isomorphic to the dual group of L/2L and is exactly the subgroup
of O(L̂)/〈±1〉 that we identified as Hom(L, Z/2Z). As a result, the subgroup of
Aut(V +

L ) that preserves M(1)+2 is exactly the group O(L̂)/〈±1〉, as desired.

Proposition 3.4. Let L be a positive definite even lattice such that L1 = L2 =
∅. Then Aut(V +

L ) is the inherited group—that is, the LVOA+ group.

Proof. In this case we have (V +
L )2 = M(1)+2 . Thus, any automorphism of V +

L

preserves M(1)+2 . By Lemma 3.3, Aut(V +
L ) is the LVOA+ group.

4. Rank-2 Lattices

All lattices in this paper are positive definite; throughout, L denotes an even inte-
gral lattice. We recall a general result.

Lemma 4.1. Let L be a lattice and M a sublattice.

(i) If |L : M| is finite, then det(M) = det(L)|L : M|2.
(ii) If M is a direct summand of L, then L/[M + annL(M)] embeds in D(M).

Proof. These are standard results. For example, see [G4].

We need to categorize rank-2 lattices by their configurations of norm-2 and norm-
4 elements, because such elements contribute to low-degree terms of the lattice
VOA. We shall use the notation described in 2.1.

Lemma 4.2. Suppose that rank(L1) = 2. Then L1 spans L, and L is one of LA2
1

or LA2 .

Proof. The span of L1 is isometric to LA2
1

or LA2 , and each of these is a maximal
even integral lattice under containment.
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Lemma 4.3. Suppose that rank(L1) = 1. Let r ∈L1 and let s generate annL(r).

Then (s, s) ≥ 4, and if L > span{r, s} then 14 ≤ (s, s)∈ 6+ 8Z.

Proof. Note that Zr is a direct summand of L. We have (s, s) ≥ 4. In case L >

N := span{r, s}, L/N has order 2 by Lemma 4.1. If x represents the nontrivial
coset then (x, x) ≥ 4 and (2x, 2x) ≥ 16; also, (2x, 2x)∈ 8Z. Since (x, r) is odd,
if we write 2x = pr+ qs for integers p, q ∈Z then p is odd, so q2(s, s)∈ 6+ 8Z.

It follows that q is odd and (s, s)∈ 6+ 8Z.

Lemma 4.4. Suppose that L1 = ∅ and rank(L2) = 2. If r and s are linearly in-
dependent norm-4 elements, then they span L and have Gram matrix G = (

4 b
b 4

)
for some b ∈ {0,±1,±2}.
Proof. If L �= N := span{r, s}, then det(N ) = 16 − b2 is divisible by a perfect
square, whence b = 0 or b = ±2 and the index is 2. Actually, b = 0 does not
occur here because 1

2 r,
1
2 s /∈ L implies that 1

2 (r + s) ∈ L1, a contradiction; thus
b = ±2. Clearly, span{r, s} ∼= √

2LA2 . However, any integral lattice containing
the latter with index 2 is odd, a contradiction. Therefore, L = N and the Gram
matrix is as shown. Positive definiteness implies that |b| < 4, and rootlessness
implies that b �= ±3.

Lemma 4.5. Suppose that L1 = ∅ and rank(L2) = 1. Let r ∈ L2 and let s gen-
erate annL(x). Then (s, s) ≥ 6 and L/span{r, s} is a subgroup of Z4. Moreover:

(a) if the order of L/span{r, s} is 2, then 8 ≤ (s, s)∈ 4+ 8Z.

(b) if the order of L/span{r, s} is 4, then 28 ≤ (s, s)∈ 28+ 32Z.

Proof. Let x be in a nontrivial coset of N := span{r, s} in L.

If (x, r)∈ 2+ 4Z then 2x = pr + qs, where p is odd. We have (x, x) ≥ 6 with
p odd and q �= 0. Therefore, (2x, 2x)∈ 8Z and 24 ≤ 4p2 + (s, s)q2, whence q is
odd and (s, s)∈ 4+ 8Z.

If (x, r)∈1+2Z then (4x, 4x)∈32Z. We have (x, x)≥ 6, whence (4x, 4x)≥ 96.
Writing 4x = pr + qs yields 4p2 + q2(s, s) ∈ 32Z. Since p is odd, p2 ∈1+ 8Z

and 4p2 ∈ 4 + 32Z. Since (s, s) is even and q is odd, we have q2 ∈ 1+ 8Z and
(s, s)∈ 4+ 8Z. It follows that 1

4q
2(s, s)∈ 7+ 8Z , whence 1

4 (s, s)∈ 7+ 8Z.

5. Idempotents in Small-Dimensional Algebras

We can derive a lot of information about the automorphism group of a vertex oper-
ator algebra by restricting to low-degree homogeneous pieces. For the V +

L prob-
lem, the degree-2 piece and its product x, y �→ x1y give an algebra that is useful to
study. Here, for rank(L) = 2, we concentrate on some commutative algebras of
dimension about 5. Commutativity of (V +

L ,1st ) is implied if L1 = ∅, which holds
for b ∈ {0,±1,±2} as in Lemma 4.4.

It does not seem advantageous to give particular values to b most of the time,
so we keep it as an unspecified constant in case these arguments might be a model
for future work. In this paper, we shall note any limits on b as needed.
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Notation 5.1. Let S be the Jordan algebra of degree-2 symmetric matrices,
and suppose that A is a commutative 5-dimensional algebra of the form A =
S ⊕ Cvr ⊕ Cvs. Suppose further that vr × vs = 0 and that the notation of
Section 9 applies here, with the usual inner products and algebra product. Let
w = p + crvr + csvs be an idempotent, and suppose that t is a norm-4 vector
orthogonal to r. Let a1, a2 , a3 be scalars such that p = a1r

2 + a2 rt + a3 t
2.

Remark 5.2. We note that the basis r, s of H has dual basis r∗, s∗, where r∗ =
(4r − bs)/(16− b2) and s∗ = (4s − br)/(16− b2). The identity of A is

1

4

1

16− b2
(rr∗ + ss∗) = 1

4

1

16− b2
(4r 2 + 4s2 − 2brs).

Notation 5.3. If w is an element of A, write w = p + q for p ∈ S2H and q ∈
Cvr ⊕Cvs. Call the element w̄ := p− q the conjugate element. The components
p and q are called (respectively) the P -part and the Q-part of w. Extend this no-
tation to subscripted elements: wi = pi + qi and w̄i = pi − qi for indices i.

Remark 5.4. In 5.3, q2 ∈ S2H because vr × vs = 0. Also, w = p + q is an
idempotent if and only if p = p2 + q2 and q = 2p × q. Hence w = p + q is an
idempotent if and only if the conjugate p − q is an idempotent.

Lemma 5.5. Suppose that w1 and w2 are idempotents and that their sum is an
idempotent. Then w1 × w2 = 0 and (w1,w2) = 0.

Proof. We have (w1+w2)
2 = w2

1 +2w1×w2+w2
2 , whence w1×w2 = 0. Also,

(w1,w2) = (w2
1,w2) = (w1,w1 × w2) = 0.

Definition 5.6. Throughout this paper, an idempotent is neither zero nor the
identity unless the context clearly allows the possibility. We call an idempotent w
of type 0, 1, or 2 (respectively) if it has Q-part that is 0, is a multiple of vr or vs ,
or is not a multiple of either vr or vs.

Lemma 5.7. (i) r 2 × s2 = 4brs, r 2 × r 2 = 16r 2, s2 × s2 = 16s2, and rs × rs =
4r 2 + 4s2 + 2brs. Moreover, x 2 × vr = (x, r)2vr = 1

2 (x
2, r 2)vr , r 2 × rs =

8rs + 2b2r 2, and s2 × rs = 8rs + 2b2s2; also, vr × vr = r 2, vr × vs = 0, and
vs × vs = s2.

(ii) (r 2, r 2) = 32 = (s2, s2), (r 2, s2) = 2b2, (rs, rs) = 16 + b2, and (rs, r 2) =
8b = (rs, s2); also, (vr , vr) = 2 = (vs , vs) and (vr , vs) = 0.

Proof. See the Appendix (Section 9; take a = d = 4 and b �= 0,±2).

5.1. Idempotents of Type 0

Remark 5.8. Idempotents of type 0 are simply idempotents in the Jordan algebra
of symmetric matrices; they are ordinary idempotent matrices that are symmetric.
Up to conjugacy by orthogonal transformation, they are diagonal matrices whose
diagonal entries are 0 and 1 only.
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5.2. Idempotents of Type 1

Notation 5.9. The next few results apply to the case of an idempotent of type
1—that is, of the form w = p + crvr , where cr �= 0. In such a case, w = w2 =
p2 + c2

r r
2 + cr(p, r 2)vr (see Section 9). From cr �= 0 it follows that (p, r 2) = 1.

We continue to use the notation of 5.1.

Lemma 5.10. Suppose cr �= 0 and cs = 0. Then we have a1 = 16a2
1 + 4a2

2 + c2
r ,

a2 = 16a2(a1 + a3), a3 = 16a2
3 + 4a2

2 , and (p, r 2) = 1.

Proof. Compute p + crvr = w = w2 = p2 + c2
r r

2 + cr(p, r 2)vr (see Lemma
5.7) and expand in the basis r 2, rt, t 2, vr .

Corollary 5.11. a1 = 1
32 .

Proof. We have 1= (p, r 2) = a1(r
2, r 2) = 32a1, whence a1 = 1

32 .

Lemma 5.12. Suppose that cr �= 0 and cs = 0. Then:

(A1) a1 = 16a2
1 + 4a2

2 + c2
r ;

(A2) a2 = 16a2(a1 + a3); and
(A3) a3 = 16a2

3 + 4a2
2 .

Proof. Compute p2 = (16a2
1 + 4a2

2)r
2 + 16(a1a2 + a3a2)rt + (16a2

3 + 4a2
2)t

2

and use w = w2 = p2 + c2
r r

2 + crvr .

Lemma 5.13. Suppose that cr �= 0 and cs = 0. If a2 = 0, then a3 ∈
{
0, 1

16

}
and

cr = ± 1
8 .

Proof. We deduce from (A3) that a3 = 16a2
3; hence cr = ± 1

8 .

Lemma 5.14. Suppose that cr �= 0 and cs = 0. Then a2 = 0.

Proof. If a2 �= 0, then from (A2) we have 1= 16(a1+ a3) and so a3 = 1
32 . Next,

use (A3) to obtain 1
64 = 4a2

2 . Finally use (A1) to get cr = 0.

Theorem 5.15. Assume that cr �= 0 and cs = 0. Then:

(i) a1 = 1
32 , a2 = 0, and cr = ± 1

8 ; and
(ii) either (w,w) = 1

16 and a3 = 0 or (w,w) = 3
16 and a3 = 1

16 .

All of these cases occur. If an idempotent occurs, so does its complementary
idempotent.

Proof. This is a summary of preceding results.

Lemma 5.16. If w is an idempotent of type 1, then the following statements hold.

(i) If (w,w) = 1
16 , the eigenvalues for ad(w) are 1, 0, 0, 1

4 , 1
32b

2; eigenvectors for
these respective eigenspaces are w, 1− w, t 2, rt, vs.
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(ii) If (w,w) = 3
16 , the eigenvalues for ad(w) are 0,1,1, 3

4 ,1− 1
32b

2; eigenvec-
tors for these respective eigenspaces are w, 1− w, t 2, rt, vs.

If 1
32b

2 �= 0,1, 1
4 , 3

4 , then the multiplicities of 0 and 1 are (respectively) 2 and 1
in part (i) and 1 and 2 in part (ii).

Proof. This can be shown by straightforward calculation. Note that 1
32b

2 �= 0,1,
1
4 , 3

4 follows if b is rational.

Corollary 5.17. Ifw is a type-1 idempotent and is the sum of two nonzero idem-
potents w1,w2 , then: w has the form 1

32 r
2 + 1

16 t
2 ± 1

8vr; and w1 and w2 are, up
to order, 1

32 r
2 ± 1

8vr and 1
16 t

2.

Proof. If w is such a sum then each wi is in the 1-eigenspace of ad(w), which
must be more than 1-dimensional. This means that w has norm 3

16 and one of the
wi (say, for i = 1) has type 1 and Q-part ± 1

8vr . Therefore, w2 has type 0 and
hence norm 1

8 . This means that w1 has norm 1
16 , so we know that w1 has shape

1
32 r

2 ± 1
8vr and that w = 1

16 t
2.

5.3. Idempotents of Type 2

Hypothesis 5.18. We assume in this section that the parameter b �= 0,±2,±3
(which means b = ±1). Then the algebra (V2 ,1st ) is commutative becauseV1 = 0.

Notation 5.19. Let p = c(r 2 + s2)+ drs and v = crvr + csvs.

Lemma 5.20. If cr and cs are nonzero, then there are at most eight possibilities
for w. In more detail, there are at most two values of c (and, correspondingly, of
d). We have c2

r = c2
s , and this common value depends on c (or on d).

Proof. Compute p+ crvr + csvs = w = w2 = p2 + c2
r r

2 + c2
s s

2 + cr(p, r 2)vr +
cs(p, s2)vs. Since cr and cs are nonzero, (p, r 2) = 1= (p, s2).

Since (r 2, r 2) = 32 = (s2, s2), (rs, r 2) = 8b = (rs, s2), and (r 2, s2) = 16+ b2,
we have p = c(r 2 + s2)+ drs for some scalars c, d. The previous paragraph then
implies that 1= (32+ 2b2)c + 8bd. Since b �= 0,

d = 1

8b
(2c(32+ 2b2)− 1) (5.1)

is a linear expression in c.

Now, p2 = (16c2 + 4d 2)(r 2 + s2)+ (2bc2 + 2bd 2)rs and so

w2 = (16c2 + 4d 2 + c2
r )r

2 + (16c2 + 4d 2 + c2
s )s

2

+ (2bc2 + 2bd 2)rs + crvr + csvs.

It follows that c2
r = c2

s .

Comparing the coefficients of r 2, we get

c = 16c2 + 4d 2 + c2
r ; (5.2)

comparing the coefficients of rs yields
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d = 2bc2 + 2bd 2. (5.3)

Since d is a linear expression in c, we know that c satisfies a quadratic equation
that depends on b but not on c2

r = c2
s . The degree of this equation really is 2, since

b �= 0 real implies that the top coefficient is nonzero.
It follows that the ordered pair d, c has at most two possible values. For each,

there is a unique value for c2
r and hence at most two possible values for cr (with

the same two for cs). Hence there are at most eight idempotents of type 2.

Lemma 5.21. c �= 0 and d �= 0.

Proof. Suppose that c = 0. We then have p = drs and d = − 1
8b. On the other

hand, since w = drs + v is an idempotent, the coefficient for w2 at rs is d =
8bc2 + 2bd 2 = 2bd 2, which implies that 1 = 2bd. This is incompatible with
d = − 1

8b.

If d = 0 then equation (5.3) implies that c = 0, which is false.

Lemma 5.22. If w is a type-2 idempotent with w = c(r 2+s2)+drs+crvr+csvs
and if 1− w is the complementary idempotent, expanded similarly as 1− w =
c ′(r 2 + s2)+ d ′rs + c ′rvr + c ′svs , then c ′r = −cr �= cr , c ′s = −cs , c �= c ′, and d �=
d ′. In particular, in the notation of Lemma 5.20, the function c �→ c2

r is two-to-one
and so only one value of c2

r occurs for type-2 idempotents.

Proof. If it were true that c = c ′, then w = 1
2 I + v and 1− w = 1

2 I − v. Since
these are idempotents, v2 = 1

2 I. But this is impossible, since b �= ±2 implies that
v2 is a multiple of r 2 + s2 and since I is not a linear combination of r 2 and s2 for
b �= 0 (see Remark 5.2).

5.4. Sums of Idempotents

Hypothesis 5.23. We continue to take b = ±1. Results of Section 5.3 still apply.

In the arguments of this section, we allow the symbol b to be any odd integer,
though the lattice is positive definite only for b = ±1.

Lemma 5.24. Suppose that w1,w2 are two idempotents of type 1. If w1 + w2 is
an idempotent, then w1 + w2 does not have type 1 or type 2.

Proof. We use Corollary 5.17 to eliminate the sum having type 1. To eliminate a
sum having type 2, we note that for type-1 idempotents a2 = 0 by Theorem 5.15,
whereas d �= 0 for type-2 idempotents by Lemma 5.21.

Lemma 5.25. If w1,w2 are idempotents of type 2 and are not complementary,
then their sum is not an idempotent.

Proof. Assume that the sum w is an idempotent. From Lemma 5.24, the sum
has type 0 and so has the form 1

16u
2 for some vector u ∈ H of norm 4. The
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eigenvalues of ad(u) are 1, 0, 1
2 , 1

16 (u, r)2, 1
16 (u, s)2 with respective eigenvectors

u2,1− u2, 1
2uu

′, vr , vs , where u′ spans the orthogonal of u in H.

Now w1 and w2 are linearly independent (or else they are equal, which is im-
possible). This means that the eigenvalue 1 has multiplicity at least 2. Therefore,
at least one of (u, r)2 and (u, s)2 is 16. Since w1,w2 lie in the 1-eigenspace of
ad(u) and since both wi have type 2, both these square norms must be 16; that is,
m := (u, r) = ±4 and n := (u, s) = ±4. Since r, s form a basis and the form is
nonsingular, this forces u = mr∗ + ns∗, where r∗, s∗ is the dual basis. We have
4 = (u, u) = 16(r∗, r∗)+ 2mn(r∗, s∗)+ 16(s∗, s∗). The right side is

1

16− b2
[16(4r − bs, 4r − bs)+ 2mn(4r − bs, 4s − br)+16(4s − br, 4s − br)].

Since b is an odd integer, the above rational number in reduced form clearly has
numerator divisible by 16 and so does not equal 4, a contradiction.

Lemma 5.26. The sum of a type-1 and a type-2 idempotent is not an idempotent.

Proof. Assume that w := w1 + w2 is an idempotent. Obviously it does not have
type 0. By Corollary 5.17, it does not have type 1.

We conclude that w has type 2. However, the coefficients of w at r 2 and s2 must
be equal for type 2, a contradiction since this forces the P -part of the type-1 idem-
potent to be zero.

Corollary 5.27. The only idempotents that are a proper summand of some
nontrivial idempotent are the ones of type 1 and norm 1

16 . There exist four such
and they come in orthogonal pairs, which are just pairs of idempotents and their
conjugates.

Corollary 5.28. Aut(A) is a dihedral group of order 8.

Proof. The automorphism group preserves and acts faithfully on the set J of type-
1 idempotents of norm 1

16 (i.e., the complete set of idempotents that are proper
summands of proper idempotents) and furthermore preserves the partition defined
by orthogonality. The orthogonal in A of the nonsingular subspace span(J ) is
spanned by v := r 2 + s2 − 16+b2

4b rs. We claim that if an automorphism acts triv-
ially on span(J ), it acts trivially on A. This is so because rs ∈ span{r 2× s2, r 2, s2}
and {rs} ∪ J spans A.

Thus we have shown that the automorphism group of A embeds in a dihedral
group of order 8. This embedding is an isomorphism that is onto, since the LVOA+
group embeds in Aut(A).

Proposition 5.29. Aut(V +
L ) is just the LVOA+ group, isomorphic to Dih8.

Proof. In this case we have (V +
L )2 = M(1)+2 . Thus, any automorphism of V +

L

preserves M(1)+2 . Now use Lemma 3.3.



Automorphism Groups of Vertex Operator Algebras 703

6. Automorphism Group of V +
L with rank(L) = 2

In this section we assume that the rank of L is equal to 2. If L1 = L2 = ∅, then
the automorphism group of V +

L was determined in Proposition 3.4. Hence, in this
section we assume that either L1 or L2 is not empty.

6.1. L1 = ∅ and rank(L2) = 2; b = 0

Note that L is generated by L2. We will discuss the automorphism group accord-
ing to the value b in the Gram matrix G (see Lemma 4.4).

First we assume that b = 0 in the Gram matrix G. Then L ∼= √
2LA1 ⊥

√
2LA1 ,

where LA1 is the root lattice of type A1. Let L = Zα1⊕ Zα2 with (αi,αj ) = 4δij
for i, j = 1, 2. Set

ω1 = 1
16α1(−1)2 + 1

4 (e
α1 + e−α1),

ω2 = 1
16α2(−1)2 − 1

4 (e
α2 + e−α2).

We also use α2 to define ω3 and ω4 in the same fashion. Then ωi for i = 1, 2, 3, 4
are commutative Virasoro vectors of central charge 1

2 (see [DGH] and [DMZ]). It
is well known that (V +

L )2 is a commutative (nonassociative) algebra under u×v =
u1v, since the degree-1 part is zero (cf. [FLMe]). Let X be the span of ωi for all i.

Lemma 6.1. If u ∈ (VL)2 is a Virasoro vector of central charge 1
2 , then u = ωi

for some i.

Proof. The space (VL)2 is 5-dimensional with a basis

{ω1,ω2 ,ω3,ω4,α1(−1)α2(−1)}.
Let u = ∑4

i=1 ciωi + xα1(−1)α2(−1) ∈ (VL)2 be a Virasoro vector of central
charge 1

2 . Then u × u = 2u. Note that ωi × ωj = δi,j2ωi for i, j = 1, 2, 3, 4,
ωi × α1(−1)α2(−1) = 1

2α1(−1)α2(−1), and α1(−1)α2(−1) × α1(−1)α2(−1) =
4α1(−1)2 + 4α2(−1)2. Thus we have a nonlinear system:

2ci = 2c2
i + 32x 2, i = 1, 2, 3, 4,

2x =
4∑

i=1

xci.

If x �= 0, then
∑4

i=1 ci = 2 and 2 = ∑4
i=1 c

2
i + 64x 2.

Since the central charge of u is 1
2 , we have

1

4
= u3u =

4∑
i=1

c2
i

4
+ 16x 2 and 1=

4∑
i=1

c2
i + 64x 2.

This is a contradiction. So x = 0, which implies that ci = 0,1 and u = ωi for
some i.
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By Lemma 6.1, any automorphism σ of V +
L induces a permutation of the four ωi.

It is known from [FLMe] that (V +
L )2 has a nondegenerate symmetric bilin-

ear form (·, ·) given by (u, v) = u3v for u, v ∈ (V +
L )2. The orthogonal com-

plement of X in (V +
L )2 with respect to the form is spanned by α1(−1)α2(−1).

Thus σα1(−1)α2(−1) = λα1(−1)α2(−1) for some nonzero constant λ. Hence
α1(−1)α2(−1)× α1(−1)α2(−1) = α1(−1)2 + α2(−1)2, which is a multiple of the
Virasoro element ω. This shows that λ = ±1.

On the other hand,

V +
L
∼= V +√

2LA1

⊗V +√
2LA1

⊕V −√
2LA1

⊗V −√
2LA1

.

By [DGH, Cor. 3.3],

V +
L
∼= L

(
1
2 , 0

)⊗4 ⊕ L
(

1
2 , 1

2

)⊗4
.

So if the restriction of σ to X is the identity, then the action of σ onV +√
2LA1

⊗V +√
2LA1

is trivial and on V −√
2LA1

⊗ V −√
2LA1

is ±1. Indeed, there is automorphism τ of V +
L

such that τ acts trivially on V +√
2LA1

⊗V +√
2LA1

and acts as −1 on V −√
2LA1

⊗V −√
2LA1

by

the fusion rule for V +√
2LA1

(see [ADLi]). Since V +√
2LA1

⊗V +√
2LA1

is generated by ωi

for i = 1, 2, 3, 4, it follows that any automorphism preserves V +√
2LA1

⊗V +√
2LA1

and

its irreducible module V −√
2LA1

⊗ V −√
2LA1

(cf. [DM1]). As a result, 〈τ 〉 is a normal

subgroup of Aut(V +
L ) that is isomorphic to Z2.

Next we describe how Sym4 can be realized as a subgroup ofAut(V +
L ) by show-

ing that any permutation σ ∈ Sym4 gives rise to an automorphism of V +
L . But it

is clear that Sym4 acts on V +
L by permuting the tensor factors. In order to see

that Sym4 acts on V +
L as automorphisms, it is enough to show that σ(Y(u, z)v) =

Y(σu, z)σv for σ ∈ Sym4 and u, v ∈V +
L . There are four different ways to choose

u, v. We discuss only the case u, v ∈L
(

1
2 , 1

2

)⊗4
, since the other cases can be dealt

with in a similar fashion. Let u = u1 ⊗ u2 ⊗ u3 ⊗ u4 and v = v1 ⊗ v2 ⊗ v3 ⊗ v4,
where ui, vi are tensor factors in the ith L

(
1
2 , 1

2

)
. Let Y be a nonzero intertwining

operator of type
(

L(1/2, 0)
L(1/2, 1/2)L(1/2, 1/2)

)
. Then, up to a constant,

Y(u, z)v = Y(u1, z)v1 ⊗ Y(u2 , z)v2 ⊗ Y(u3, z)v3 ⊗ Y(u4, z)v4

(see [DMZ]). Since σ is a permuation, it is trivial to verify that σ(Y(u, z)v) =
Y(σu, z)σv.

Thus we have proved the following result.

Proposition 6.2. If b = 0 in the Gram matrix G, then L ∼= √
2LA1 ⊥

√
2LA1

and Aut(V +
L ) ∼= Sym4 × Z2.

Remark 6.3. Here is a different proof that Aut(V +
L ) contains a copy of Sym4 ×

Z2 , using the theory of finite subgroups of Lie groups. Our lattice L lies in M ∼=
LA2

1
. Take VM , which is a lattice VOA. By [DN1], VM has automorphism group

that is isomorphic to PSL(2, C) " 2. In PSL(2, C), there is (up to conjugacy) a
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unique 4-group, and its normalizer is isomorphic to Sym4. Correspondingly, in
PSL(2, C) " 2 there is a subgroup isomorphic to Sym4 " 2. In this, take a subgroup
H of the form 24 : [Sym3 × 2]. Let t be an involution of H that maps to the cen-
tral involution of H/O2(H ) ∼= Sym3 × 2, and take R := CO2(H )(t) ∼= 22. Take
the fixed pointsV R

M . We have thatV R
M is isomorphic to ourV +

L . Therefore,V +
L gets

an action of H/R ∼= 22 : [Sym3 × 2] ∼= Sym4 × 2.

6.2. L1 = ∅ and rank(L2) = 2; b = 2

Next we assume that b in the Gram matrix is 2. Then L ∼= √
2LA2 , and L =

Zα1 + Zα2 with (αi,αi) = 4 and (α1,α2) = 2. As before, we define ω1,ω2 by
using α1, ω3,ω4 by using α2 , and ω5,ω6 by using α1 + α2. Then the ωi (i =
1, . . . , 6) form a basis of (V +

L )2.

Lemma 6.4. If u ∈ (V +
L )2 is a Virasoro vector of central charge 1

2 , then u = ωi

for some i.

Proof (see Section 6.3 for an alternate proof ). Let u = ∑6
i=1 ciωi for some ci ∈

C. Then u is a Virasoro vector of central charge 1
2 if and only if (u, u) = 1

4 and
u× u = 2u. Note that

(ωi,ωi) = 1
4 and (ω2j−1,ω2j ) = 0, 1≤ i ≤ 6, j = 1, 2, 3;
(ω1,ωk) = (ω2 ,ωk) = 1

32 , k = 3, 4, 5, 6.

Therefore,

(u, u) = 1

4

6∑
i=1

c2
i +

1

16

∑
j=1,2

∑
j<k≤3

(c2j−1c2k−1 + c2j−1c2k + c2j c2k−1 + c2j c2k)

= 1

4
.

In order to compute u×u, we need the following multiplication table in (V +
L )2:

ω2i−1 × ω2i = 0, i = 1, 2, 3;
ω1 × ω3 = 1

4 (ω1 + ω3 − ω6), ω2 × ω3 = 1
4 (ω2 + ω3 − ω5),

ω1 × ω4 = 1
4 (ω1 + ω4 − ω5), ω2 × ω4 = 1

4 (ω2 + ω4 − ω6),

ω1 × ω5 = 1
4 (ω1 + ω5 − ω4), ω2 × ω5 = 1

4 (ω2 + ω5 − ω3),

ω1 × ω6 = 1
4 (ω1 + ω6 − ω3), ω2 × ω6 = 1

4 (ω2 + ω6 − ω4),

ω3 × ω5 = 1
4 (ω3 + ω5 − ω2), ω4 × ω5 = 1

4 (ω4 + ω5 − ω1),

ω3 × ω6 = 1
4 (ω3 + ω6 − ω1), ω2 × ω6 = 1

4 (ω2 + ω6 − ω2).

Then u× u = 2u if and only if

c2
1 + 1

4 (c1c3 + c1c4 + c1c5 + c1c6 − c3c6 − c4c5) = c1,

c2
2 + 1

4 (c2c3 + c2c4 + c2c5 + c2c6 − c3c5 − c4c6) = c2 ,
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c2
3 + 1

4 (c1c3 + c2c3 + c3c5 + c3c6 − c1c6 − c2c5) = c3,

c2
4 + 1

4 (c1c4 + c2c4 + c4c5 + c4c6 − c1c5 − c2c6) = c4,

c2
5 + 1

4 (c1c5 + c2c5 + c3c5 + c4c6 − c1c4 − c2c3) = c5,

c2
6 + 1

4 (c1c6 + c2c6 + c3c6 + c4c6 − c1c3 − c2c4) = c6.

There are exactly six solutions to this linear system: ci = 1 and cj = 0 if j �=
i where i = 1, . . . , 6. We thank Harm Derksen for obtaining this result with the
MacCauley software package. This finishes our first proof of Lemma 6.4.

Proposition 6.5. If b = 2 in the Gram matrix, then L ∼= √
2LA2 and Aut(V +

L )

is the LVOA+ group.

Proof. First note that the Weyl group acts on L, preserving and acting as Sym3 on
the set

{{±α1}, {±α2}, {±(α1 + α2)}}.
Now let σ ∈Aut(V +

L ). Set Xi = {ω2i−1,ω2i} for i = 1, 2, 3. Then Xi are the only
orthogonal pairs in X = X1 ∪ X2 ∪ X3. Since σX = X, we see that σ induces a
permutation on the set {X1,X2 ,X3}.

The foregoing shows that O(L̂) induces Sym3 on this 3-set. We may therefore
assume that σ preserves each Xi. In this case σ acts trivially on α1(−1)2,α2(−1)2,
(α1+α2)(−1)2; that is, σ acts trivially on the subVOA they generate, which is iso-
morphic to M(1)+. As a result, σ is in the LVOA+ group.

6.3. Alternate Proof for b = 2

The system of equations in the variables ci that occurred in the proof of Lemma 6.4
can be replaced by an equivalent system (Lemma 6.7) that looks more symmet-
ric. The old system was solved with the MacCauley software but not with Maple;
the new system was solved with Maple and gives the same result as before.

Notation 6.6. Let r and s be independent norm-4 elements such that t := −r−s

has norm 4. Let w be an idempotent w = p+ q, where p = ar 2 + bs2 + ct 2 and
q = dvr + evs + evt , that satisfies (w,w) = 1

16 . Since (L,L) ≤ 2Z , we may as-
sume that the epsilon-function is identically 1. It follows that vr × vs = vt and
similarly for all permutations of {r, s, t}.
Lemma 6.7. From w2 = w, we have the equations

a = 16a2 + 4ab + 4ac − 4bc + d 2, (6.1)

b = 16b2 + 4bc + 4ba − 4ac + e2, (6.2)

c = 16c2 + 4cq + 4cb − 4ab + f 2, (6.3)

d = 2d(16a + 4b + 4c)+ 2ef , (6.4)

e = 2e(4a + 16b + 4c)+ 2df , (6.5)

f = 2f(4a + 4b + 16c)+ 2de; (6.6)
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and from (w,w) = 1
16 we obtain the equation

1
16 = 32(a2 + b2 + c2)+ 16(ab + ac + bc)+ 2(d 2 + e2 + f 2). (6.7)

Proof. This follows in a straightforward way from material in the Appendix.

Proposition 6.8. There are just six solutions (a, b, c, d, e, f ) ∈C
6 to the equa-

tions (6.1)–(6.7). They are
(

1
32 , 0, 0, 1

8 , 0, 00
)
,
(

1
32 , 0, 0,− 1

8 , 0, 00
)
, and the solu-

tions obtained from these by powers of the permutation (abc)(def ).

Proof. This follows from use of the solve command in the software package
Maple.

Remark 6.9. If we omit (6.7), then there are infinitely many solutions with d =
e = f = 0. The reason is that the Jordan algebra of symmetric degree-2 matrices
has infinitely many idempotents. It seems possible that the system in Lemma 6.7
could be solved by hand.

6.4. L1 = ∅ and rank(L2) = 2; b = 1

We now deal with the cases b = 1 in the Gram matrix.

Proposition 6.10. If b = 1 in the Gram matrix, then Aut(V +
L ) is the LVOA+

group.

Proof. By Corollary 5.27, any automorphism of V +
L preserves M(1)+2 . The result

now follows from Lemma 3.3.

7. Automorphism Group of V +
L with

L1 = ∅ and rank(L2) = 1

Here we can assume that L2 = {2α1,−2α1}. Let α2 ∈H such that (αi,αj ) = δi,j .

Then (V +
L )2 is 4-dimensional with basis v2α1, 1

2α1(−1)2, 1
2α2(−1)2,α1(−1)α2(−1).

Lemma 7.1. Any automorphism of V +
L preserves the subspace S2H of (V +

L )2

spanned by 1
2α1(−1)2, 1

2α2(−1)2,α1(−1)α2(−1).

Proof. Since Virasoro vectors of central charge 1 in S2H span S2H, it is enough
to show that any Virasoro vector of central charge 1 lies in S2H.

Let t = d1(α
2
1/2)+d2(α

2
2/2)+d3v2α1+d4α1α2 be a Virasoro vector of central

charge 1 with d3 �= 0. Then we must have t × t = 2t and (t, t) = 1
2 . A straight-

forward computation shows that

t × t = d 2
1 α

2
1 + d 2

2α
2
2 + d 2

3 (2α1)
2 + d 2

4(α
2
1 + α2

2 )

+ 4d1d3v2α1 + 2d1d4α1α2 + 2d2d4α1α2.

This yields four equations:
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d1 = d 2
1 + 4d 2

3 + d 2
4,

d2 = d 2
2 + d 2

4,

d3 = 2d1d3,

d4 = d1d4 + d2d4.

The relation (t, t) = 1
2 gives one more equation,

1

2
= 1

2
d 2

1 +
1

2
d 2

2 + d 2
4 + 2d 2

3.

Thus,
1= d1 + d2.

Since d3 �= 0, it follows that d1 = 1
2 and d2 = 1

2 . We therefore have

1

4
= 4d 2

3 + d 2
4 and

1

4
= 2d 2

3 + d 2
4 .

This forces d3 = 0, a contradiction.

Proposition 7.2. In this case, Aut(V +
L ) is the LVOA+ group.

Proof. By Corollary 5.27, any automorphism of V +
L preserves M(1)+2 ; the result

then follows from Lemma 3.3.

8. Automorphism Group of V +
L with L1 �= ∅

Now we are finally ready to deal with matters when L1 �= ∅. There are two cases:
rank(L1) = 2 or rank(L1) = 1.

8.1. rank(L1) = 2

In this case either L = LA2
1

or L = LA2 , because these are the only rank-2 root
lattices possible and each is a maximal even integral lattice in its rational span.

8.1.1. L of Type A2
1

If L ∼= LA2
1

then Aut(VL) ∼= PSL(2, C) " 2 and

V +
L
∼= V +

LA1
⊗V +

LA1
⊕V −

LA1
⊗V −

LA1
.

Since the connected component of the identity in Aut(VL) contains a lift of−1L,
we may assume that such a lift is in a given maximal torus and so is equal to the
automorphism eπiβ(0)/2, where β is a sum of orthogonal roots.

It follows thatV +
L
∼= VK , where K = 2L+Zβ. The result implies (see [DN1])

that Aut(V +
L ) ∼= Aut(VK), which is the LVOA group T2.Dih8.

8.1.2. L of Type A2

Here, (V +
L )1 is a 3-dimensional Lie algebra isomorphic to sl(2, C). The difficult

part in this case is determining the vertex operator subalgebra generated by (V +
L )1.
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Let LA2 = Zα1 + Zα2 such that (αi,αi) = 2 and (α1,α2) = −1. The set of
roots in L is L1 = {±αi | i = 1, 2, 3}, where α3 = α1 + α2. The positive roots
are {αi | i = 1, 2, 3}. The space (V +

L )1 is 3-dimensional with a basis vαi for i =
1, 2, 3, and (V −

L )1 is 5-dimensional with a basis α1(−1),α2(−1), eαi −e−αi for i =
1, 2, 3. It is a straightforward to verify that (vαi )−1vαi for i = 1, 2, 3 and αi(−1)2

for i = 1, 2, 3 span the same space. Thus ω = 1
4α1(−1)2+ 1

12 (α1(−1)+2α2(−1))2

lies in the VOA generated by (V +
L )1.

In order to determine the vertex operator algebra generated by (V +
L )1, we recall

the standard modules for affine algebra:

A
(1)
1 = ŝl(2, C) = sl(2, C)⊗ C[t, t−1]⊕ CK

(cf. [DL]). We use the standard basis {α, xα , x−α} for sl(2, C) such that

[α, x±α] = ±2x±α , [xα , x−α] = α.

Fix an invariant symmetric nondegenerate bilinear form on sl(2, C) such that
(α,α) = 2. The level-k standard A

(1)
1 -modules are parameterized by dominant

integral linear weights i
2α for i = 0, . . . , l such that the highest weight of the A(1)

1 -
module, viewed as a linear form on Cα ⊕ CK ⊂ ŝl(2, C), is given by i

2α and the

correspondenceK �→ k. Let us denote the corresponding standardA(1)
1 -module by

L
(
k, i

2α
)
. It is well known that L(k, 0) is a simple rational vertex operator algebra

and that L
(
k, i

2α
)

for i = 0, . . . , k is a complete list of irreducible L(k, 0)-modules
(cf. [DL; FZ; Li2]). Note that

L

(
k,

i

2
α

)
=

∞⊕
n=0

L

(
k,

i

2
α

)
λi+n

,

whereλi = i(i+2)/4(k+2) andL
(
k, i

2α
)
λi+n

is the eigenspace ofL(0)with eigen-
value λi + n (cf. [DL]). In fact, the lowest weight space L

(
k, i

2α
)
λi

of L
(
k, i

2α
)

is an irreducible sl(2, C)-module of dimension i + 1.
Since VLA2

is a unitary module for the affine algebra A
(1)
2 (cf. [FK]), the ver-

tex operator algebra V generated by (V +
L )1 is isomorphic to the standard level-k

A
(1)
1 -module L(k, 0) for some nonnegative integer k. Let {v1, v2 , v3} be an or-

thonormal basis of sl(2, C) with respect to the standard bilinear form. Then ω ′ =
1

2(k+2)

∑3
i=1 vi(−1)21∈V is the Segal–Sugawara Virasoro vector. Let

Y(ω ′, z) =
∑
n∈Z

L(n)′z−n−2.

Then
[L(n)− L(n)′, um] = 0

for m, n∈Z and u∈V. Hence L(−2)−L(−2)′ acts as a constant onV becauseV
is a simple vertex operator algebra. As a result, L(−2) − L(−2)′ = 0, since the
left side is both a constant and an operator that shifts degree by 2. The creation ax-
iom for VOAs implies that ω ′ = ω. Since the central charge of ω is 2, the central
charge 3k/2(k + 2) of ω ′ is also 2. This implies that k = 4 and V ∼= L(4, 0).
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Now V +
L is a L(4, 0)-module, and the quotient module V +

L /V has minimal
weight (as inherited from V +

L ) greater than 1. On the other hand, the minimal
weight of the irreducible L(4, 0)-module L

(
4, i

2α
)

is i(i + 2)/4(4 + 2), which is
less than 2 for 0 ≤ i ≤ 4. Since every irreducible module is one of these, we
conclude that V +

L = V = L(4, 0). Since V −
L is an irreducible V +

L -module with
minimal weight 1, we immediately see that V −

L = L(4, 2α).
Thus we have proved the following proposition.

Proposition 8.1. Suppose rank(L1) = 2.
(1) If L = LA2

1
then V +

L is a lattice vertex operator algebra VK , where K is gen-
erated by β1,β2 with (βi,βi) = 4 and (β1,β2) = 0. The automorphism group of
V +
L is the LVOA+ group, which is isomorphic to the LVOA group for lattice K.

(2) If L = LA2 , then V +
L is isomorphic to the vertex operator algebra L(4, 0)

and Aut(V +
L ) is isomorphic to PSL(2, C), which is the automorphism group of

sl(2, C).

8.2. rank(L1) = 1

8.2.1. L Rectangular
We first assume L = Zr + Zs such that (r, r) = 2, (s, s) ∈ 6 + 8Z , and (r, s) =
0. Then VL = VLA1

⊗VZs and

V +
L = V +

LA1
⊗V +

Zs ⊕V −
LA1

⊗V −
Zs .

Lemma 8.2. A group of shape
[(

Cβ/Z
1
4β

)·Z2
]×Z2 acts onV +

L as automorphisms.

Proof. We have already mentioned that V +
LA1

is isomorphic to VZβ for (β,β) = 8

and thatV −
LA1

is isomorphic toVZβ+β/2 asV +
LA1

-modules. We also know from [DN1]

that Aut(VZβ) is isomorphic to Cβ/
(
Z

1
8β

) · Z2 , where the generator of Z2 is in-
duced from the −1 isometry of the lattice Zβ. The action of λβ ∈ Cβ is given
by the operator e2πiλβ(0). Note that Cβ acts on VZβ+β/2 in the same way. But the
kernel of the action of Cβ on VZβ+β/2 is Z

1
4β instead of Z

1
8β. As a result, the

torus Cβ/Z
1
4β acts on both VZβ and VZβ+β/2. By [DG], Aut(V +

Zs ) is isomorphic
to 1

2 Zs/Zs ∼= Z2 , which also acts on V −
Zs . So the group

[(
Cβ/Z

1
4β

) · Z2
] × Z2

acts on V +
L as automorphisms.

In order to determine Aut(V +
L ) in this case, we recall the notion of commutant

from [FZ].

Definition 8.3. Let V = (V,Y, 1,ω) be a vertex operator algebra, and let U =
(U,Y, 1,ω ′) be a vertex operator subalgebra with a different Virasoro vector ω ′.
The commutant Uc of U in V is defined by

Uc := {v ∈V | unv = 0, u∈U, n ≥ 0}.
Remark 8.4. The space Uc is the space of vacuum-like vectors for U (see [Li1]).
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Lemma 8.5. Let V be a vertex operator algebra. Let U i = (U i,Y, 1,ωi) be sim-
ple vertex operator subalgebras of V with Virasoro vector ωi for i = 1, 2 such
that ω = ω1 + ω2. We assume that V has a decomposition

V ∼=
p⊕

i=0

P i ⊗Qi

as a (U1 ⊗ U 2)-module such that P 0 ∼= U1, Q0 ∼= U 2, the P i are inequivalent
U1-modules, and the Qi are inequivalent U 2-modules. Then (U1)c = U 2 and
(U 2)c = U1.

Proof. It is enough to prove that (U 2)c ⊂ U1. Let v ∈ (U 2)c. Then v is a vacuum-
like vector for U 2. As a result, the U 2-submodule generated by v is isomorphic
to U 2 (see [Li1]). Since V is a completely reducible U 2-module, it follows that
any U 2-submodule isomorphic to U 2 is contained in U1 ⊗ U 2; in particular, v ∈
U1 ⊗ U 2. This forces v ∈U1.

Proposition 8.6. The group Aut(V +
L ) is isomorphic to

((
Cβ/Z

1
4β

) ·Z2
)×Z2.

This can be interpreted as an action of N(Ẑβ)× Z2 , where (β,β) = 8.

Proof. We have already shown (Lemma 8.2) that the group
((

Cβ/Z
1
4β

) · Z2
)×

Z2 acts on V +
L as automorphisms.

Let σ be an automorphism of V +
L . Then σβ(−1) = λβ(−1) for some nonzero

λ ∈ C as (V +
L )1 is spanned by β(−1). This implies that σβ(n)σ−1 = λβ(n) for

n ∈ Z. Since V +
Zs is precisely the subspace of V +

L consisting of vectors killed by
β(n) for n ≥ 0, we see that σV +

Zs ⊂ V +
Zs . Thus σ|V +

Zs
is an automorphism of V +

Zs .

On the other hand, V +
LA1

is the commutant of V +
Zs in V +

L by Lemma 8.5.

The foregoing shows that σ induces an automorphism of the tensor factorV +
LA1

.

The restriction of σ toV +
LA1
⊗V +

Zs is a product σ1⊗σ2 for some σ1 ∈Aut(V +
LA1

) and

σ2 ∈Aut(V +
Zs ). Multiplyingσ byσ2 , we can assume thatσ = 1onV +

Zs .As we have
already mentioned, Aut(V +

LA1
) is isomorphic to

(
Cβ/Z

1
8β

) ·Z2. Since
(
Cβ/Z

1
8β

)
acts trivially on β(−1) and the outer factor Z2 is represented in Aut(V +

L ) by ac-
tion of±1 on β(−1), σβ(−1) = ±β(−1). Now multiplying σ by an outer element
of

(
Cβ/Z

1
4β

) · Z2 , we can assume that σβ(−1) = β(−1).
Set Wnβ = M(1)⊗ enβ ⊗V +

Zs and Wnβ+β/2 = M(1)⊗ enβ+β/2 ⊗V −
Zs for n∈Z ,

where M(1) = C[β(−n) | n > 0]. Then V +
L = ⊕

n∈Z/2Wnβ and umv ∈Wµ+ν for
u ∈Wµ, v ∈Wν , and m ∈ Z. Note that Wµ is the eigenspace of β(0) with eigen-
value (β,µ). Since σβ(−1) = β(−1), we see that σ acts on each Wµ as a constant
λµ and that λµλν = λµ+ν . As a result, σ = e2πiγ (0) for some γ ∈ Cβ; that is, σ
lies in Cβ/Z

1
4β. This completes the proof.

8.2.2. L Not Rectangular
Next we assume that L �= Zr ⊥ Zs. Then L = Zr ⊕ Z

1
2 (s + t), where (s, s) ∈

6 + 8Z and (s, s) ≥ 14 (see Lemma 4.3). Let K = Zr ⊕ Zs. Then L =
K ∪ (

K + 1
2 (r + s)

)
and VL = VZr ⊗VZs ⊕V(Z+1/2)r ⊗V(Z+1/2)s . Thus
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V +
L = V +

Zr ⊗V +
Zs ⊕V −

Zr ⊗V −
Zs ⊕V +

(Z+1/2)r ⊗V +
(Z+1/2)s ⊕V −

(Z+1/2)r ⊗V −
(Z+1/2)s

and
V +
L = V +

K ⊕V +
K+(s+t)/2.

As before, we note that V +
Zr is isomorphic to VZβ with (β,β) = 8.

Proposition 8.7. Assume that rank(L1) = 1 and L �= Zr + Zs with r, s as be-
fore. Then Aut(V +

L ) ∼= (
Cβ/ 1

2 Zβ
) ·Z2 , where (β,β) = 8. The action is trivial on

the subVOA V +
Zs and leaves V +

Zr invariant. A generator of the quotient Z2 comes
from the −1 isometry of 1

4 Zβ, and α ∈Cβ acts as e2πiα(0).

Proof. Note that V +
K is a subalgebra of V +

L and that V +
K+(r+s)/2 is an irreducible

V +
K -module. By Proposition 8.6,

Aut(V +
K ) = ((

Cβ/ 1
4 Zβ

) · Z2
)× Z2.

We have already mentioned that V +
Zr is isomorphic to VZβ with (β,β) = 8 and

thatV −
Zr is isomorphic toVZβ+β/2 as aVZβ-module. It is easy to see thatV ±

(Z+1/2)β

is isomorphic toV(Z±1/4)β as aVZβ-module. So the action of Cβ/Z
1
4β onV +

K can-
not be extended to an action of V +

L . But the torus Cβ/ 1
2 Zβ does act on V +

L . As a

result, N
(
Ẑ

1
2β

) ∼= (
Cβ/ 1

2 Zβ
) · Z2 is a subgroup of Aut(V +

L ).

The same argument as used in the proof of Proposition 8.6 shows that any auto-
morphism σ of V +

L preservesV +
Zr ⊗V +

Zs . SinceV +
Zr ⊗V +

Zs ,V
−
Zr ⊗V −

Zs ,V
+
(Z+1/2)r ⊗

V +
(Z+1/2)s , and V −

(Z+1/2)r ⊗V −
(Z+1/2)s are inequivalent irreducible (V +

Zr ⊗V +
Zs)-

modules (see [DLiM; DM1]), we see that σ preserves

V +
K = V +

Zr ⊗V +
Zs ⊕V −

Zr ⊗V −
Zs .

Since Cβ/ 1
4 Zβ ·Z2 is a quotient group of Cβ/ 1

2 Zβ ·Z2 , we can multiply σ by
an element of Cβ/ 1

2 Zβ ·Z2 and assume that σ acts trivially on the first tensor fac-
tor of V +

K . If σ is the identity on V +
K , then σ is either 1 or −1 on V +

K+(r+s)/2. If σ
is −1 on V +

K+(r+s)/2 then σ = eπiβ(0)/2 is an element of Cβ/ 1
2 Zβ · Z2.

If σ is not the identity onV +
K then we must have σ = eπis(0)/(s,s) onV +

K ;we will
get a contradiction in this case. Notice that the lowest weight space of V +

(Z+1/2)r ⊗
V +
(Z+1/2)s is 1-dimensional and spanned by u = (er/2 + e−r/2) ⊗ (es/2 + e−s/2).

Since σ preserves V +
(Z+1/2)r ⊗ V +

(Z+1/2)s , it must map u to λu for some nonzero
constant λ. Observe that u(r+s,r+s)/4−1u = 4; this forces λ = ±1. On the other
hand,

u−(r+s,r+s)/4−1u = (er + e−r )⊗ (es + e−s )+ · · ·
has nontrivial projection to the −1 eigenspace of σ in V +

K . This forces λ = ±i, a
contradiction.

9. Appendix: Algebraic Rules

For the symmetric matrices of degree n, there is a widely used basis, Jordan prod-
uct, and inner product that we review here. (This section is taken almost verbatim
from [G1].)
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Proposition 9.1. Let H be a vector space of finite dimension n and with non-
degenerate symmetric bilinear form (·, ·). Let r, s, . . . stand for elements of H and
let rs denote the symmetric tensor r ⊗ s + s ⊗ r. Then:

rs × pq = (r,p)sq + (r, q)sp + (s,p)rq + (s, q)rp;
(rs,pq) = (r,p)(s, q)+ (r, q)(s,p);
rs × vt = (r, t)(s, t)vt .

Definition 9.2 (Symmetric Bilinear Form) [FLMe, p. 217]. This form is as-
sociative with respect to the product (see Section 3). We write H for H1. The set
of all g2 and x+α spans V2 , and

〈g2,h2〉 = 2〈g,h〉2,
whence

〈pq, rs〉 = 〈p, r〉〈q, s〉 + 〈p, s〉〈q, r〉 for p, q, r, s ∈H.

Also,

〈x+α , x+β 〉 =
{

2 if α = ±β,

0 else;

〈g2, x+β 〉 = 0.

Definition 9.3. In addition, we have the distinguished Virasoro element ω and
identity I := 1

2ω on V2 (see Section 3). If hi is a basis for H and if h∗i is the dual
basis, then ω = 1

2

∑
i hih

∗
i .

Remark 9.4. We have:

〈g2,ω〉 = 〈g, g〉;
〈g2, I〉 = 〈g, g〉/2;
〈I, I〉 = dim(H )/8;
〈ω,ω〉 = dim(H )/2.

If {xi | i = 1, . . . , l} is an orthonormal basis, then

I = 1

4

l∑
i=0

x 2
i ,

ω = 1

2

l∑
i=0

x 2
i .

Definition 9.5. The product on V F
2 comes from the vertex operations. We give

it on standard basis vectors, namely, xy ∈ S2H1 for x, y ∈H1 and vλ := eλ + e−λ
for λ ∈ L2. (This is the same as x+λ , used in [FLMe].) Note that equations (9.1)
give the Jordan algebra structure on S2H1 that is identified with the space of sym-
metric 8× 8 matrices and with 〈x, y〉 = 1

8 tr(xy). The function ε in equation (9.3)
is a standard part of notation for lattice VOAs.
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x 2 × y2 = 4〈x, y〉xy, pq × y2 = 2〈p, y〉qy + 2〈q, y〉py,

pq × rs = 〈p, r〉qs + 〈p, s〉qr + 〈q, r〉ps + 〈q, s〉pr; (9.1)

x 2 × vλ = 〈x, λ〉2vλ, xy × vλ = 〈x, λ〉〈y, λ〉vλ; (9.2)

vλ × vµ =




0 if 〈λ,µ〉 ∈ {0,±1,±3},
ε〈λ,µ〉vλ+µ if 〈λ,µ〉 = −2,

λ2 if λ = µ.

(9.3)

Some consequences of the foregoing may be summarized as follows.

Corollary 9.6. If x1, . . . is a basis and y1, . . . is the dual basis, then I :=
1
4

∑n
i=1 xiyi is the identity of the algebra S2H. Also, (I, I) = n/8.
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