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On Cohomology of Invariant Submanifolds
of Hamiltonian Actions

YILDIRAY OZAN

1. Introduction

In [5] the author proved that if there is a free algebraic circle action on a nonsingu-
lar real algebraic variety X then the fundamental class is trivial in any nonsingular
projective complexification i : X — Xc. The Kihler forms on CY and CP" nat-
urally induce symplectic structures on complex algebraic affine or projective va-
rieties and, when defined over reals, their real parts (if not empty) are Lagrangian
submanifolds.

The following result can be considered as a symplectic equivalent, on real al-
gebraic varieties, of the result just described.

THEOREM 1.1.  Assume that G is S' or S3 acting on a compact symplectic man-
ifold (M, w) in a Hamiltonian fashion, and assume that L' is an invariant closed
submanifold. If the G-action on L is locally free then the homomorphism induced
by the inclusioni: L — M,

H;(L,Q) — H;(M,Q),

is trivial fori > | — k + 1, where k = dim(G). In particular, the fundamental
class [L] is trivial in H/(M, Q).

Moreover, if the corresponding sphere bundle S* — L x EG — L ¢ has non-
torsion Euler class then the homomorphism

iv: Hi_1(L,Q) = Hi_t(M,Q),

induced by the inclusioni: L — M, is also trivial (see Section 2 for the definition
of EG and Lg).

Since any compact connected Lie group has a circle subgroup, we deduce the fol-
lowing immediate corollary.

COROLLARY 1.2. Let G be a compact connected Lie group acting on a compact
symplectic manifold (M, ®) in a Hamiltonian fashion, and let L be an invariant
closed submanifold of dimension . If the G-action on L is locally free, then the
Sfundamental class [L] is trivial in H/(M, Q).
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REMARK 1.3. (1) Itis well known that the natural actions of U(n) and T" on the
complex projective space CP"~! (and hence on any smooth projective variety),
regarded as symplectic manifolds with their Fubini—Study forms, are Hamiltonian
(cf. [4, p. 163]).

(2) Consider the 2-torus T2 = §' x S! with the symplectic (volume) form
df; A dB,. Then the S' action on T2, given by z - (wy,w;) = (z - wy, wy), is
clearly symplectic but not Hamiltonian (it has no fixed point). Let L be the invari-
ant submanifold S! x {pt}, on which the circle action is free. Clearly, the homology
class [L] is not zero in H,(T?2 Q). Hence, it is necessary to assume in Theorem
1.1 that the action is Hamiltonian.

(3) Since §? = SU(2) is semisimple, it follows that any symplectic SU(2)-
action is Hamiltonian (cf. [4, p. 159]).

ExampPLE 1.4. Let G be a compact Lie group acting linearly on a closed mani-
fold M. Dovermann and Masuda proved that, if the action is semifree or if G =
S', then there exists a nonsingular real algebraic variety X with an algebraic G-
action equivariantly diffeomorphic to M (see [1]). If the linear action on X extends
to some nonsingular projective complexification X¢ then, by Remark 1.3(1), the
action will be Hamiltonian and thus the results here can be applied to the pair
X C Xc.

Symplectic reduction and the proofs of the foregoing results yield a somewhat
stronger statement.

Let G = Gy x - -+ x Gg, where each G; is either S! or §* = SU(2), and sup-
pose that G acts in a Hamiltonian fashion on a closed symplectic manifold M with
moment map p: M — g*; here

= (i, ha): M — (g7,....87),

since each g is the dual of the Lie algebra of G;. Assume that L is an invariant
submanifold contained in a level set M® = u~'(vy, ..., v,) of the moment map.
Further assume that we can form successive symplectic reductions: first by G for
the level set u~'(v;), then by G, for the level set (u]l(vl) N ugl(vg))/Gl, and
so on for all G; (note that we use the same notation for the moment map on the
reduced spaces). These assumptions clearly imply that the G-action on L is lo-
cally free.

THEOREM 1.5. Assume the setup just described. Then the induced homomor-
phism i*: Hi(L,Q) — H;(M,Q) is trivial fori > 1 — k 4+ 1, where k = dim(G)
andi: L — M is the inclusion map.

2. Proofs

A G-space X is called equivariantly formal if its equivariant cohomology is iso-
morphic to its usual cohomology tensored by the cohomology of the classifying
space. Equivariant formality implies that the equivariant cohomology of X injects
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into the equivariant cohomology of the fixed point set, H}(X) — HZ(X Gy (cf.
[2, Thm. 11.4.5]). On the other hand, Kirwan proved in [3] that a compact Hamil-
tonian space M is equivariantly formal. Therefore, Theorem 1.1 is a consequence
of Kirwan’s result and Theorem 2.1 to follow.
Let G act freely on
lim $?"~! if G =S/,
EG=8"=1 . .

{ lim S*~! if G =SU(Q).
Also let
CP>® if G=S,
HP*® if G =SU(Q).
For any G-space X, we will denote the twisted product X xs EG by X, where
G-action on X x EG is givenby g - (x,h) = (g7'-x,h - g) forany g€ G, h e
EG, and x € X. Then, for any coefficient ring R, the G-equivariant cohomology
of X is defined to be the ordinary cohomology of Xg:

HA(X,R) = H*(Xg. R).

BG:EG/G:{

Let p: X x EG — X be the quotient map. Since S is contractible, the induced
homomorphism by p in cohomology can be regarded as amap p*: Hj(X, R) —
H*(X,R).

THEOREM 2.1.  Let M be an orientable closed manifold equipped with an equiv-
ariantly formal G-action, and let L' be an invariant closed submanifold. If the
G-action on L is locally free, then the homomorphism induced by the inclusion
i:L—> M,
Hi(L,Q) — H;(M,Q),

is trivial fori > | — k + 1, where k = dim(G). In particular, the fundamental
class [L] is trivial in H/(M, Q).

Moreover, if the corresponding sphere bundle S* — L x Eg — L has non-
torsion Euler class then the homomorphism

ix: Hix(L,Q) - H,_x(M,Q),

induced by the inclusioni: L — M, is also trivial.

Theorem 2.1 is a consequence of the following more general result, which can be
stated using equivariant cohomology.

THEOREM 2.2. Let M be an orientable closed manifold with an equivariantly for-
mal G-action, and let L' be an invariant closed submanifold. Ifi: L — M is the
inclusion map then the image of i*: H*(M,Q) — H*(L,Q) lies in the image of
p*t HZ(L,Q) - H*(L,Q).

If the G-action on X is free, then X5 — X/G has contractible fibers and thus
X¢ — X/G is ahomotopy equivalence. If the action is locally free, then the fibers
are finite cyclic quotients of contractible spaces and so the rational cohomologies
of X and X /G are still isomorphic. Hence, we obtain the following corollary.
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COROLLARY 2.3. Assume that M and G are as in Theorem 2.2 and that the G-
action on L is locally free. If p: L — B = L/G is the quotient map, then
the image of i*: H*(M,Q) — H*(L,Q) lies in the image of p*: H*(B,Q) —
H*(L,Q).

Proof of Theorem 2.2. Consider the following commutative ladder of Gysin se-
quences corresponding to the sphere bundles S¥ = G — M x EG — Mg and
Sk=G - L x EG — Lg (k = dim(G)):

s Hi(Me, Q) s HMQ) s H M. Q) 25 HV (Mg, Q) — -

bk
D HiLeQ) S B(@L.Q) L HHLeQ) LS HT(L6.Q) — -

where p' is the connecting homomorphism (which can be thought of as integra-
tion along a fiber) and e € H*"!'(Mg, Q) is the image of the Euler class of the
sphere bundle under the natural map H**'(Mg,Z) — H*"' (Mg, Q).

Observe that in order to prove the theorem it suffices to show that the map

p' in the top row is trivial. Indeed, we claim that the map H'~¥(M¢, Q) e

H*!' (Mg, Q) is injective. To see this, let M ¢ denote the fixed point and consider
the following commutative diagram:

H MQ) =5 HE'(M.Q)

HI*M6,Q) 25 B (MC,Q).

By assumption the vertical arrows are injections, so it is enough to show that the
bottom row is injective. For the latter, note that the G-action on M G is trivial and
hence the corresponding G-bundle for M€ is

G —> MG x s " M6« BG,

where BG = CP™ or HP™ depending on whether G is S' or SU(2) = S3, re-
spectively. Moreover, the Euler class of the bundle is e = (1, e0) € HY(M S, Q) x
H*(BG,Q), where ¢ is a generator of H*(BG, Q) and hence the cup prod-
uct with the Euler class is injective. UJ

Proof of Theorem 2.1. By the universal coefficient theorem it suffices to show that
the map i*: H'(M,Q) — H(L,Q) is trivial for i > [ — k + 1. Therefore, by
Corollary 2.3 it is enough to show that the map

p*: H(Lg,Q) — H'(L,Q)

is trivial. However, since the G-action on L is locally free, the rational (co)ho-
mology of L is equal to that of the (! — k)-dimensional orbifold B = L/G. In
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particular, H(Lg,Q) = 0 fori > [ — k + 1. This finishes the proof of the first
statement.

For the second statement, consider the Gysin sequence corresponding to the
G-bundle p: L x EG — Lg:

D HHUL6 Q) S HIK (LG, Q)

2 HHL,Q) > B (L6, Q) —> -

Since e € H**!(B, Z) is not a torsion class, by Poincaré duality the map given by
the cup product with the Euler class is onto. This implies that the map p* is triv-
ial and hence the proof concludes as in the first statement. OJ

Proof of Theorem 1.5. First we will show that
Im(H'(M, Q) — H'(L,Q)) € Im(H'(L/G,Q) — H'(L,Q)).

Proof is by induction on d, the number of factors in the decomposition G =
Gy X ---x Gy. The case d = 1is contained in Theorem 2.2. Suppose that the the-
orem holds for all integers 1,...,d — 1, where d > 2. Consider the action of G
on M with the moment map u,: M — g;, where

o= (e ka): M — (g, 8%).

Let M4 denote the reduced space M I = ,ufl(vl)/ Gi. Observe that Gg =
G, X .-+ X Gy has an induced Hamiltonian action on the symplectic manifold
M ¢q and that the moment map p descends to a moment map

Mred = (25 .o )i Mreg — (9’5,,92)

satisfying the same hypothesis as . Abusing the notation further, we will denote
L/G; by L4. Note that L4 is an invariant submanifold of M.4. By the induc-
tion hypothesis it follows that

Im(Hi(Mredv Q) - Hi(Lredv Q))
C Im(H'(L1ea/Grea» Q) = H'(Lrea, Q). (%)

Now we consider a ladder of exact sequences similar to the one used in the proof
of Theorem 2.2:

P P Ue

- —> H' M, Q) — H'M,Q — HMM,Q — HT(MQ — -

i . i : i Ue i
T H(MredsQ) L> H(M19Q) L) H k](Mreva) I H+1(MredsQ) —

| | | |

i * i ! i Ue i
- H(Let,Q) > HI(L,Q) 5 H (L, Q) =5 H ' (Lyeg,Q) —> ---

where k| = dim(G;) and where the maps from the top row to the middle one, de-
noted by « and also induced by inclusion maps, are the Kirwan maps (see [3]).
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As in the proof of Theorem 2.2, the map p' in the top row is trivial. Noting that
Lieq/Grea = L/G, it follows from (x) and the foregoing diagram that

Im(H'(M,Q) - H'(L,Q)) € Im(H(L/G,Q) — H'(L,Q)).

Finally, the arguments in the first paragraph of the proof of Theorem 2.1 com-
plete the proof. O

REMARK 2.4. It is known [3] that the Kirwan map « is surjective. Even though
we don’t need this information for our proof, a diagram chase in the exact se-
quences implies the following corollary.

COROLLARY 2.5. Let M, Meq and L, L .q be as before. Then the map
p* i Im(H (M1, Q) = H'(Lreq, Q) — Im(H'(M,Q) — H'(L,Q))

is onto for any i and is an isomorphism fori = 1.
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