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On Representation of Integers by Sums
of a Cube and Three Cubes of Primes

Xiumin Ren & Kai-Man Tsang

1. Introduction

We consider the expression of positive integers n as the sum of a cube and three
cubes of primes; that is,

n = m3 + p3
2 + p3

3 + p3
4 , (1.1)

where m is a positive integer and pj are primes. In 1949, Roth [8] proved that
almost all positive integers n can be written as (1.1). More precisely, let E(N ) de-
note the number of positive integers n ≤ N that cannot be written in the form (1.1);
then Roth’s theorem actually stated that E(N ) � N log−AN for arbitrary A > 0.
In 1995, Brüdern [1] proved that the same exceptional set estimate holds for the
number of positive integers n ≡ 4 (mod 18), not exceeding N, that cannot be writ-
ten in the form (1.1) with m restricted to a P4-number. Later Kawada [2] further
strengthened this by replacing m by a P3-number. All these results can be viewed
as approximations to the conjecture that all sufficiently large integers satisfying
some necessary congruence conditions are the sum of four cubes of primes. As is
well known, the quality of the approximation is indicated in the upper bound of
E(N ). Roth’s theorem has been improved by Ren [5] to E(N ) � N169/170 and by
Ren and Tsang [7] to E(N ) � N1271/1296+ε. These improvements were obtained
via new approaches for enlarging major arcs in the circle method used (see e.g.
[4; 5; 7]). In this paper, based on the major arcs estimate in [7], we use some new
ideas to handle the minor arcs and prove the following.

Theorem 1. For E(N ) as just defined, we have

E(N ) � N17/18+ε.

Notation. As usual, �(n) stands for the von Mangoldt function. In our state-
ment, N is a large positive integer and L = logN. The notation r ∼ R means
R < r ≤ 2R. The letters ε and A denote positive constants that are (respectively)
arbitrarily small and arbitrarily large; they may assume different values at each
occurrence.
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2. Proof of Theorem 1

Following [7], we introduce the notation

U = (N/9)1/3 and V = U 5/6. (2.1)

In order to apply the circle method, for large positive integer N and positive real
number θ we let

P(θ) = Uθ and Q(θ) = NP−1 = 9U 3−θ . (2.2)

As usual, we shall define the major arcs M(θ) to be the union of all intervals
[a/q −1/(qQ(θ)), a/q +1/(qQ(θ))], where a and q are coprime integers and 1 ≤
a ≤ q ≤ P(θ). Let the minor arcs m(θ) be the complement of M(θ) in the unit
interval I(θ) = [1/Q(θ),1 + 1/Q(θ)].

We define
T(α) =

∑
m∼U

e(m3α)

and, for W > 0,
S(α,W) =

∑
m∼W

�(m)e(m3α).

Let
R(n) =

∑
n=m3

1 +···+m3
4

m1,m4∼U,m2,m3∼V

�(m1)�(m2)�(m3).

Then

R(n) =
∫
I(θ)

S(α,U)S2(α,V )T (α)e(−nα) dα =
∫

M(θ)

+
∫

m(θ)

. (2.3)

For the major arcs estimate, we quote [7, Thm. 2] and record it in the following
lemma.

Lemma 2.1. Let θ < 25/72. For all integers n with N/2 ≤ n ≤ N,∫
M(θ)

S(α,U)S2(α,V )T (α)e(−nα) dα = S(n)J(n) + O(V 2U−1L−A),

where S(n) is the singular series in this problem that satisfies

(log log n)−c0 � S(n) � log n

for a certain positive constant c0 and where J(n) is a multiple integral that satisfies

V 2U−1 � J(n) � V 2U−1.

In this paper we will concentrate on the minor arcs estimates. Our main result is
the following.

Lemma 2.2. We have∫
m(25/72−ε)

|S(α,U)|2|S(α,V )|4|T(α)|2 dα � U 5/2+εV 2.
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This lemma is proved in Section 3.

Proof of Theorem 1. We start from (2.3), where the major arcs estimate is taken
care of by Lemma 2.1. As regards the minor arcs, by Bessel’s inequality and
Lemma 2.2 we have

∑
N/2<n≤N

∣∣∣∣
∫

m(25/72−ε)

S(α,U)S2(α,V )T (α)e(−nα) dα

∣∣∣∣
2

�
∫

m(25/72−ε)

|S(α,U)|2|S(α,V )|4|T(α)|2 dα � U 5/2+εV 2. (2.4)

By a standard argument we derive that, for all N/2 < n ≤ N and with at most
O(U 9/2+3εV −2) exceptions,∫

m(25/72−ε)

S(α,U)S2(α,V )T (α)e(−nα) dα � V 2U−1−ε.

This together with Lemma 2.1 proves that, for these n,

R(n) = S(n)J(n) + O(V 2U−1L−A)

and hence n can be written as (1.1). Let F(N ) be the number of the foregoing ex-
ceptional n; then we have

F(N ) � U 9/2+3εV −2 = (N/9)17/18+ε.

The assertion of Theorem 1 now follows because E(N ) = ∑
j≥0 F(N/2j ).

3. Proof of Lemma 2.2

In order to prove Lemma 2.2, we need the following lemmas. Lemma 3.1 is ob-
tained by letting k = 3 in Theorem 1 of [6]; Lemma 3.2 is due to Vaughan [9]; and
Lemma 3.3 is Lemma 2.4 in [3].

Lemma 3.1. Suppose α = a/q + λ, where a, q are integers with q ≥ 1 and
(a, q) = 1 and where λ∈ R. Then we have

S(α,W) � qε(logc W )

{
W 1/2q1/2

√
1 + |λ|W 3 +W 4/5 + Wq−1/2√

1 + |λ|W 3

}
,

where c is an absolute positive constant.

Lemma 3.2. LetZ0 denote the number of solutions of the equationm3
1 +n3

1+n3
2 =

m3
2 + n3

3 + n3
4, subject to mj ∼ U and nj ∼ V. Then Z0 � U1+εV 2.

Lemma 3.3. For k ≥ 3, let ωk(q) be the multiplicative function defined by

ωk(p
ku+v) =

{
kp−u−1/2 if u ≥ 0 and v = 1,

p−u−1 if u ≥ 0 and 2 ≤ v ≤ k.

Suppose that η and ξ are real numbers satisfying η > 0, ξ ≥ 2η + 2, and ξ ≥
kη + 1. Then, whenever X ≥ 2,
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∑
1≤q≤X

qηω
ξ

k(q) �
{

1 if ξ > kη + 1,

logX if ξ = kη + 1.

The implied constant depends at most on k, η, and ξ.

Proof of Lemma 2.2. Let α ∈ m(25/72 − ε). Then, by Dirichlet’s lemma on ratio-
nal approximations, there exist coprime integers a, q and a real number λ satisfying

1 ≤ q ≤ 24U 2 and |λ| ≤ 1/(24qU 2) (3.1)

such that α = a/q + λ. If U < q ≤ 24U 2, we apply Weyl’s inequality to get

|T(α)| � U 3/4+ε. (3.2)

If 1 ≤ q ≤ U, we combine the conclusions of Lemmas 6.1 and 6.2 in [10] and
(2.1)–(2.3) in [3] to obtain

|T(α)| � ω(q)U

1 + |λ|U 3
+ q1/2+ε, (3.3)

where ω(q) = ω3(q) is as defined in Lemma 3.3 and also satisfies

q−1/2 � ω(q) � q−1/3. (3.4)

Let 0 < b < 1. Then, for q, λ satisfying either Ub ≤ q ≤ U or

1 ≤ q ≤ Ub and ω(q)U b/3−3 < |λ| ≤ 1/(24qU 2),

it follows that
|T(α)| � U1−b/3. (3.5)

Now let D(b) be the set of all α = a/q +λ∈ m(25/72 − ε) with q, λ satisfying

1 ≤ q ≤ Ub and |λ| ≤ ω(q)U b/3−3.

Then one concludes from (3.2)–(3.5) that

max
m(25/72−ε)�D(b)

|T(α)| � max{U1−b/3,U 3/4+ε}.

Therefore, on choosing b = 3/4 we obtain∫
m(25/72−ε)

|S(α,U)|2|S(α,V )|4|T(α)|2 dα

�
∫

D(3/4)
|S(α,U)|2|S(α,V )|4|T(α)|2 dα + U 3/2+ε

∫ 1

0
|S(α,U)|2|S(α,V )|4 dα.

By Lemma 3.2, the last term is ≤ U 3/2+εZ0 � U 5/2+εV 2. So it remains to prove∫
D(3/4)

|S(α,U)|2|S(α,V )|4|T(α)|2 dα � U 5/2+εV 2. (3.6)

For α = a/q + λ∈ D(3/4), we have either

U 25/72−ε < q ≤ U 3/4 and |λ| ≤ ω(q)U1/4−3
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or
1 ≤ q ≤ U 25/72−ε and 1/(qU191/72+ε) < |λ| ≤ ω(q)U1/4−3.

By (3.3), where the right-hand side is dominated by ω(q)U(1 + |λ|U 3)−1, it fol-
lows that∫

D(3/4)
|S(α,U)|2|S(α,V )|4|T(α)|2 dα

� U 2
∑

1≤q≤U25/72−ε

q∑
a=1

(a,q)=1

ω2(q)

×
∫

1/(qU191/72+ε)<|λ|≤ω(q)U1/4−3

|S(a/q + λ,U)|2|S(a/q + λ,V )|4

(1 + |λ|U 3)2
dλ

+ U 2
∑

U25/72−ε<q≤U3/4

q∑
a=1

(a,q)=1

ω2(q)

×
∫

|λ|≤ω(q)U1/4−3

|S(a/q + λ,U)|2|S(a/q + λ,V )|4

(1 + |λ|U 3)2
dλ

:= M1 + M2 (say). (3.7)

To estimate M1 and M2 , we observe that |λ|V 3 ≤ 1 for |λ| ≤ ω(q)U1/4−3.

Hence, by Lemma 3.1 we have

S(a/q + λ,V ) � V ε{V 1/2q1/2 +V 4/5 +Vq−1/2}. (3.8)

For q ≤ U 25/72−ε, this gives

|S(a/q + λ,V )|4 � V ε{V 16/5 +V 4q−2}.
By Lemma 3.1, we also have

|S(a/q + λ,U)|2
1 + |λ|U 3

� Uε

{
Uq + U 8/5

1 + |λ|U 3
+ U 2q−1

(1 + |λ|U 3)2

}
. (3.9)

For |λ| > 1/(qU191/72−ε), this gives

|S(a/q + λ,U)|2
1 + |λ|U 3

� qU 47/36+ε.

Therefore,

M1 � U 2+47/36+ε
∑

1≤q≤U25/72−ε

q2ω2(q){V 16/5 +V 4q−2}
∫ 1

0

dλ

1 + |λ|U 3

� U11/36+ε
∑

1≤q≤U25/72−ε

ω2(q){q2V 16/5 +V 4}.

By Lemma 3.3, for any X > Y ≥ 1 we have∑
Y≤q≤X

ω2(q) �
∑

Y≤q≤X

q1/2ω3(q) � 1. (3.10)
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This yields
M1 � U11/36+ε{V 16/5U 25/36 +V 4} � U 2+εV 2. (3.11)

We now turn to M2. Again by (3.8) and (3.9), we have

|S(a/q + λ,V )|2 � V ε{Vq +V 8/5 +V 2q−1}
and

|S(a/q + λ,U)|2
1 + |λ|U 3

� Uε{Uq + U 8/5 + U 2q−1}.
Thus,

M2 � U 2+ε
∑

U25/72−ε<q≤U3/4

ω2(q){Vq +V 8/5 +V 2q−1}{Uq + U 8/5 + U 2q−1}

×
∫

|λ|≤ω(q)U1/4−3

q∑
a=1

|S(a/q + λ,V )|2 dλ. (3.12)

It follows that
q∑

a=1

|S(a/q + λ,V )|2 =
∑
mi∼V

�(m1)�(m2)

q∑
a=1

e((a/q + λ)(m3
1 − m3

2))

� qL22{mi ∼ V : m3
1 ≡ m3

2 (mod q), �(mi) �= 0}.
Consider the congruence m3

1 ≡ m3
2 (mod q), where mi ∼ V are prime powers.

If (m1m2 , q) > 1 then m1 must be equal to m2. On the other hand, if (m1m2 , q) =
1 then m1 ≡ ηm2 (mod q) for a certain root η of the cubic congruence x3 ≡ 1
(mod q). Clearly there are � qε such cubic roots of unity. Hence,

2{mi ∼ V : m3
1 ≡ m3

2 (mod q), �(mi) �= 0} � qε(V 2/q) +V

and
q∑

a=1

|S(a/q + λ,V )|2 � qεV 2L2.

Putting this into (3.12) and then applying the second inequality in (3.10), we
obtain

M2 � U−3/4+εV 2

× max
U25/72−ε<q≤U3/4

q−1/2{Vq +V 8/5 +V 2q−1}{Uq + U 8/5 + U 2q−1}.

Since V = U 5/6, for q > U 25/72−ε we have

{Vq +V 8/5 +V 2q−1}{Uq + U 8/5 + U 2q−1}
� UVq2 + U 8/5Vq + U 8/5V 8/5 + U 2V 8/5q−1.

Consequently,

M2 � U−3/4+εV 2{U1+9/8V + U 8/5+3/8V + U 8/5−25/144V 8/5 + U 2−75/144V 8/5}
� U 53/24+εV 2.
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This, together with (3.7) and (3.11), proves (3.6). The proof of Lemma 2.2 is thus
complete.
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