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1. Introduction

Let � be a bounded domain in Cn, and let PSH(�) denote the cone of plurisub-
harmonic functions on �. Recall that a function u : �→ R∪ {−∞} is said to be
plurisubharmonic if it is upper semicontinuous and if the restriction of u to every
complex line is subharmonic. (We regard the function that is identically −∞ as
(pluri-)subharmonic.) We will use PSHc(�) for the cone of continuous functions
�̄→ R∪ {−∞} whose restrictions to � are plurisubharmonic. Furthermore, if u
is an arbitrary upper bounded function on � then we define u∗ : �̄→ R ∪ {−∞}
as the upper semicontinuous regularization of u; that is, if z∈ �̄ then

u∗(z) = lim
��ζ→z

u(ζ).

Clearly, if u is plurisubharmonic on � then u∗ = u on �, and it is reasonable to
view the restriction of u∗ to ∂� as the boundary values of u. For a point z ∈ �̄,
we define two classes of Jensen measures,

Jz(�̄) =
{
µ∈B(�̄) : u(z) ≤

∫
�̄

u∗ dµ ∀u∈PSH(�), sup u <∞
}

,

J c
z (�̄) =

{
µ∈B(�̄) : u(z) ≤

∫
�̄

u∗ dµ ∀u∈PSHc(�)

}
,

where B(�̄) is the set of Borel probability measures with support on �̄. Our main
motivation for studying these measures is a duality theorem by Edwards [8], which
allows us to express upper envelopes of plurisubharmonic functions as lower en-
velopes of integrals with respect to Jensen measures. The traditional method of
constructing interesting plurisubharmonic functions is by taking upper envelopes
over some class of plurisubharmonic functions, and thus Edwards’s theorem pro-
vides an alternative way of studying these constructions. Clearly, Jz ⊂ J c

z for
every z ∈ �̄. Two natural questions arise: First, for which domains is it true that
Jz = J c

z for all z∈ �̄ or every z∈�? Second, if the inclusion is proper, then what
properties does the set {z : Jz �= J c

z } have? For example, is it always “small”?
These questions are intimately connected to the possibility and impossibility of
approximating upper bounded plurisubharmonic functions by continuous pluri-
subharmonic functions.
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Previous results can be found in Wikström [17], where it was shown that (a) if
� is B-regular (or a polydisk) then Jz = J c

z for all z∈ �̄ and (b) if � is (strongly)
star-shaped then Jz = J c

z for all z∈�. The first result of this paper (Theorem 3.1)
gives a characterization of the domains for which Jz = J c

z in terms of an approx-
imation property for upper bounded plurisubharmonic functions, and this charac-
terization allows us to give a weaker necessary condition for a domain � to satisfy
Jz = J c

z than the one found in [17]. Our second main result (Theorem 4.3) gives
a partial answer to the other question. Roughly speaking, we show that if the set
{z : Jz = J c

z } contains a sufficiently large portion near the boundary, then it is
essentially the whole domain.
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2. Necessary Background Facts

Let us introduce some notation and quickly review a few facts that we will make
heavy use of later in the paper. If µ ∈ Jz(�̄) (resp. J c

z (�̄)) and suppµ ⊂ K, we
write µ ∈ Jz(K) (resp. µ ∈ J c

z (K)). If there is no risk of confusion, we some-
times write Jz and J c

z instead of Jz(�̄) and J c
z (�̄). It is straightforward to verify

that Jz(K) and J c
z (K) are convex, weak-∗ compact subsets of the set of probabil-

ity measures on K.

For φ an arbitrary (extended real-valued) function on �̄, we define two kinds
of upper envelopes of φ. More precisely: if z∈ �̄, we let

Scφ(z) = sup{u(z) : u∈PSHc(�), u ≤ φ},
Sφ(z) = sup{u(z) : u∈USC(�̄) ∩ PSH(�), u ≤ φ}.

Edwards’s duality theorem [8] (see [17] for details) implies the following connec-
tion between Scφ, Sφ and the Jensen measures.

Proposition 2.1. If φ is a lower semicontinuous function on �̄, then:

Scφ(z) = inf

{∫
�̄

φ dµ : µ∈J c
z

}
for all z∈ �̄;

Sφ(z) = inf

{∫
�̄

φ dµ : µ∈Jz

}
for all z∈�.

We should point out that there is a minor gap in the statement of Corollary 2.2
in [17], since the set {u∗ : u ∈ PSH(�), sup u < ∞} is not a cone. (In general,
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(u + v)∗ is smaller than u∗ + v∗ on ∂�.) As a consequence, the first identity in
Corollary 2.2 of [17] holds only for interior points (which explains why the second
equality in the foregoing proposition holds for z ∈�, not z ∈ �̄), and this second
equality is obtained by applying Edwards’s theorem to the set PSH(�)∩USC(�̄),
which is truly a cone.

We will also need to recall some elements of pluripotential theory. A set P ⊂ Cn

is called pluripolar if, for every z ∈ P, there is a connected neighborhood U of z
and a u ∈PSH(U) such that u �≡ −∞ and u = −∞ on U ∩ P. A deep theorem
by Josefson [11] shows that the function u can be chosen to be plurisubharmonic
on the whole of Cn. In particular, u can be made negative on any fixed bounded
neighborhood of P.

The following basic theorem of Bedford and Taylor will be used frequently.

Theorem 2.2 [1, Thm. 7.1]. Let {uα}α∈A be a family of plurisubharmonic func-
tions on � that is locally uniformly bounded from above. Define

u(z) = sup{uα(z) : α ∈A}.
Then (u∗ is plurisubharmonic and ) the set {z∈� : u(z) < u∗(z)} is pluripolar.

Recall that a domain � is called regular (in the real sense) if every continu-
ous function on ∂� can be extended continuously to a harmonic function on �.

One analogous property in pluripotential theory is the notion of B-regularity (see
Sibony [15] and Diederich–Fornæss [6]). A bounded domain � ⊂ Cn is called
B-regular if every continuous function on ∂� can be extended continuously to
a plurisubharmonic function on �. Note that every strictly pseudoconvex do-
main is B-regular. There is a characterization of B-regularity in terms of Jensen
measures—namely, � is B-regular if and only if J c

z = {δz} for every z∈ ∂� (see
[15, Thm. 2.1] and [2, Thm. 1.7; 17, Cor. 3.8]).

Finally, we will also need the following simple fact, whose proof is left to the
reader.

Lemma 2.3. Let � be a bounded domain in Cn, and let {φj} be a sequence of
continuous functions on � that decreases to an upper semicontinuous function φ

on �. Then, for every sequence {aj} ⊂ � with aj → a ∈ �̄, we have

φ∗(a) ≥ lim
j→∞φj(aj ),

where φ∗ is the upper semicontinuous regularization of φ.

3. Equality of JJJz and JJJ c
z

The first result of this section establishes the equivalence between the equality
Jz = J c

z and a weak version of the bounded approximation property introduced
by Wikström in [17].

Theorem 3.1. Let � be a bounded domain in Cn. Then the following statements
are equivalent.
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(a) Jz = J c
z for all z∈�.

(b) For every upper bounded plurisubharmonic function u ∈ PSH(�), there
exists a uniformly upper bounded sequence {uj}j≥1 with uj ∈PSHc(�) such
that uj → u pointwise on � and limj→∞ uj ≤ u∗ on ∂�. Moreover, if u is
continuous on � then the sequence {uj} can be chosen to converge to u locally
uniformly.

Proof. (a) ⇒ (b): Let u ∈ PSH(�) be upper bounded. Choose a sequence {φj}
with φj ∈C(�̄) such that φj ↘ u∗ on �̄. For each j we define Sφj and Scφj as be-
fore. By Edwards’s theorem and the assumption Jz = J c

z for all z ∈�, we have
that Scφj = Sφj on �.

Since φj ∈C(�̄), it follows that (Sφj )∗ ≤ φj and so (Sφj )
∗ = Sφj on �. Hence

Sφj ∈PSH(�), and consequently we also have that Scφj ∈PSH(�). Thus Scφj
is upper semicontinuous on �, but since Scφj is the supremum of continuous func-
tions, Scφj is automatically lower semicontinuous. Summing up, we have proved
that Sφj = Scφj ∈PSH(�) ∩ C(�).

Furthermore, it is clear that the sequence {Sφj}j is decreasing and, since u ≤
Sφj ≤ φj for all j, it follows that Sφj ↘ u on �. It is also clear that limj(Sφj )

∗ ≤
u∗ on ∂�.

Let {�j}j be a sequence of relatively compact subdomains of � with �j ⊂⊂
�j+1 and

⋃
j �j = �. For every j, by Choquet’s lemma we can find a sequence

{ul,j}l in PSHc(�) increasing to Scφj on �̄. Since Scφj ∈C(�̄j ), ul,j converges
uniformly to Sφj = Scφj on �̄j as l → ∞, by Dini’s theorem. Hence we can
choose lj such that ulj,j ∈PSH(�) ∩ C(�̄) and

|Sφj − ulj,j | ≤ j−1 on �̄j and ulj,j ≤ φj on ∂�.

To finish this half of the proof, it is straightforward to verify that the sequence
{ulj,j}j converges to u pointwise on � and that lim u∗lj,j ≤ u∗ on ∂�. Furthermore,
if u is continuous on � then it follows from Dini’s theorem that Sφj → u uni-
formly on every compact subset of �.

(b) ⇒ (a): Let z ∈ � and take µ ∈ J c
z . Let u be an upper bounded plurisub-

harmonic function on �. We have to show that

u(z) ≤
∫
�̄

u∗ dµ.

Let {uj}j≥1 be a uniformly upper bounded sequence in PSHc(�) that converges
pointwise to u on � and such that limj→∞ uj ≤ u∗ on ∂�. Since µ ∈ J c

z , we
have that

uj(z) ≤
∫
�̄

uj dµ.

Letting j →∞ and using Fatou’s lemma, we are done.

It is natural to ask whether there exists a bounded domain � in Cn such that, for
some z∈�, we have Jz �= J c

z . We do not know if such a domain can be found in
C, but in higher dimensions we can construct them using known examples of do-
mains for which extension of (or approximation by) plurisubharmonic functions
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fails. We thank Professor Cegrell for pointing out the following example, which
is essentially Example 2 in [5]. Let B = {z ∈ Cn : |z| < 3} and let � = {αj}
be a countable dense subset of Cn containing the origin. Let V be the (count-
able) set of all complex lines connecting pairwise distinct points in �. Then V is
pluripolar, since it is a countable union of pluripolar sets. Choose a function ψ ∈
PSH(Cn) such that ψ �≡ −∞ and ψ |V = −∞. Define P = {z ∈ Cn : |z| = 2,
ψ(z) ≥ sup|ζ|<1 ψ(ζ)}. Then the domain �1 = B \ P has the interesting prop-
erty that every continuous function on B which is plurisubharmonic on �1 is in
fact plurisubharmonic on B (see [5, Thm. 4.2]). Nevertheless, there is an upper
bounded plurisubharmonic function u ∈ PSH(�1) that does not extend through
P. Now, if we assume J c

z = Jz for every z∈�1, then by Theorem 3.1 there would
exist a sequence {uj} in PSHc(�1) converging pointwise to u on �1. Since each
uj is in fact continuous on B, the function ũ = (

limj→∞ uj
)∗

is an extension of u
to B. Hence there must be some z∈�1 for which J c

z �= Jz.

The domain �1 here does not have a smooth boundary. For an example with
smooth boundary, we can proceed as follows. Let �2 be the domain constructed
in [9, p. 260]. This is a smoothly bounded Hartogs domain in C2. Recall that being
a Hartogs domain means that (z,w) ∈�2 implies that (e iθz,w) ∈�2 for all θ ∈
R. Fornæss and Wiegerinck constructed a continuous plurisubharmonic function
f on �2 such that f cannot be approximated uniformly on some compact subset
K ⊂⊂ �2 by plurisubharmonic functions that are defined on neighborhoods of
�̄. Moreover, from the rather explicit description of f , it is easy to see that f is
upper bounded on �2. Now, if J c

z = Jz for all z ∈�2 then Theorem 3.1 implies
that, for any compact K ⊂⊂ �2 , f can be uniformly approximated by functions
in PSHc(�2). In fact, by [9, Thm. 1] we can choose the approximating functions
to be plurisubharmonic on neighborhoods of �̄, which is a contradiction.

Remark. The two preceding examples are not pseudoconvex. This raises the
following natural question: Does every smoothly bounded pseudoconvex domain
have the weak bounded approximation property? We will later see a pseudocon-
vex counterexample with nonsmooth boundary.

Furthermore, we do not know whether the approximating sequence in Theo-
rem 3.1 can be chosen to be decreasing. If � is B-regular, this is possible (see [17,
Thm. 4.1]).

Before formulating the main theorem of this section, we will need to introduce
some terminology.

Definition 3.2. Let � be a domain in Cn. By an isotopy family of biholomor-
phic mappings on � we mean a continuous map $ : [0,1] × �̄ → Cn such that
the following statements hold.

(a) For each t ∈ [0,1], $t(·) = $(t, ·) is a homeomorphism between �̄ and
$t(�); moreover, $t maps � biholomorphically onto $t(�).

(b) For all z∈�, t �→ $−1
t (z) is real-analytic on [0,1].

(c) $−1
t converges uniformly to $−1

0 = Id on �̄ as t → 0.
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Definition 3.3. If $t is an isotopy family of biholomorphic mappings on �,
we define the boundary cluster set of $t as the set of limit points of sequences of
elements in �̄ ∩$t(∂�) as t → 0.

Definition 3.4. Let � be a domain in Cn and let E ⊂ �̄ be pluripolar. We de-
fine the (relative) pluripolar hull of E, pph(E), as

pph(E) = {z∈� : g(z) = −∞ for all g ∈PSH(�̄) with g|E = −∞}.
Here, PSH(�̄) is the set of functions that are plurisubharmonic on some neigh-
borhood of �̄.

Theorem 3.5. Let � be a bounded domain in Cn, let $t be an isotopy family of
biholomorphic maps on �, and let X be the boundary cluster set of $t. Assume
that J c

z = {δz} for all z ∈X \ X ′, where X ′ is pluripolar. Then Jz = J c
z for all

z∈� \ pph(X ′).

For the proof of this result, we need the following lemma.

Lemma 3.6. Under the assumptions of Theorem 3.5, for every φ ∈C(∂�) there
exist two increasing sequences {φj} and {vj} in PSHc(�) such that:

(a) φj ≤ φ on ∂�, and φj ↗ φ on X \X ′;
(b) vj < 0 on �, limj→∞ vj < 0, and vj ↗ 0 on X \X ′.

Proof. Let K be a closed ball contained in �. Define

$(z) = sup{u(z) : u∈PSHc(�), u ≤ φ on �},
V(z) = sup{u(z) : u∈PSHc(�), u ≤ −χK on �̄}.

By Choquet’s topological lemma, we can find a sequence {vj} ⊂ PSHc(�) that
increases to V on �̄. Note that −χK is lower semicontinuous on �̄ and so, by
Proposition 2.1 and the assumption that J c

z = {δz} for all z ∈X \ X ′, we deduce
that V = 0 on X \X ′. Furthermore, V ∗ ∈PSH(�) and V ∗ ≤ −1 on K, so by the
maximum principle V ≤ V ∗ < 0 on �. This proves assertion (b).

For (a), we extend φ to a lower semicontinuous function on �̄ by defining φ ≡
∞ on �. Again using Proposition 2.1 and the assumption that J c

z = {δz} for all
z∈X \X ′, it follows that $ = φ on X. The desired sequence {φj} is obtained by
applying Choquet’s lemma.

Proof of Theorem 3.5. Let z0 ∈ � \ pph(X ′) and take an arbitrary µ ∈ J c
z0
. We

must show that

u(z0) ≤
∫
�̄

u∗ dµ

for every upper bounded u∈PSH(�). Fix such a u and let {ϕk}k≥1 be a sequence
of continuous functions on ∂� that decreases to u∗|∂�. For each t ∈ [0,1] we de-
fine ut = u �$−1

t . Clearly, ut ∈PSH($t(�)). Set
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�j = {z∈� : dist(z, ∂�) > 1/j}.
Choose a negative function g ∈PSH(�̄) with g|X ′ = −∞ and g(z0) > −∞.

Fix real numbers ε > 0 and p ≥ 1 and fix the integer k ≥ 1. By Lemma 3.6, we
can find two increasing sequences {ϕk,j}j≥1 and {vj} in PSHc(�) such that:

(a) ϕk,j ↗ ψk on �̄, where ψk ≤ ϕk on ∂� and ψk = ϕk on X \X ′;
(b) vj ↗ V on �̄, where V < 0 on � and V = 0 on X \X ′.

Let ρ ∈ C∞0 (Cn) be a nonnegative radial function with support in the unit ball
and with

∫
Cn ρ dV = 1, and define ρδ(z) = δ−nρ(z/δ) for δ > 0.

The following claim is the main point of our argument: There exist t0 > 0 and
j0 ≥ 1 such that, for all 0 < t < t0 and all j ≥ j0,

(ut ∗ ρδ(t,j))(z)− ε + ε(g ∗ ρδ(t,j))(z) ≤ pvj(z)+ ϕk,j(z) (3.1)

for all z ∈� ∩$t(∂�j ), where δ(t, j) = dist($t(∂�j ),$t(∂�)) > 0. Recall that
the convolution utm ∗ ρδ(t,j) is defined by

(ut ∗ ρδ(t,j))(ξ) =
∫
B(0,δ(t,j))

ut(ξ − w)ρδ(t,j)(w) dV(w). (3.2)

To prove the claim, let us assume that it is not true. Then we could find sequences
{jm} and {tm} with jm →∞ and tm → 0 and a sequence of points {ξm} with ξm ∈
� ∩$tm(∂�jm) such that

(utm ∗ ρδ(tm,jm))(ξm)− ε + ε(g ∗ ρδ(tm,jm))(ξm) > pvjm(ξm)+ ϕk,jm(ξm). (3.3)

By passing to a subsequence if necessary and using the uniform continuity of
$ on [0,1] × �̄, we may assume that {ξm} converges to some ξ ∗ ∈ X and that
δ(tm, jm)↘ 0. Consequently, g∗ρδ(tm,jm) ↘ g on �̄. Since g|X ′ = −∞ and since
the right-hand side of (3.3) is bounded from below, it follows from Lemma 2.3
that ξ ∗ ∈X \X ′.

Fix ε ′ > 0. Since u∗ is upper semicontinuous at ξ ∗ and since $−1
t → Id uni-

formly as t → 0, we have that

(u �$−1
tm
)(ξm − w) < u∗(ξ ∗)+ ε ′

for all w ∈ B(0, δ(tm, jm)) and all sufficiently large m. Hence, from (3.2), it fol-
lows that

(utm ∗ ρδ(tm,jm))(ξm) ≤ u∗(ξ ∗)+ ε ′

for m sufficiently large. As a result,

lim
m→∞(utm ∗ ρδ(tm,jm))(ξm) ≤ u∗(ξ ∗) ≤ ϕk(ξ

∗).

On the other hand, by Lemma 2.3 we see that

lim
m→∞ vjm(ξm) = 0 and lim

m→∞
ϕk,jm(ξm) ≥ ϕk(ξ

∗).

Thus, letting m→∞ in (3.3) and recalling that g is negative on a neighborhood
of �̄, we obtain a contradiction. The claim is proved.
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By shrinking t0 if necessary, we may assume that z0 ∈ $t(�) for all 0 < t <

t0. For each t (0 < t < t0) and each j ≥ j0, we define

ψt,j =
{

max{(ut ∗ ρδ(t,j))− ε + ε(g ∗ ρδ(t,j)),pvj + ϕk,j}, z∈ �̄ ∩$t(�j ),

pvj + ϕk,j , z∈ �̄ \$t(�j ),

for z ∈�. It follows from (3.1) that ψt,j ∈PSHc(�). Note also that z ∈$t(�) if
and only if z∈$t(�j ) for some j. Hence

lim
j→∞ψt,j(z)

=
{

max{ut(z)− ε + εg(z),pV(z)+ ψk(z)}, z∈ �̄ ∩$t(�),

pV(z)+ ψk(z), z∈ �̄ \$t(�).
(3.4)

In particular, limj→∞ ψt,j(z) ≤ ϕk(z) on ∂� if t is small enough. Since µ∈J c
z0

,
we have that

ψt,j(z0) ≤
∫
�̄

ψt,j dµ =
∫
�

ψt,j dµ+
∫
∂�

ψt,j dµ. (3.5)

Applying Fatou’s lemma and using (3.4), we obtain

lim
j→∞

∫
�

ψt,j dµ ≤
∫
�∩$t(�)

max{ut − ε + εg,pV + ψk} dµ

+
∫
�\$t(�)

(pV + ψk) dµ.

But, since limj→∞ψt,j(z) ≤ ϕk(z) on ∂�, it follows that

lim
j→∞

∫
∂�

ψt,j dµ ≤
∫
∂�

ϕk dµ.

Combining all of this, we get

lim
j→∞ψt,j(z0) = max{ut(z0)− ε + εg(z0),pV(z0)+ ψk(z0)}

≤
∫
�∩$t(�)

max{ut − ε + εg,pV + ψk} dµ

+
∫
�\$t(�)

(pV + ψk) dµ+
∫
∂�

ϕk dµ.

Letting t → 0, applying Fatou’s lemma, and using that the curve t �→ $−1
t (z0)

is not pluri-thin at t = 0 (since we assumed that t �→ $−1
t is real-analytic), we

obtain

u(z0)− ε + εg(z0) ≤
∫
�

max{u− ε + εg,pV + ψk} dµ+
∫
∂�

ϕk dµ.

Finally, letting p →∞ and recalling that V < 0 and g < 0, we end up with

u(z0)+ εg(z0) ≤
∫
�

u dµ+
∫
∂�

ϕk dµ;
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now letting k → ∞ and ε → 0, we obtain µ ∈ Jz0 because g(z0) �= −∞. This
concludes the proof.

Remark. If � is B-regular, we can take $t = Id for all t and apply Theorem 3.5
to conclude that Jz = J c

z for all z ∈�. Similarly, if � is (strongly) star-shaped
(i.e., � ⊂⊂ t� for all t > 1 sufficiently close to 1) then we can take $t(z) =
(1+ t)z. In this case the boundary cluster set of $t is empty and Theorem 3.5
again implies that Jz = J c

z for all z∈�. Thus we recover Theorem 4.10 of [17].

Example 3.7. Let � be the Hartogs triangle, � = {(z,w)∈C2 : |z| < |w| < 1}.
One can verify that u(z,w) = |z/w| is an upper bounded plurisubharmonic func-
tion on � that cannot be approximated from above on �̄ by functions in PSHc(�).

(For details, see [17].) Hence � does not have the bounded approximation prop-
erty. Nevertheless, � does have the weak bounded approximation property. To
see this, define $t(z,w) = ((1+ t)2z, (1+ t)w). Then $t is an isotopy family
of biholomorphic mappings on � and the boundary cluster set X of $t is just the
origin. Since X is pluripolar and pph(X) = {0}, we can apply Theorem 3.5.

Corollary 3.8. Let �be a bounded domain in Cn and assume that �= {ρ < 0},
where ρ is a C1 function defined on a neighborhood of �̄. If there exists a holo-
morphic map 3 = (ψ1, . . . ,ψn) defined on a neighborhood of �̄ such that J c

ξ ={δξ } for all ξ ∈ ∂� with

Re

( n∑
j=1

ψj(ξ)
∂ρ

∂zj
(ξ)

)
≤ 0,

then Jz = J c
z for all z∈�.

Proof. By Theorem 3.5, it suffices to find an isotopy family $ of biholomorphic
maps on � such that, for every point ξ in the cluster set of $t , we have J c

ξ = {δξ }.
By choosing ε > 0 small enough, the mapping $ : [0,1]× �̄→ Cn defined by

$t(z) = z+ tε3(z)

is an isotopy family of biholomorphic maps on �. Let us analyze the cluster set
of �̄ ∩$t(∂�) as t → 0. For each t (0 < t < 1), let ξt ∈ �̄ ∩$t(∂�). Then
ρ(ξt ) = ρ($−1

0 (ξt )) ≤ 0 and ρ($−1
t (ξt )) = 0. Define ρ̃ξt (λ) = ρ($−1

λ (ξt )).

Then there must exist λt , 0 < λt < t, with (ρ̃ξt )
′(λt ) ≥ 0. Write $−1

t =
(φ̃1(t, z), . . . , φ̃n(t, z)). Using the chain rule, we get

0 ≤ (ρ̃ξt )
′(λt ) = 2

ε
Re

( n∑
j=1

∂ρ

∂zj
($−1

λt
(ξt ))

∂φ̃j(λ, z)

∂λ
(λt , ξt )

)
. (3.6)

However, since $t �$−1
t = Id it follows that

lim
λ→0

∂φ̃j

∂t
(t, z)(λ, z) = −φj(ξ) for all ξ ∈ �̄.

Now, if ξ ∗ = (ξ ∗1 , . . . , ξ ∗n ) is a limit point of the set {ξt }, then by passing to a limit
in (3.6) we obtain
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Re

( n∑
j=1

ψj(ξ
∗)

∂ρ

∂zj
(ξ ∗)

)
≤ 0,

and we are thus in a situation where we can apply Theorem 3.5.

Example 3.9. Let ϕ ∈ C2(C) be such that limz→∞ ϕ(z) = ∞ and 5ϕ > 0 on
{ϕ = −1/4}. Define � = {(z,w)∈C2 : Rew+ |w|2 + ϕ(z) < 0}. Then, clearly,
� is a bounded domain.

Set ψ(z,w) = (0,1/2 + w). It is easy to check that the set of points ξ ∈ ∂�

satisfying the inequality in the statement of Corollary 3.8 is contained in the set of
strictly pseudoconvex boundary points. Hence, Corollary 3.8 implies that � has
the weak approximation property.

4. Continuity of the Perron–Bremermann Envelope

Let φ ∈C(∂�); we define the Perron–Bremermann envelope of φ as

Uφ(z) = sup{u(z) : u∈PSH(�), u∗|∂� ≤ φ}.
(see Bremermann [3]). We will also define

Ucφ(z) = sup{u(z) : u∈PSHc(�), u|∂� ≤ φ}.
It is well known that if � is regular (with respect to the Dirichlet problem for
the Laplace operator, when viewed as a domain in R2n) then Uφ ∈ PSH(�).

Furthermore, if � is B-regular then Uφ ∈PSHc(�) and Uφ = φ on ∂�. It is also
known that, if � is strictly pseudoconvex and φ sufficiently smooth, then Uφ ∈
C1,1; this result is optimal in light of an example due to Gamelin and Sibony [10].
In this section, we will use Jensen measures to study the continuity of Uφ on �.

We should note that it is possible to find a pseudoconvex domain � and a φ ∈
C(∂�) such that Uφ is not continuous. The following example can be found in
Walsh [16] but is included here for completeness.

Example 4.1. Let u ∈ SH(C) be locally bounded and such that {u < 0} is a
bounded nonempty set. Define � = {(z1, z2) ∈ C2 : u(z1) + |z2| < 0} and let
φ(z) = −|z2| on ∂�. Then � is pseudoconvex and φ ∈ C(∂�). It is not diffi-
cult to verify that Uφ = u. Hence, Uφ need not be continuous on �, even though
(Uφ)∗ = φ on ∂�.

To motivate the use of Jensen measures as a tool for studying the continuity of Uφ,
let us start with the following simple observation.

Proposition 4.2. Assume that Jz(∂�) = J c
z (∂�) for all z ∈ � and that �

is regular (in the real sense). Then, for every φ ∈ C(∂�), we have that Uφ ∈
PSH(�) ∩ C(�).

Proof. Extend φ to a lower semicontinuous function on �̄ by setting φ(z) = ∞
for z ∈ �. By Edwards’s theorem, Uφ = Sφ = Scφ on �. (Note that, since
φ|� = ∞, only Jensen measures supported on ∂� are relevant.) Because Scφ is
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lower semicontinuous and Uφ is plurisubharmonic (in particular, upper semicon-
tinuous), we see that Uφ ∈C(�).

Proposition 4.2 raises the natural question of how to find a characterization of the
domains � for which Jz(∂�) = J c

z (∂�) for all z ∈�. Theorem 3.5 provides us
with a sufficient condition for this to hold. A related question is to estimate the
size of the set A = {z ∈� : Jz(∂�) = J c

z (∂�)}. A partial result in this direction
is given by the following result, which (roughly speaking) states that if A contains
sufficiently many points near ∂� then � \ A must be small.

Theorem 4.3. Let K be a compact subset of �̄ with K ⊃ ∂�, and let

A = {z∈� : J c
z (K) = Jz(K)}.

Assume there exist a set W ⊂ � with Lebesgue measure 0, a pluripolar set P ⊂
∂�, and an open neighborhood V of ∂� \ P such that (� ∩V ) \W ⊂ A. Then
A = � \Q for some pluripolar set Q.

Proof. For φ ∈C(K), define

Uφ(z) = sup{u(z) : u∈PSH(�), u∗|K ≤ φ},
Ucφ(z) = sup{u(z) : u∈PSHc(�), u|K ≤ φ}.

The first step in the proof will be to show that, for every φ ∈C(K), Uφ = Ucφ

outside a pluripolar set. Indeed, since ∂� ⊂ K it follows that Uφ and Ucφ are up-
per bounded on �, hence (Uφ)∗ and (Ucφ)∗ are both plurisubharmonic on �. By
Choquet’s topological lemma, we can find a sequence {uj}j≥1 ⊂ PSH(�) that
increases to a function ũ on � such that u∗j ≤ φ on K and ũ∗ = (Uφ)∗. By Bed-
ford and Taylor’s theorem, there is a pluripolar set P̃ ⊂ � such that ũ = Uφ and
Ucφ = (Ucφ)∗ on � \ P̃.

The set P ∪ P̃ is pluripolar, so we can find a plurisubharmonic function v de-
fined on a neighborhood of �̄ with v < 0, v �≡ −∞, and v|P∪P̃ = −∞. Since
(� ∩V ) \W ⊂ A and using once again the trick of extending φ to ∞ on �̄ \K,
Edwards’s theorem implies that Uφ = Ucφ on (� ∩V ) \W because only Jensen
measures supported on K are relevant. Fix an ε > 0 and an integer j ≥ 1. It is
clear that

uj + εv ≤ Uφ = Ucφ ≤ (Ucφ)∗ on (� ∩V ) \W.

Since W has Lebesgue measure 0 and since (Ucφ)∗ is plurisubharmonic on �, it
follows that

uj + εv ≤ (Ucφ)∗ on � ∩V.

Choose a sequence {�k}k≥1 of subdomains exhausting �. We claim that, for k

sufficiently large,
uj + εv ≤ (Ucφ)∗ + ε on ∂�k. (4.1)

Indeed, if this were not so then we could find a sequence {ξk} with ξk ∈ ∂�k and

(Ucφ)∗(ξk)+ ε ≤ uj(ξk)+ εv(ξk).

Therefore,
(Ucφ)∗(ξk)+ ε ≤ (Uφ)(ξk)+ εv(ξk).
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Since v < 0, it follows that ξk ∈ ∂�k \ (�∩V ). Hence, passing to a subsequence
if necessary, we can assume that ξk → ξ ∗ ∈ P̃. This is clearly a contradiction,
since v(ξ ∗) = −∞. This establishes the claim (4.1).

Fix an integer k ≥ 1 large enough that (4.1) holds. By Choquet’s lemma again,
we can find a sequence {vm} ⊂ PSHc(�) with vm ≤ φ on K and vm ↗ Ucφ on
�̄. We claim that we can find δ > 0 and an integer m ≥ 1 such that

(uj + εv) ∗ ρδ ≤ vm + 2ε on ∂�k.

Again, seeking a contradiction, if this were not so then we could find sequences
{δl} and {ml} with δl ↘ 0 and mk ↗∞ as well as {ξl} ⊂ ∂�k such that

(uj + εv) ∗ ρδ(ξk) > vm(ξl)+ 2ε.

By passing to a subsequence, we may assume that ξl → ξ ∗ ∈ ∂�k. Letting l →
∞ and applying Lemma 2.3, we obtain

(uj + εv)(ξ ∗) ≥ (Ucφ)(ξ ∗)+ 2ε.

This inequality implies that v(ξ ∗) �= −∞, so (Ucφ)(ξ ∗) = (Ucφ)∗(ξ ∗). If we
combine this with (4.1), we obtain our contradiction.

Finally, define

ṽm(z) =
{

max{vm(z)+ 2ε, (uj + εv) ∗ ρδ(z)}, z∈�k ,

vm(z)+ 2ε, z∈ �̄ \�k.

Clearly, ṽm ∈PSH(�)∩C(�̄). Moreover, if δ is small enough then ṽm ≤ φ+2ε
on �k ∩K. Hence, for sufficiently small δ, ṽm ≤ Ucφ + 2ε on �. In particular,

uj + εv ≤ (uj + εv) ∗ ρδ ≤ Ucφ + 2ε on �k.

If we now let j → ∞ and ε → 0 in this estimate, it follows that ũ ≤ Ucφ on
�k \ v−1(−∞). This holds for all k large enough and so, in fact, Uφ = Ucφ out-
side a pluripolar set. This concludes the first step of the proof.

To finish off the proof, let 8 = {φj} be a countable dense subset of C(K). By
the first step, for each j there is a pluripolar set Pj ⊂ � such that Uφj = Ucφj
on � \ Pj . Let Q = ⋃

j Pj . Then Q is pluripolar and Uφj = Ucφj on � \Q for
all j. If φ ∈C(K) is arbitrary, we can find a subsequence {φjk } of 8 such that φjk
converges to φ uniformly on K. It follows that Uφjk → Uφ and Ucφjk → Ucφ

uniformly on �̄. Hence Uφ = Ucφ on � \Q for all φ ∈C(K).

Now assume that Jz � J c
z for some z∈�. By the Hahn–Banach theorem, we

can find µ∈J c
z (K) and φ ∈C(K) such that∫

K

φ dµ < 0 <

∫
K

φ dν for all ν ∈Jz.

Edwards’s theorem then implies that Ucφ(z) < Uφ(z), so z ∈ Q. Hence J c
z =

Jz for all z∈� \Q.

5. Compactly Supported Measures in JJJ c

The traditional way of defining and studying Jensen measures is in terms of func-
tion algebras. In the context of plurisubharmonic functions this is equivalent to
the following definition.



Jensen Measures and Approximation of Plurisubharmonic Functions 541

Definition 5.1. Let � be a domain in Cn and let z∈�. Let µ be a Borel proba-
bility measure with suppµ ⊂⊂ �. We say that µ is a traditional Jensen measure
with barycenter z if

u(z) ≤
∫
�

u dµ

for all u∈PSH(�). We denote the set of such measures by J 0
z .

Note that in this definition we require the defining inequality to hold for all pluri-
subharmonic functions. On the other hand, this means that we must assume that
z /∈ ∂� and furthermore that suppµ ⊂⊂ �. A natural question is the following:
If µ ∈ J c

z (or µ ∈ Jz) and suppµ ⊂⊂ �, is it true that µ ∈ J 0
z ? In general the

answer is No, as shown by the following example.

Example 5.2. Let � ⊂ C be a neighborhood of the unit disc punctured at the
origin. Take any p ∈� with |p| < 1 and let µ be the Poisson kernel for p times
the normalized Lebesgue measure on the unit circle. Then µ ∈ Jp (and hence
in J c

p ), since every upper bounded subharmonic function on � extends across
the puncture. However, it is easy to see that µ /∈J 0

p . (If u(z) = −log|z|, then
u(p) >

∫
�
u dµ.)

If we assume something more about the domain—for example, that it is hyper-
convex—then the answer is Yes. To prove this we will need some preliminary
results.

Proposition 5.3. Let � be a bounded pseudoconvex domain in Cn. Assume that
either (a) � is hyperconvex or (b) every holomorphic function on � can be ap-
proximated uniformly on compact sets by functions that are holomorphic on � and
continuous up to ∂�. Let δ > 0 and define �δ = {z∈� : dist(z, ∂�) > δ}.

Then, for δ small enough, every u ∈ PSH(�δ) is the pointwise limit of a se-
quence of functions in PSHc(�).

Proof. Choose δ > 0 so small that �δ is a (nonempty) connected subset of �.

Since −log dist(·, ∂�) is plurisubharmonic, it follows that �δ is Runge in �. Fix
u ∈ PSH(�δ). Since �δ is pseudoconvex, we can find a sequence {um}m≥1 ⊂
PSH(�δ) ∩ C∞(�δ) with um ↘ u. Choose an increasing sequence {Km} of
compact subsets of �δ with

⋃
m Km = �δ. For a fixed m ≥ 1, by [14, Thm. 9]

we can find holomorphic functions f1,m, . . . , fpm,m on �δ and positive integers
c1,m, . . . , cpm,m such that

um(z)− 1

m
≤ max

k≤pm

{
1

ck,m
log|fk,m(z)|

}
≤ um(z)

for all z∈Km. Let αm = minKm
um and let dm = 2c1,m · · · cpm,m. For every j ≤ 1,

define

ψj,m = 1

2jdm

log(|f1,m|2jdm/c1,m + · · · + |fpm,m|2jdm/cpm,m + e2j(αm−1/m)).

We claim that φj,m is plurisubharmonic on �δ. Indeed, if � ⊂ C then this can be
verified by a direct computation of 5ψj,m. The higher-dimensional case reduces



542 Nguyen Quang Dieu & Frank Wikström

to this by restricting ψj,m to complex lines. It is straightforward to verify that
ψj,m → maxk≤pm

{(1/ck,m)|fk,m(z)|} uniformly on Km as j → ∞. Since �δ is
Runge in �, we may assume that each fk,m is holomorphic on �. This implies
that ψj,m extends to a continuous plurisubharmonic function on �.

If � is hyperconvex, we can use [9, Thm. 2] to conclude that each um can be
approximated uniformly on Km by functions in PSHc(�). Let m → ∞ to con-
clude the proof. For the other case, simply note that fk,m can be assumed to be
continuous on �̄.

Using Proposition 5.3 and Fatou’s lemma, we immediately deduce the following.

Corollary 5.4. Let � be as in Proposition 5.3 and let z ∈ �. If µ ∈ J c
z and

suppµ ⊂⊂ �, then µ ∈ J 0
z (�δ) for δ > 0 small enough (and consequently

µ∈J 0
z (�)).

Proposition 5.5. The assumptions in Proposition 5.3 are satisfied if either (a) �
is fat (i.e., int(�̄) = �) and �̄ is holomorphically convex in some pseudoconvex
�′ ⊃ � or (b)

� = {(z,w)∈C2 : z∈D, |w| < e−ψ(z)}
for some lower bounded subharmonic function ψ on D, where D denotes the unit
disc in C.

Proof. Consider the first case, where � is fat and �̄ is holomorphically convex
in �′. Then every holomorphic function on � can be approximated uniformly on
compact subsets of � by functions that are holomorphic on �′. Thus Proposi-
tion 5.3 applies.

For the second case, when � is a Hartogs domain over D we can expand a holo-
morphic function f on � in a Hartogs series

f(z,w) =
∞∑
k=0

fk(z)w
k,

where each fk is holomorphic on D. For j ≥ 1, let

fj(z,w) =
∞∑
k=0

fk

(
jz

j + 1

)
wk.

It is clear that fj converges pointwise to f on �.

Our final result is inspired by Theorem 4.7 in [7]; in fact, it is an easy consequence
of a theorem by Bu and Schachermayer [4] (see also [13]), which states that J 0

z is
the weak-∗ closure of the measures that are push-forwards of the Lebesgue mea-
sure on the circle under closed analytic disks. Before formulating the result, let
us introduce

Az(�) = {f∗σ : f ∈O(D̄,�), f(0) = z},
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where σ is the normalized Lebesgue measure on ∂D and O(D̄,�) is the set of
maps that are holomorphic on some neighborhood of D̄ with values in �.

Proposition 5.6. Let � be a bounded domain in Cn and let z∈�. Then J c
z ⊂

W, where W is the weak-∗ closure in C(�̄)∗ of

{aν − (a − 1)δz : a ≥ 0, ν ∈Az(�)}
and Jz is the weak-∗ closure in C(�̄)∗ of Az(�).

Proof. For the first assertion, let

X =
{ j∑

k=1

ak(µk − δz) : ak ≥ 0, µk ∈Az(�)

}
.

It is easy to check that X̄ is a convex cone in C(�̄)∗. Let µ ∈ J c
z . We claim that

µ− δz ∈ X̄. Assume otherwise; then, by the Hahn–Banach theorem, we can find
φ ∈C(�̄) such that ∫

�̄

φ dν < c <

∫
�̄

φ dµ− φ(z) (5.1)

for all ν ∈X. Since X is a cone, we can take c = 0. Consequently, the restriction
of φ to the intersection of any complex line with � satisfies the sub-mean value
inequality and hence φ ∈ PSHc(�). This is a contradiction since µ ∈ J c

z , so the
right-hand side of (5.1) is negative. On the other hand, if ν ∈X then

ν =
j∑

k=1

ak(µk − δz)

for some choices of ak ≥ 0 and µk ∈Az(�). Hence

ν = A

( j∑
k=1

ak

A
µk − δz

)
,

where A =∑j

k=1 ak. By the Bu–Schachermayer theorem [4], ν = A(ν ′ − δz) for
some ν ′ in the weak-∗ closure of Az(�).

For the second assertion, we again argue by contradiction. Assume that there is
a µ∈Jz \Az(�). From Bu–Schachermayer we know that Az(�) is a closed con-
vex set in C(�̄)∗, so by the Hahn–Banach theorem we can find φ ∈C(�̄) such that∫

�̄

φ dµ < 0 < inf

{
1

2π

∫ 2π

0
(φ � f )(e iθ ) dθ : f ∈O(D̄,�), f(0) = z

}

= sup{u(z) : u∈PSH(�), u ≤ φ}
= sup{u(z) : u∈PSH(�) ∩ USC(�̄), u ≤ φ}.

In the second line we have used a theorem by Poletsky (see [12; 13]) about the
plurisubharmonicity of the Poisson envelope. Edwards’s theorem gives us the de-
sired contradiction.
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