
Michigan Math. J. 53 (2005)

Self-Maps of Projective Bundles
on Projective Spaces

Marius Dabi ja

Published posthumously to honor the author,
a Ph.D. recipient from the University of Michigan

Introduction

As shown in [3; 7; 9], the basic dynamical properties of the self-maps of projec-

tive spaces can be summarized as follows. Any holomorphic self-map P r f−→ P r

lifts through the canonical map Cr+1 \ 0
q−→P r to a self-map Cr+1 F−→ Cr+1, qF =

fq, whose components are homogeneous polynomials of degree d, the algebraic
degree of f. When d > 1, the origin is a super-attracting fixed point for F with
bounded and complete circular basin of attraction. The Green function associated
to this basin is given by the formula G = limj log‖Fj‖/dj, so it is plurisubhar-
monic. If H denotes the open set where G is pluriharmonic, then the Fatou set F
of f equals q(H). It follows that F is Stein and Kobayashi hyperbolic and that,
when r ≥ 2, the complement J of F is connected.

In this paper we extend these results to the context of projective bundles on pro-
jective manifolds. In the first part, we discuss the structure of the self-maps of a
projective bundle PE

p−→ B (fiber-degree, algebraic degree, completely invariant
sub-bundles, dimension of the space of self-maps, lifting to E ′). In the second
part, we introduce Green functions and use them in the analysis of the basic dy-

namical features of a self-map PE
f−→ PE (pseudoconvexity and hyperbolicity of

the Fatou set, connectedness of the Julia set). We prove the following theorem.

Theorem 1. Let PE → P n be a projective bundle with nonzero discriminant,

and let PE
f−→ PE be a self-map with topological degree at least 2. Then:

(1) f has well-defined algebraic degree;
(2) the Fatou components of f are Stein and Kobayashi hyperbolic;
(3) when rank(E) ≥ 3, the Julia set of f is connected.

Note that the first two statements fail in the trivial case PE = P n × P n.

Preliminaries. Fix a vector bundle E
π ′−→ B, rank(E) = r + 1, over a pro-

jective manifold B, dim(B) = n, and let E ′ π−→ B denote its dual. The homo-
geneous lines in E ′ form the projective manifold PE, which is endowed with
the projection PE

p−→ B. The pull-back p∗E ′ admits a canonical line sub-bundle,
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0 −→ T −→ p∗E ′, whose fiber over a line l ∈PE is l ⊂ E ′
π(l). Dualizing this yields

the line bundle OPE(1) := T ′ as a quotient of p∗E. The Chow ring A(PE) is a
free A(B)-module generated by Hj, 0 ≤ j ≤ r, where H is the class of OPE(1).
We have

∑r+1
0 (−1)jCjH r+1−j = 0, where Cj ∈ A(B) are the Chern classes of

E. Put C(T ) := ∑r+1
0 (−1)jCjT r+1−j ∈ A(B)[T ]. The Picard group of PE is

Pic(PE) = p∗ Pic(B) ⊕ ZH. Let � denote the equality in Pic. The canonical
class of PE is KPE � −(r + 1)H + p∗ det(E) + p∗KB. When n ≥ 2, let � :=
C2

1 − 2(r+1)
r

C2 ∈ A2(B) ⊗ Q; it does not change when E is tensored by a line
bundle on B. We call � the discriminant of PE.

When B = P n, let L := p∗OP n(1). Then p∗Cj = cjL
j for some cj ∈ Z ,

with c0 = 1 and cj = 0 for j > n. Let C(T, S) := ∑r+1
0 (−1)jcjT r+1−jSj ∈

Z[T, S ]. Then Pic(PE) = ZL⊕ZH and A(PE) = Z[L,H ]/Ln+1, whereLn+1 =
C(H,L) = 0. If n ≥ 2 then δ := c2

1 − 2(r+1)
r

c2 ∈Q.

A vector bundleE is totally decomposable if and only if it is a direct sum of line
bundles. Every vector bundle on P1 is totally decomposable. Givenm∈Zr+1 with
m0 ≥ · · · ≥ mr , put Em := ⊕r

0 OP n(mj ) and δm := 1
r

∑
j<k(mj − mk)

2. When
n ≥ 2 we have δEm

= δm, so δE is coherently defined for every vector bundle E
on P n.

Given a map X
r−→ B and a line bundle χ ∈ Pic(X), the set of maps X

f−→ PE

that satisfy pf = r and f ∗OPE(1) � χ can be identified with the projectivized
set of nonvanishing global sections in r∗E ′ ⊗ χ.

Let ω denote the zero-section inE ′, and letE ′ \ ω q−→ PE be the map that asso-
ciates to e ′ �= 0 the line passing through e ′. Note that pq = π and that q∗OPE(1)
is trivial.

1. Self-Maps

1.1. Fiber-Degree and Algebraic Degree

Definition 1.1. A finite self-map PE
f−→ PE is over B if and only if there exists

B
g−→ B with pf = gp. In this case, we say that f is over g.

Theorem 1.2. Let E be a vector bundle on P n, and let PE
f−→ PE be a finite

self-map. Then some iterate of f is over P n.

Proof. We have to show that some iterate f i maps fibers of PE to fibers. Write
f ∗H � aH + bL and f ∗L � cH + dL. Note that, by the projection formula, we
can take i = 1 when c = 0. Let σ denote the topological degree of f. There are
three cases to discuss: r > n, r = n, and r < n.

When r > n, Bézout’s theorem implies that the restriction of pf to any fiber of
PE is constant. In this case, we can take i = 1. Consider the case r = n.

When r = n = 1, we may assume E = E(0,ε) with ε ≤ 0. If ε = 0, then f is
a finite self-map of P1 × P1 and we can take i = 2. If ε < 0, then PE contains a
unique negative curve and it follows that f ∗H = aH = f∗H, where a > 0, σ =
a2, and (with the projection formula) cε = a − d. We show that c = 0, so that
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we can take i = 1 in this case. Otherwise, since deg(L2) = 0, we get cε = −2d
and hence d = −a < 0. If s is a section in PE with deg(H · s) = 0, then 0 ≤
deg(f ∗L · s) = d. This is a contradiction.

When r = n > 1 and c �= 0 we have (cT + dS)n+1 = cn+1C(T, S)+ d n+1S n+1,
so that C(T, S) = (T − mS)n+1 − (−1)m+1mn+1S n+1 in Q[T, S ], where m =
−d/c. Since (n+1)mn = cn, we get m∈Z. Replacing E by E ⊗OP n(−m), we
may assume that m = 0 and hence C(T, S) = T n+1. But then (aT + bS)n+1 =
an+1T n+1+ bn+1S n+1 in Q[T, S ]; that is, ab = 0. Since f is finite, it follows that
b �= 0 and hence a = 0. Therefore, we can take i = 2 in this case.

When 1 ≤ r < n and c �= 0, we have C(aT + bS, cT + dS) = ar+1C(T, S) and
(cT + dS)n+1 − d0S

n+1 = cn−r (T, S)C(T, S), with cn−r ∈ Z[T, S ] and d0 ∈ Z.

Let mj ∈ C be the roots of C(T,1). We have (cmj + d)n+1 = d0 for all 0 ≤ j ≤
r. Not all mj are equal. Indeed, otherwise mj = m ∈ Z for all 0 ≤ j ≤ r and we
could assume that C(T, S) = T r+1. It follows immediately that b = 0 and d �= 0,
but then c = 0. Consequently, d0 �= 0, the polynomial (cT + d)n+1 − d0 has no
multiple roots, and all mj are distinct. The Möbius transformation µ(z) = az+b

cz+d
leaves invariant the set {mj , 0 ≤ j ≤ r}, so µ(r+1)! fixes all of the points mj . Put

M =
(
a b

c d

)
and M̄ = M(r+1)! =

(
ā b̄

c̄ d̄

)
.

Then
(mj

1

)
is an eigenvector of M̄ with eigenvalue c̄mj + d̄. Since m0 �= m1 and

(c̄mj + d̄ )n+1 = d̄0, we have Bn+1 = d0I and can take i = (r + 1)! (n+ 1).

Remark 1.3. Let E be a vector bundle of rank r + 1 on a projective manifold B
of dimension n, B �= P n. If r ≥ n, then any finite self-map of PE is over B.

Proof. Fix a fiber F of PE and consider the restriction F
φ−→ B of pf. Let G =

φ(F ) and γ = dim(G). Since B is smooth, Lazarsfeld’s result implies γ < r.

Choose a finite map G
ν−→ Pγ. The composition F

νφ−→ Pγ is surjective, hence
γ = 0.

Remark 1.4. In the totally split case of E = Em with δm �= 0 = m0, any finite
self-map of PEm is over P n.

Proof. We keep the notation from the proof of Theorem 1.2. Lemma 1.8 (to fol-
low) implies that a, b, c, and d are nonnegative. We need to show that c = 0. This
is clear when r ≥ n. In the case 1 ≤ r < n, assume c �= 0. Then all mj are dis-
tinct and (cmj + d)n+1 = d n+1 for all j. It follows that n is odd, r = 1, d > 0,
and m1 = −2d/c. Moreover, {µ(0),µ(m1)} = {0,m1}. Since µ(0) = b/d ≥ 0,
we obtain µ(0) = 0 = b and µ(m1) = m1. But µ(m1) = 2a ≥ 0, which is a
contradiction.

Definition 1.5. A finite self-map X
f−→ X has well-defined algebraic degree d

if and only if Pic(X)
f ∗−→ Pic(X) is given by multiplication with d.

Clearly, self-maps of PE with well-defined algebraic degree must be over B.
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Definition 1.6. Assume that PE
f−→ PE is over B

g−→ B. If the induced maps

of fibers Fb
f−→ Fg(b) have algebraic degree d independent of b ∈B, we say that f

has fiber-degree d.

Proposition 1.7. Any finite self-map PE
f−→ PE over B

g−→ B has well-defined
fiber-degree d(f ). If β(E, f ) ∈ Pic(B) is the line bundle that satisfies f ∗H �
d(f )H − p∗β(E, f ), then:

(1) β(E ⊗ α, f ) � β(E, f )− g∗α + d(f )α for every line bundle α ∈ Pic(B);
(2) β(E, f̄f ) � d(f̄ )β(E, f )+g∗β(E, f̄ ) for every self-map PE

f̄−→ PE overB;
(3) β(E, f ) = dC1(E)−g∗C1(E)

r+1 in A(B)⊗Q;
(4) when n ≥ 2, g∗�E = d 2�E in A(B)⊗Q.

Proof. Write f ∗H � dH − p∗β with d ∈ Z and β ∈ Pic(B). Then f ∗H · Fb =
dH · Fb for all b ∈B. Let d(b) > 0 be the algebraic degree of Fb

f−→ Fg(b). Then
f∗Fb = d(b)rFg(b) and f∗Hb = d(b)r−1Hg(b), whereHb := OFb(1). SinceH |Fb �
Hb in Pic(Fb), the projection formula implies

dd(b)r−1Hg(b) = df∗(Hb) = df∗(H · Fb) = f∗(f ∗H · Fb)
= H · f∗(Fb) = d(b)rH · Fg(b) = d(b)rHg(b)

and so (d − d(b))d(b)r−1Hg(b) = 0 in A(Fg(b)). This implies that d(b) = d for
all b ∈B.

Parts (1) and (2) of the proposition are straightforward calculations. LetP(T ) :=∑r+1
0 (−1)jg∗Cj(dT −β)r+1−j −dr+1C(T )∈A(B)[T ]. Since deg(P ) ≤ r, it fol-

lows that P(T ) = 0. Looking at the coefficient of T r, we get part (3). Looking at
the coefficient of T r−1, we get g∗C2/d

2 + rβ · g∗C1/d + r(r +1)β2/2 = C2 , and
part (4) follows from (3).

The canonical projection Em −→ ⊕
k �=j OP n(mk)→ 0 defines a hypersurface Hj

of PEm, with Hj +mjL � H, for all 0 ≤ j ≤ r.

Lemma 1.8. If a and b are integers such that h0(PEm, aH − bL) > 0, then a ≥
0 and b ≤ m0a.

Proof. Let D be an effective divisor on PEm, D � aH − bL. We may assume
that H0 is not an irreducible component of D. Indeed, if H0 appears in D with
multiplicity c > 0 and if D ′ = D − cH0 � a ′H − b ′L, then a = a ′ + c and b =
b ′ +m0c. If the statement is true for D ′, it follows immediately that it is also true
for D.

We proceed by induction over r. If r = 1 then a = deg(D ·Ln) and m1a − b =
deg(D ·H0 · Ln−1); hence, since Ln and Ln−1 are nef, we deduce that a ≥ 0 and
m0a − b ≥ m1a − b ≥ 0. If r ≥ 2 then the induction hypothesis applied to D|H0

implies that a ≥ 0 and b ≤ m1a ≤ m0a, and the induction is complete.

Theorem 1.9. Let E be a vector bundle on P n, and let PE
f−→ PE be a finite

self-map over P n. If δE �= 0, then f has well-defined algebraic degree.
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Proof. Let P n g−→ P n be the self-map induced by f , and let d > 0 be the fiber-
degree of f. In Pic(PE) we have f ∗L � γL and f ∗H � dH − bL, where γ >

0 is the algebraic degree of g and b ∈ Z is the degree of β(E, f ) ∈ Pic(P n). By
Proposition1.7, b = (d−γ )c1/(r+1).Also note that f∗H = γ n−1dr−1(γH+bL).

Assume first that n ≥ 2. By Proposition 1.7, (γ 2 − d 2)δ = 0. Since δ �= 0, we
get γ = d and then b = 0. In the remaining case (n = 1), E = Em for some m∈
Zr+1 and we may assume that m0 = 0, so that H � H0 is effective. Since δ �= 0,
we also get c1 < 0. Lemma 1.8 applied to f ∗H and f∗H implies that b ≤ 0 and
b ≥ 0; that is, b = 0 and so d = γ.

1.2. Lifting to E ′

A section of p is a map B
s−→ PE with ps = 1B. Its image S = s(B) is a section

of PE.

Definition 1.10. A section S ⊂ PE with OPE(1)|S � 0 is an affine section.

The set of affine sections in PE is the projectivized set of nonvanishing global sec-
tions in E ′. We need the following well-known Bertini-type result.

Lemma 1.11. If rank(E) > dim(B) and if E ′ is globally generated, then the
generic section of PE is affine and is not contained in any proper subvariety
of PE.

Proof. We need to show first that the generic global section of E ′ is nonvanish-
ing. LetV := 7(B,E ′) and let K := {(v, b)∈V ×B : v(b) = 0}, a subvariety of
V ×B. For b ∈B, the evaluation mapV

vb−→ Cr+1 is surjective and so its kernel Vb
has dimension dim(V )− r − 1. Since r ≥ n, it follows that dim(K) < dim(V ).

The projection V × B
P−→ V is proper, so P(K) is a proper subvariety of V.

Let Z be a proper subvariety of PE. We may assume that p(Z) = B, since
otherwise Z does not contain any section in PE. Given b ∈ B, the set Zb :=
{0} ∪ q−1(Z ∩ Fb) is analytic in Cr+1 = π−1(b). Since λZb ⊂ Zb for all λ∈C, it
follows that Zb is algebraic in Cr+1 and hence U := ⋂

b∈B{s ∈V : s(b) ∈Zb} is
algebraic in V. Moreover, U �= V. Indeed, pick b ∈ B such that Zb �= Cr+1, and
choose t ∈Cr+1 \Zb. Because E ′ is globally generated, there exists a v ∈V with
v(b) = t and hence v /∈ U. It follows that the generic section of PE is not con-
tained in Z.

Definition 1.12. The self-map PE
f−→ PE lifts to E ′ if and only if there exists a

self-map E ′ \ ω F−→ E ′ \ ω such that qF = fq.

Lemma 1.13. Let U
g−→ Ū be holomorphic from the unit ball U ⊂ Cn to some

analytic space Ū. If U × P r f−→ Ū × P r is a holomorphic map over g with

positive fiber-degree, then f admits a holomorphic lifting U × (Cr+1 \ 0)
F−→

Ū × (Cr+1 \ 0).
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Proof. Let ω := U × 0 and ω̄ := Ū × 0, and denote by

U × P r p−→ U,

U × Cr+1 \ ω q−→ U × P r,

U × Cr+1 π−→ U

the canonical projections, and similarly for p̄, q̄, π̄ . Let tj (0 ≤ j ≤ r) denote the
coordinates in Cr+1. For 1 ≤ j ≤ r, the functions tj/t0 are meromorphic on Ū×P r

and holomorphic outside the hypersurface T0 = {t0 = 0} ⊂ Ū × P r. Because f
has fiber-degree d > 0, its image is not contained in T0 and so the compositions
φj := (tj/t0)fq are meromorphic on U × Cr+1 \ ω and holomorphic outside the
hypersurface q−1(f −1(T0)). Levi’s extension theorem implies that φj is meromor-
phic on U × Cr+1 for all 1 ≤ j ≤ r. Note that φj(u, λt) = φj(u, t) for all (u, t)∈
U ×Cr+1 and all λ∈C∗. The extension theorem of Thullen, Remmert, and Stein
implies that the point set closure H0 of q−1(f −1(T0)) ⊂ U × Cr+1 is an analytic
hypersurface in U × Cr+1. Since λH0 ⊂ H0 for all λ ∈ C∗, we deduce that ω ⊂
H0. Note that H0 contains no fibers of π, since d > 0.

Fix b ∈ U and let h0 = 0 be a local defining equation of H0 near (b, 0). For
a large enough integer m, the functions ψj = hm0 φj are holomorphic near (b, 0)
for all 1 ≤ j ≤ r. Using the Taylor expansion near (b, 0), write hm0 = ∑∞

k=0 ψ0,k

with ψ0,k holomorphic in u and homogeneous of degree k in t. Similarly, ψj =∑∞
k=0 ψj,k. Because the φj are homogeneous in t, we deduce that φjψ0,k = ψj,k

for all 1 ≤ j ≤ r and all k ≥ 0. Since π−1(b) �⊂ H0, we can find l > 0 such
thatψ0,l(b, ·) �≡ 0. Let γ = gcd(ψ0,l , . . . ,ψr,l) in Ob[t], which is a UFD. Clearly,
γ (u, t) is a homogeneous polynomial in t. Define Pj := ψj,l/γ for 0 ≤ j ≤ r, and
let e be their common algebraic degree in t. Then φj = Pj/P0 as meromorphic
functions onV ×Cr+1, where b ∈V ⊂ U is a sufficiently small ball. ShrinkingV,
we may assume that P0(u, ·) �≡ 0 for all u ∈V. If Z ⊂ V × Cr+1 denotes the set
of common zeros of the polynomials P0, . . . ,Pr , then the map

V × Cr+1 \ Z FV−→ Ū × Cr+1 \ ω̄, FV = (P0, . . . ,Pr),

is a lifting of f. Note that Z contains no fiber of π, and λZ ⊂ Z for all λ ∈ C∗;
hence ω ∩ π−1(V ) ⊂ Z.

We show that d = e. Otherwise d < e and, for all u ∈ V, the polynomi-
als P0(u, t), . . . ,Pr(b, t) have nontrivial common factors. Since p is proper, there
exists an irreducible componentC of q(Z)withp(C)=V. For u∈V,C∩p−1(u) is
a nonempty sum of irreducible components of q(Z)∩p−1(b). Since q(Z)∩p−1(b)

has pure dimension r −1, it follows that C is a hypersurface inV × P r and hence
q−1(C) is a hypersurface in V × Cn+1 \ ω. As before, the point set closure of
q−1(C) is a hypersurface Y inV ×Cn+1, and ω∩π−1(V ) ⊂ Y ⊂ Z. If y = 0 is a
local equation of Y ⊂ V × Cr+1 near (b, 0), then there exist holomorphic germs
Q0, . . . ,Qr ∈O(b,0) with Pj = yQj for all 0 ≤ j ≤ r. The order o of y in t is posi-
tive because π−1(b) �⊂ Y. Therefore, the homogeneous term yo of y is a nontrivial
common divisor of P0, . . . ,Pr. This contradiction shows that d = e. Since the
map p−1(u)

f−→ p̄−1(g(u)) is regular for all u∈V, we obtain Z = ω ∩ π−1(V ).
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Therefore, for all b ∈U there exist a ball b ∈V ⊂ U and a lifting of f ,

V × Cr+1 \ ω FV−→ Ū × Cr+1 \ ω̄.
Given two such liftings FV and FW , we have cVW := FV/FW ∈ O∗(V ∩ W).

Therefore, the system (V, cVW ) defines a 1-cocycle of the sheaf O∗
U . Since

H1(U, O∗
U) = 0, we obtain cVW = cV/cW with cV ∈ O∗(V ) for all V. Gluing

together the liftings FV/cV , we get the lifting F.

Proposition 1.14. Any finite self-map PE
f−→ PE over B

g−→ B determines a
line bundle D(E, f ) ∈ Pic(B), so that D(E, f ) � 0 if and only if f lifts to E ′.
Moreover:

(1) D(Ē, f |PĒ) � D(E, f ) when PĒ ⊂ PE is an f-invariant sub-bundle;
(2) D(E, f ) � dL2 − g∗L1 when the PLi are sections in PE with f(PL1) ⊂

PL2;
(3) D(E ⊗ α, f ) � D(E, f )− g∗α + d(f )α for all α ∈ Pic(B);
(4) D(E, f̄f ) � d(f̄ )D(E, f )+ g∗D(E, f̄ ) for all PE

f̄−→ PE over B;
(5) if r ≥ n then (r + 1)D(E, f ) � (r + 1)β(E, f ).

Proof. Since g is finite, it is also open. Take an O∗-acyclic covering U = {Uk}
of B such that E|Uk and E|Vk are trivial for all k, where V := g(U ). Let (U , ekl)
and (V,φkl) be cocycles defining E ′. By Lemma 1.13, there exist local lift-

ings to E ′, (E ′ \ ω)|Uk Fk−→ (E ′ \ ω)|Vk . Write Fk(b, t) = (g(b),Pk(b, t)), where

Uk × Cr+1 Pk−→ Cr+1 is a polynomial of degree d = d(f ) in t. Over Uk ∩ Ul ,
both Fk and Fl are liftings of f ; hence there exists ckl ∈ O∗(Uk ∩ Ul) with
φkl(g(b))Pl(b, t) = ckl(b)Pk(b, ekl(b)t). We can write, simply, φkl(g)Pl =
cklPk(ekl). The cocycle (U ,φkl(g)) defines g∗E ′. Clearly, (U , ckl) is a cocycle
whose class D is independent of the choice of local liftings Fk. Therefore, if f
lifts to E ′ then D � 0. Conversely, if D � 0 then ckl = ck/cl , with ck ∈O∗(Uk).

Gluing together the local liftings F̄k(b, t) = (g(b),Pk(b, t)/ck(b)), we obtain a
global lifting of f to E ′.

Let 0 −→ Ê −→ E −→ Ē −→ 0 define an f -invariant sub-bundle PĒ. We may
assume that Ē ′ and Ê ′ are defined over U ,V by cocycles ēkl , φ̄kl and êkl , φ̂kl , re-
spectively. Then E ′ is defined over U and V by

ekl =
(
êkl 0
ukl ēkl

)
and φkl =

(
φ̂kl 0
vkl φ̄kl

)
.

Moreover,

Pk =
(
P̄k

P̂k

)
with P̄k|Ē ′ = 0,

while PĒ
f−→ PĒ is given over Uk by (g, P̂k|Ē ′). Restricting to Ē ′ the relation

φkl(g)Pl = cklPk(ekl), we get part (1) of the proposition.
Take quotientsE −→ Li −→ 0 that define sections with f(PL1) ⊂ PL2. We may

assume that L′1 is defined by (U ,pkl) and L′2 by (V, λkl). Reasoning as in (1), we
get λkl(g(b))P̂l(b, 0̄, t̂ ) = ckl(b)P̂k(b, 0̄,pkl(b)t̂ )) for all k, l and all b ∈Uk ∩ Ul ,
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t̂ ∈ C. But P̂k(b, 0̄, t̂ ) = pk(b)t̂
d with pk ∈ O∗(Uk). We then have λkl(g)pl =

cklpkp
d
kl , so g∗L′2 � D + dL′1 and thus part (2) is proved.

Let Ẽ = E ⊗ α. We may assume that α is defined by (U , akl) and (V, bkl);
then Ẽ ′ is defined by (U , ekl/akl) and (V,φkl/bkl). If c̃kl is the cocycle that de-
fines D(Ẽ, f ), then (φkl(g)/bkl(g))Pl = c̃klPk(ekl/akl). We get bkl(g)c̃kl/adkl =
ckl , and (3) follows.

To prove part (4), let B
ḡ−→ B be the map induced by f̄ . We may assume thatE ′

is defined by (ḡ(V ), γkl) and that f̄ admits local liftings F̄k over eachVk , F̄k(b, t) =
(ḡ(b), P̄k(b, t)) for b ∈Vk and t ∈ Cr+1. We have γkl(ḡ)P̄l = c̄klP̄k(φkl), where
(V, c̄kl) defines D(E, f̄ ). Then D(E, f̄f ) is defined by a cocycle xkl satisfying
γkl(ḡg)P̄l(g,Pl) = xklP̄k(g,Pk(ekl)). But

γkl(ḡg)P̄l(g,Pl) = c̄kl(g)P̄k(g,φkl(g)Pl) = c̄kl(g)P̄k(g, cklPk(ekl))

= c̄kl(g)c
d(f̄ )

kl P̄k(g,Pk(ekl)),

hence xkl = c̄kl(g)c
d(f̄ )

kl .

Finally, we prove part (5). Since D(E, f ) and β(E, f ) behave identically when
E is tensored by α ∈ Pic(B), we may assume (by Serre’s theorem) that E ′ is glob-
ally generated. In the equality φkl(g)Pl(t) = cklPk(ekl t), we take Jacobian de-
terminants with respect to t and obtain det(φkl(g))jl(t) = c r+1

kl jk(ekl t) det(ekl).
Therefore, if M := −(r + 1)D + det(E) − g∗ det(E), then the functions jk de-
fine a B-map E ′ j−→ M. Using Lemma 1.11, choose a nonvanishing global section
O v−→ E ′ such that the image of s := qv is not contained in the support of the di-
visor J that is locally defined by jk. Both s∗J and M are given by the vanishing
of j(v), so s∗J � M. Note that J = Rf − p∗Rg , where Rf and Rg are the ramifi-
cation divisors of f and g, respectively. By Riemann–Hurwitz,

J � KPE − f ∗KPE − p∗KB + p∗g∗KB

� (d − 1)(r + 1)H + p∗ det(E)− p∗g∗ det(E)− (r + 1)p∗β.

Hence M � JS � −(r + 1)β + det(E) − g∗ det(E), and we get (r + 1)β �
(r + 1)D.

Lemma 1.15. If PE
f−→ PE has well-defined algebraic degree, then there exists

an α ∈ Pic(B) such that f extends to a self-map of P(E ⊕ α).

Proof. Let B
g−→ B be the self-map induced by f , let d be the algebraic degree of

f , and let s ∈H 0(PE,p∗g∗E ′⊗ (OPE(1))d) be a nonvanishing section that defines
f. PutG := E⊕α with projection PG

r−→ B. The adjunction formula implies that

OPG(PE) � OPG(1)⊗ r∗α ′. If PG
f+−→ PG extends f , then f+ has the algebraic

degree of f. We need a nonvanishing section s+ ∈H 0(PG, r∗g∗G′ ⊗ (OPG(1))d)
that extends s. Note that

r∗g∗G′ ⊗ (OPG(1))
d) � (r∗g∗E ′ ⊗ (OPG(1))

d)⊕ (OPG(PE))
d.

We show first that, for α � 0, s extends to t ∈H 0(PG, r∗g∗G′ ⊗ (OPG(1))d).
Indeed, Leray’s spectral sequence together with the projection formula give the
exact sequence
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H1(B, g∗E ′ ⊗ α ⊗ r∗((OPG(1))
d−1))−→H1(PG, r∗g∗E ′ ⊗ r∗α ⊗ (OPG(1))

d−1)

−→H 0(B, g∗E ′ ⊗ α ⊗R1r∗((OPG(1))
d−1)).

But R1r∗((OPG(1))d−1) = 0, and Serre’s asymptotic vanishing theorem implies
that H1(B, g∗E ′ ⊗ α ⊗ r∗((OPG(1))d−1)) = 0 for α � 0. It follows that H1(PG,
r∗g∗E ′ ⊗ r∗α ⊗ (OPG(1))d−1) = 0 for α � 0. The short exact sequence 0 −→
OPG(−PE) −→ OPG −→ OPE → 0 implies that the restriction map H 0(PG,
r∗g∗G′ ⊗ (OPG(1))d) −→ H 0(PE,p∗g∗E ′ ⊗ (OPE(1))d) is surjective; hence s ex-
tends to t, a section that does not vanish on PE.

Let s0 ∈ H 0(PG, OPG(PE)) be a section that vanishes precisely on PE, and de-
fine s+ := (t, s d0 ).

Theorem 1.16. Any finite self-map PE
f−→ PE with well-defined algebraic de-

gree lifts to all E ′ ⊗ α, α ∈ Pic(B).

Proof. We need to show that D(E, f ) � 0. Lemma 1.15 and parts (1) and (5) of
Proposition 1.14 imply that (r+n)D(E, f ) � 0 and (r+n+1)D(E, f ) � 0.

Remark 1.17. Let PE
p−→ B be the ruled surface with invariant 1 over an ellip-

tic curve. If PE
f−→ PE induces the identity self-map of B and has fiber-degree

greater than 1, then f does not lift to any E ′ ⊗ α, α ∈ Pic(B).

Proof. Otherwise, d − 1 would divide

deg(D(E, f )) = deg(β(E, f )) = (d − 1)/2.

1.3. Completely Invariant Sub-bundles

Given PE
f−→ PE, a subset A ⊂ PE is completely invariant if and only if

f −1(A) = A.

Lemma 1.18. For every 0 ≤ j ≤ r, fix a section sj ∈ H 0(PEm, OPEm
(Hj )) that

vanishes precisely on Hj . Assume δm �= 0 = m0 and let 0 ≤ k < r be deter-
mined by 0 = mk > mk+1. Then, for all integers d ≥ 0, H 0(PEm, dH ) is the set
of degree-d homogeneous polynomials in s0, . . . , sk.

Proof. The statement is clearly true when d = 0. It is also true when k = 0.
Indeed, otherwise let a > 0 be minimal with h0(PEm, aH0) > 1, and choose an
effective divisor aH0 �= D � aH0 so that H0 is not an irreducible component of
D. Lemma 1.8 applied to D|H0 implies that am0 ≤ am1, which contradicts m0 >

m1. To prove the general case, we use induction over k + d.

Let P(T0, . . . , Tk) be a homogeneous polynomial with P(s0, . . . , sk) = 0. Re-
stricting to H0, we get p(s1, . . . , sk) = 0, where p(T1, . . . , Tk) = P(0, T1, . . . , Tk).
The induction hypothesis implies p = 0 and so P = T0Q, where deg(Q) =
deg(P )− 1 and Q(s0, . . . , sk) = 0. By induction, Q = 0, hence P = 0.

The exact sequence 0 −→ OPEm
((d − 1)H ) −→ OPEm

(dH ) −→ OH0(dH ) −→
0 implies that h0(PEm, dH ) ≤ h0(PEm, (d − 1)H )+ h0(H0, dH |H0). By induc-
tion, h0(PEm, dH ) ≤ (

d+k
k

)
. This finishes the proof.
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For 0 ≤ k < r, define Pk := ⋂k
0 Hj ⊂ PEm.

Theorem 1.19. If mk > mk+1, then Pk is completely invariant for all finite self-
maps of PEm.

Proof. By an inductive argument, we may assume that 0 = m0 = mk. Let d be
the algebraic degree of f. With the notation of Lemma 1.18, for every 0 ≤ j ≤ k

we have that f ∗Hj is the zero-locus of Pj(s0, . . . , sk), where Pj is a homogeneous
polynomial of degree d. It is enough to show that the polynomials P0, . . . ,Pk have
no common zeros in P k. Assume that p ∈ P k is a common zero. Since f is fi-
nite, codimPEm

(f −1(Pk)) = codimPEm
(Pk) = k + 1. The set Z := {z ∈ PEm :

si(z)pj = sj(z)pi ∀0 ≤ i, j ≤ k} is defined by k equations, so codimPEm
(Z) ≤ k.

But Z ⊂ f −1(Pk), hence codimPEm
(Z) ≥ k + 1. This contradiction finishes the

proof.

Corollary 1.20. Assume that B = P1 and m0 > m1 > · · · > mr. Fix a ra-
tional function P1 g−→ P1 of algebraic degree d. The space of self-maps over g of
PEm is the complement of r + 1 hyperplanes in general position in PN, where

N = −1+
(
d + r + 1

r

)
+

r∑
0

mj

((
d + r + 1
r + 1

)
− (d + 1)

(
d + j

j

))
.

Proof. We start with B = P n, and we assume n = 1 only when calculating N.

By Theorem 1.9, any self-map PEm

f−→ PEm over g has algebraic degree d. By

Theorem 1.16, any such f comes from a self-mapE ′
m

F−→ E ′
m over g. Up to a mul-

tiplicative constant, F is uniquely determined by f.
Fix such F. Let b = [b0, . . . , bn] be the homogeneous coordinates in P n,

and define Aj = {b ∈ P n : bj �= 0} and Ak
j = Aj ∩ g−1(Ak). In E ′

m, we

have (b, t)j = (b, (bk/bj )mt)k. For all j and k, Ak
j × Cr+1 F−→ Ak × Cr+1 is

given by the formula F((b, t)j ) = (g(b),F k
j (b, t))k with F k

j ∈ O r+1(Ak
j )[t].

For an arbitrarily large integer p � 0 we have F k
j = (bjgk)

−pP k
j , where P k

j ∈
Cr+1[b, t], degb(P

k
j ) = p(1+ d), and degt(P k

j ) = d. Set P 0
0 = P = ∑

J PJ t
J,

where PJ ∈ Cr+1[b] and where the sum ranges over the nonnegative multi-
indices J ∈ Zr+1 with length |J | = d. The gluing condition becomes P k

j (b, t) =
(bj/b0)

p(gk/g0)
p+mP(b, (b0/bj )

mt) for all j, k, b, and t. This means that
(bj/b0)

p−J ·m(gk/g0)
p+mPJ ∈Cr+1[b] for all j, k, and J, where J ·m = ∑r

0 Jimi.

We may assume that p ≥ m0d. Since g0, . . . , gr have no common factor, it fol-
lows that PJ = b

p−J ·m
0 g

p+m
0 QJ with QJ ∈Cr+1[b] and deg(QJ ) = J ·m− dm,

where dm = (dm0, . . . , dmr). We get F k
j = ∑

J b
−J ·m
j gmk QJ t

J on Ak
j × Cr+1.

Write QJ = (QJ0, . . . ,QJr), with QJl ∈ C[b] and deg(QJl) = J · m − dml

for all J and l. By Theorem 1.19, QJl = 0 whenever there exists an i > l such
that Ji �= 0. Consequently, the condition F −1(ω) = ω means that QJll �= 0 for
all 0 ≤ l ≤ r, where J li = dδ li . Here, δ li denotes the Kronecker symbol.

In conclusion, we can identify F with the map it induces,

A0
0 × Cr+1 (b, t)0

F−→
(
g(b), gm0 (b)

∑
J

QJ(b)

bJ ·m0

tJ
)

0

∈A0 × Cr+1,
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where QJl ∈C[b] are indexed by 0 ≤ l ≤ r and 0 ≤ J ∈ Zl+1 with |J | = d and
also satisfy deg(QJl) = −dml +∑ l

0 Jimi and QJll �= 0.
Therefore, if l(J ) = l denotes the dimension of J ∈Zl+1, we have

N(n,m, d) =
∑
J

(
n+ J ·m− dml(J )

n

)
,

where the sum ranges over all multi-indices J with l(J ) ≤ r and |J | = d. The
formula for N(1,m, d) follows by a lengthy but straightforward calculation that
uses the identity

∑a
0

(
b+i
i

) = (
a+b+1

a

)
.

Example 1.21. Assume that B = P1, let Fn = PE(0,−n) be the Hirzebruch sur-
face with invariant n > 0, and fix a rational function P1 g−→ P1 of degree d >

0, g[x, y] = [u, v]. Any self-map Fn
f−→ Fn over g determines a polynomial

w(x, y, t) that satisfies w(0, 0,1) �= 0 and is homogeneous of degree d with re-
spect to the weights (1/n,1/n,1), so that, as a rational self-map of P2, f is given
by the formula f [x, y, z] = [un, un−1v,w(x, y, zxn−1)].

Proof. Indeed, the proof of Corollary 1.20 shows that f is given by a rational self-
mapF of P1×C2: F(x, y; t, z) = (

u, v; unx−nd t d, ∑d
0 wj x

−jnt jzd−j
)
, withwj ∈

C[x, y], deg(wj ) = nj, and w0 �= 0. As a rational self-map of P2, f [x, y, z] =[
un, un−1v,

∑d
0 wjz

d−jx(n−1)(d−j)]. We put w(x, y, t) := ∑d
0 wj(x, y)t d−j.

Example 1.22. Let X
f−→ X be a finite self-map, where X

p−→ P n is the blow-up
at a point with exceptional divisor e. Then e is completely f -invariant, and f in-
duces (through p) a regular self-map P n g−→ P n. Moreover, f can be identified
with a regular self-map of P n+1 of the form [b, bn+1] → [g(b), gn+1(b, bn+1)],
where gn+1∈C[b, bn+1] is homogeneous and gn+1(0,1) �= 0.

Proof. Since X = PE(0,−1), Theorem 1.19 implies that e is completetely invariant.
Let d be the algebraic degree of f. As in the proof of Corollary 1.20, f is given
by a rational self-map F of P n × C2:

F(b; t0, t1) =
(
g(b); t d0 ,

1

g0(b)

d∑
0

qj(b)t
j

1 b
−j
0

)
,

with qj ∈C[b], deg(qj ) = d−j, and qd �= 0. We put gn+1 := ∑d
0 qj(b)b

j

n+1.

2. Dynamics

We work from now on in the following context: E
π ′−→ B is a vector bundle, with

rank(E) = r + 1 and dim(B) = n, whose dual E ′ π−→ B is endowed with a Her-
mitian metric ‖·‖; PE

f−→ PE is a finite self-map over B
g−→ B, of fiber-degree

d ≥ 2, that is assumed to admit a lifting to E ′, E ′ \ ω F−→ E ′ \ ω. We study the
basic dynamical propeties of f , adapting to this context the methods of [3; 7; 9].
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2.1. Green Function

For r > 0, we have Br := {x ∈E ′ : ‖x‖ < r}. Put U := ∂B1. A set B ⊂ E ′ is

(a) bounded iff there exists r > 0 such that B ⊂ Br;
(b) a neighborhood of ω iff there exists r > 0 such that B ⊃ Br; and
(c) complete circular iff λx ∈B for all x ∈B and λ∈C with |λ| ≤ 1.

Put E ′ \ ω α−→ R with α := log‖F‖ − d log‖·‖ and E ′ \ ω β−→ R with β :=
log‖F‖− log‖·‖. Note that α is continuous and homogeneous of degree 0, mean-
ing that α is constant on the homogeneous lines of E ′ and hence α is bounded on
E ′ \ ω.
Lemma 2.1. There exists an r > 0 such that β ≤ −1 on Br and β ≥ 1 out-
side B1/r .

Proof. We can choose r := e−(m+1)/(d−1), where m := maxU |α|.
Definition 2.2. A := {x ∈ E ′ : limj→∞‖Fj(x)‖ = 0} is the basin of attrac-
tion of ω, and A∞ := {x ∈E ′ : limj→∞‖Fj(x)‖ = ∞} is the basin of attraction
of ∞.

The sets A and A∞ are disjoint and are completely F -invariant domains of E ′;
also, A = ⋃

j F
−jBr with r given by Lemma 2.1. Note that A is a bounded and

complete circular neighborhood of ω.

Proposition 2.3. If A ⊂ E ′ is a bounded and complete circular neighbor-

hood of ω, then there exists a unique function E ′ \ ω G−→ R with the following
properties:

(1) G− log‖·‖ is homogeneous of degree 0; and
(2) G|∂A ≡ 0.

Moreover, G− log‖·‖ is upper semi-continuous and upper bounded on E ′ \ ω.
Proof. To prove the uniqueness of G, assume that G1 and G2 both satisfy these
two properties. Then h := G1 − G2 is homogeneous of degree 0. Note that, for
every homogeneous line l in E ′, l ∩A is a nondegenerate disk centered at the ori-
gin. Since h|∂A ≡ 0, we deduce that h|l ≡ 0 for every l and hence h ≡ 0.

In order to construct G, first define E ′ \ ω r−→ (0,∞) and r(x) = sup{λ > 0 :
λx ∈ A}. It is clear that r(λx) = r(x)/|λ| for all (λ, x) ∈ C∗ × (E ′ \ ω) and
that r|∂A ≡ 1. Consequently, G := −log r satisfies properties (1) and (2) of the
proposition.

Observe that r is lower semi-continuous. Indeed, given a > 0, it follows that
r(x) > a if and only if ax ∈ A. Given x ∈ E ′ \ ω with r(x) > a, there exists
a neighborhood V of ax with V ⊂ A. Then V/a is a neighborhood of x and
a(V/a) ⊂ A, so that r > a on V/a. Therefore, G is upper semi-continuous. If
C := maxU G, then G(x)− log‖x‖ = G(x/‖x‖) ≤ C for all x ∈E ′ \ ω.
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We call G the Green function of A. Clearly, A \ ω = {x ∈ E ′ \ ω : G(x) < 0}
and ∂A = {x ∈E ′ \ ω : G(x) = 0}.

Let H be the set of points x ∈E ′ \ω with the property thatG is pluriharmonic in
a neighborhood of x, and put K := q(H). Then H = q−1(K) by Proposition 2.3.

Proposition 2.4. K contains no fiber of PE.

Proof. Assume that there exists a fiber Fb ⊂ K such that Cr+1 \ 0 = q−1(Fb) ⊂
H. The restrictionG|Cr+1\0 is pluriharmonic and hence extends to a pluriharmonic
function on Cr+1. This is not possible, since G|Cr+1\0(0) = −∞.

Proposition 2.5. K equals the set of points l with the property thatE ′ \ ω q−→ PE

admits a section defined near l, with image contained in ∂A.

Proof. Given l 0 ∈ PE with b0 := p(l 0) ∈ B, let U ⊂ B be a neighbor-
hood of b0 on which E ′ is trivial, E ′|U = U × Cr+1, so that l 0 = (b0, [T 0 ])
with [T 0 ] ∈ P r. Permuting the coordinates in Cr+1, we may assume T 0

0 �= 0
so that [T 0 ] = [1, t 0 ] ∈ P r. If A0 := {[T ] ∈ P r : T0 �= 0} = Cr, then
E ′ ∩ q−1(U ×A0) = U ×C∗ ×Cr, and E ′ ∩ q−1(U × A0)

q−→ U × A0 is given
by the formula q(b, λ, x) = (b, x/λ). In these coordinates, l 0 = (b0, t 0)∈U ×A0

and G(b, λ, x) = log|λ| + G(b,1, x/λ). Let U × C∗ × Cr L−→ C∗ be the projec-
tion on C∗, and let U × A0

s0−→ q−1(U × A0) be the local section of q given by
s0(b, t) = (b,1, t). Define U × Cr γ−→ R with γ (b, t) = G(b,1, t). Then γ =
Gs0 on U × A0 and G = log|L| + γq on q−1(U × A0). Since H = q−1(K), it
follows that l 0 ∈K if and only if γ is pluriharmonic near l 0 = (b0, t 0).

Assume that l 0 ∈K, choose φ ∈Ol0 with "φ = γ, and define near l 0 the map
s(b, t) := (b, e−φ(b,t), te−φ(b,t)). Then

qs(b, t) = (b, t) and Gs(b, t) = log|e−φ(b,t)| + γ (b, t) = 0,

meaning that s is a local section of q whose image is contained in ∂A.

Conversely, let s be a local section of q near l 0, let s(b, t) = (b, σ(b, t), tσ(b, t))
with σ ∈ O∗

l0 , and assume that Gs ≡ 0. Since Gs = log|σ| + γ, it follows that
γ = −log|σ| is pluriharmonic near l 0.

Remark 2.6. If s0 and s1 are two germs at l 0 ∈ K of local sections of q with
image in ∂A , then s0 = cs1 for some c ∈C∗ with |c| = 1.

Proof. Indeed, in local coordinates near l 0 we have si(b, t) = (b, σi(b, t), tσi(b, t)),
with σi ∈ O∗

l0 satisfying γ = −log|σi | for i ∈ {0,1}. It follows that |σ1/σ0| ≡ 1,
which implies the existence of c ∈ C∗ with |c| = 1 and so σ1 = cσ0; that is,
s1 = cs0.

We recall that, when A is the basin of attraction of ω under the action of F, the
corresponding G is called the Green function of F.

Proposition 2.7. The Green function G of a self-map E ′ \ω F−→ E ′ \ω of fiber-
degree d ≥ 2 satisfies the following properties:
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(1) G(F ) = dG;
(2) for any E ′ \ ω ν−→ R such that ν− log‖·‖ is bounded, G = limj→∞ ν(Fj )/dj

uniformly on E ′ \ ω.
Consequently, G− log‖·‖ is continuous and bounded on E ′ \ ω.
Proof. If µ := ν(F )− dν, then Lemma 2.1 implies that µ is bounded on E ′ \ ω.
Since ν(Fj )/dj = ∑j−1

0 µ(F k)/d k, there exists an E ′ \ ω Gν−→ R such that Gν =
limj→∞ ν(Fj )/dj uniformly in E ′ \ ω. Since ν − log‖·‖ is bounded, Gν = G0

with G0 = limj→∞ log‖Fj‖/dj. It follows immediately from the definition of G0

that G0(F ) = dG0. As a uniform limit of continuous functions, G0 is continuous.
For (λ, x)∈C∗ × (E ′ \ ω) we have log‖Fj(λx)‖/dj = log|λ| + log‖Fj(x)‖/dj,
so G0(λx) = log|λ| + G0(x); that is, G0 − log‖·‖ is constant on the homoge-
neous lines of E ′. By continuity, this implies that G0 − log‖·‖ is bounded.

By Proposition 2.3, it remains to show that G0|∂A ≡ 0, since this will imply
that G = G0. Fix x ∈E ′ \ω. If G0(x) > 0, then ‖Fj(x)‖ > exp[G0(x)d

j/2] for
all j � 0 and hence x ∈A∞. If G0(x) < 0, then ‖Fj(x)‖ < exp[G0(x)d

j/2] for
all j � 0 and hence x ∈A. Since ∂A∩A = ∅ and ∂A∩A∞ = ∅, it follows that
G0|∂A ≡ 0.

2.2. Fatou Set

The Fatou set F of PE
f−→ PE is the set of points l ∈PE that have a neighborhood

V ⊂ PE on which the sequence of iteratesV
f j−→ PE is a normal family. By defi-

nition, F is open in PE. It is easy to see that the Fatou set does not change when
the self-map is replaced by an iterate. The complement J = PE \ F is the Julia
set of f. Let Fg denote the Fatou set of B

g−→ B.

Proposition 2.8. F ⊂ p−1(Fg).

Proof. Fix l ∈ F with a neighborhood V on which (f j )j is a normal family. If
U ⊂ B is a sufficiently small neighborhood of b := p(l), then there exists a
local section of p, U

s−→ PE, with s(U) ⊂ V. Then (gj|U)j = (pf js)j is normal
on U.

Proposition 2.9. If E is globally generated, then F ⊂ K.

Proof. Fix l ∈ K and let (f jk )k be a subsequence of iterates of f that converges

uniformly in a compact neighborhood V̄ of l to a map V̄
φ−→ PE. Let l 0 := φ(l)

and fix x0 ∈ l 0 \ 0 ⊂ E ′ \ ω. Because E is globally generated, we can find a
w ∈ 7(B,E) with x0(w) �= 0 and put ε := |x0(w)|/‖x0‖ > 0. Define W̄ :=
{x ∈ E ′ \ ω : |x(w)|/‖x‖ ≤ ε/2}. Clearly, W̄ = q−1(q(W̄ )) and l 0 /∈ q(W̄ ).

Shrinking V̄, we may assume that φ(V̄ ) ∩ q(W̄ ) = ∅. Thus we may also assume
that f jk(V̄ ) ∩ q(W̄ ) = ∅ for all k.

Define E ′ \ ω ν−→ R with ν(x) := log max(‖x‖, 2|x(w)|/ε), so that ν(x) =
log‖x‖ on W and ν(x) = log(2|x(w)|/ε) outside W̄. The function ν − log‖·‖ is
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continuous and homogeneous of degree 0, so it is bounded on E ′ \ω. By Proposi-
tion 2.7, limk ν(F

jk )/djk = G uniformly onE ′ \ω. If x ∈ q−1(V̄ ) then qFjk(x) =
f jk(q(x)) ∈ f jk(V̄ ), so that Fjk(x) /∈ W̄. Therefore, uniformly on q−1(V̄ ), G =
limk log(2|Fjk(w)|/ε)/djk . We conclude that G is pluriharmonic on q−1(V̄ ) and
that l ∈K.
Proposition 2.10. p−1(Fg) ∩K ⊂ F.

Proof. Fix l ∈K with b := p(b) ∈Fg and fix an arbitrary subsequence (f jk )k of
iterates of f. We may assume that (gjk )k converges uniformly in a compact neigh-

borhood Ū ⊂ B of b to a map Ū
γ−→ B. Put b ′ := γ (b), fix local coordinates near

0 := b ′, and let D ⊂ B be a neighborhood of b ′, biholomorphic to the unit ball in
Cn, such that E|D is trivial. Shrinking Ū, we may assume that γ (Ū) ⊂ D/2, and
then we may assume that gjk(Ū ) ⊂ D for all k.

By Proposition 2.5, there exists a neighborhood V ⊂ PE of l and a local section

of q, V
s−→ ∂A ⊂ E ′ \ ω. Shrinking V, we may assume that p(V ) ⊂ Ū.

We see thatFjk s(V )⊂Fjk s(p−1(Ū))⊂π−1(gjk(Ū ))⊂π−1(D) andFjk s(V )⊂
Fjk(∂A) ⊂ ∂A , so that Fjk s(V ) ⊂ π−1(D) ∩ ∂A. Since π−1(D) ∩ ∂A is a
bounded set in Cn+r, Montel’s theorem implies that (Fjk s)k is a normal family.
Since f jk |V = qFjk s, there exists a sub-subsequence (f jkh)h that converges onV,
and we conclude that l ∈F.

Theorem 2.11. If E is globally generated, then F = K ∩ p−1(Fg).

Proof. This collects the results of the previous three propositions.

Example 2.12. For n > 0 and d > 1, consider the rational self-map s of P2,
[x0, x1, z]

s−→ [xnd0 , x(n−1)d
0 xd1 , zd ]. As in Example 1.21, s can be viewed as a reg-

ular self-map Fn
f−→ Fn, f((x0, x1; t, z)j ) = (xd0 , xd1 ; t d, zd)j , for j = 0,1. The

Green function of f is G((x0, x1; t, z)j ) = log max(|t |, |x0/xj |n|z|, |x1/xj |n|z|).
The mapping Fn

f−→ Fn has four Fatou components, all basins of attraction, that
are biholomorphic to the 2-disk.

From now on, we assume that E is globally generated.

Lemma 2.13. There exists a Hermitian metric ‖·‖ on E ′ such that log‖·‖ is
plurisubharmonic on E ′.

Proof. Because E is the quotient of a trivial bundle ON
B , it follows that E ′ is a

sub-bundle of ON
B . We choose ‖·‖ to be the restriction to E ′ of the trivial metric

on ON
B .

Corollary 2.14. The Green function G of F is plurisubharmonic on E ′.

Proof. By Proposition 2.7, G is the uniform limit on E ′ \ ω of the sequence
log‖Fj‖/dj, j ≥ 0. Consequently, G is plurisubharmonic on E ′ \ ω. Since
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G − log‖·‖ is continuous and bounded on E ′ \ ω, the function E ′ G−→ [−∞,∞)

is continuous; G−1(−∞) = ω, hence G is plurisubharmonic on E ′.

The following result is well known.

Lemma (Cegrell). Given a plurisubharmonic function M
h−→ [−∞,∞) on a

complex manifold M, let H be the set of points m ∈ M that possess a neigh-
borhood V ⊂ M such that h|V is pluriharmonic. If H �= ∅, then H is pseudocon-
vex in M.

Corollary 2.15. K is pseudoconvex in PE.

Proof. Fix l ∈ ∂K, and let V
s−→ E ′ \ ω be a local section of q defined in a neigh-

borhood V of l. Then H ∩ s(V ) is pseudoconvex in s(V ), so K ∩ V is pseudo-
convex in V.

Lemma 2.16. If Fg is pseudoconvex in B, then p−1(Fg) is pseudoconvex in PE.

Proof. Fix l ∈ p−1(Fg), and choose a neighborhood U ⊂ B of b := p(l) on
which E is trivial. Since Fg ∩ U is pseudoconvex in U, we deduce that
p−1(Fg) ∩ p−1(U) = (Fg ∩ U)× P r is pseudoconvex in p−1(U) = U × P r.

Theorem 2.17. If Fg is pseudoconvex in B, then F is pseudoconvex in PE. If
Fg is Stein, then F is Stein.

Proof. According to Theorem 2.11, Corollary 2.15, and Lemma 2.16, F is an in-
tersection of two pseudoconvex sets and hence is pseudoconvex.

Assume now that Fg is Stein. Since F is pseudoconvex in PE|Fg
and since, by

Proposition 2.4, F contains no fiber of PE, Brun’s result on the Levi problem in
projective bundles with a Stein basis can be applied to conclude that F is Stein.

Lemma 2.18. Let U1 and U2 be open and proper subsets of P r, with P r =
U1 ∪ U2. If U1 ∩ U2 is pseudoconvex, then r = 1.

Proof. Note first that U1 and U2 are Stein. Indeed, if x ∈ ∂U1 then x ∈U2 , so that
U1 is pseudoconvex. Fujita’s result on the Levi problem in P r implies that U1 is
Stein. Leray’s lemma implies that the cohomological dimension of P r is at most
1; that is, r = 1.

Theorem 2.19. Assume r ≥ 2. If Fg is pseudoconvex in B, then J is connected.

Proof. Assume that J is a disjoint union of proper subsets J1 and J2. By Propo-
sition 2.4, J intersects every fiber of PE and hence p(J1)∪ p(J2) = B. Since p
is a closed map and B is connected, there exists a b ∈ p(J1) ∩ p(J2). Put Ui =
Fb \ Ji for i ∈ {1, 2}. Then U1 and U2 are open and proper subsets of Fb, and
U1 ∩ U2 = Fb \ J = Fb ∩ F. Theorem 2.17 implies that U1 ∩ U2 is pseudo-
convex in Fb = P r. By Lemma 2.18, this is not possible when r ≥ 2.
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Theorem 2.20. If Fg is Kobayashi hyperbolic, then F is Kobayashi hyperbolic.

Proof. By Theorem 2.11, F = K ∩ p−1(Fg). Let F0 be a connected component
of F and fix l ∈F0. Let G denote the abstract complex manifold of germs of local
sections of q with domain in F0 and image in ∂A , endowed with the local bi-

holomorphism G Q−→ F0 and the evaluation map G e−→ ∂A ∩ q−1(F0) ⊂ E ′ \ ω.
Proposition 2.5 implies that Q is surjective, and Remark 2.6 implies that e is in-
jective. The map G may be viewed as a covering of F0 with infinitely many sheets
and indexed by the unit circle.

Let V ν−→ F0 be the universal covering of F0, and fix s0 ∈Gl := Q−1(l ). Since

Q is a local biholomorphism, any piecewise-smooth path [0,1]
γ−→ F0 with γ (0) =

l determines a local section of Q, Vγ
sγ−→ G, defined near γ with Q(sγ(l)) = s0.

Since sγ(γ (1)) depends only on the homotopy class of γ, we obtain an F0-map
V s−→ G with s[γ ] := sγ(γ (1)).

Let K be the subset of the fundamental group π(F0, l ) formed by the classes of
loops [γ ] with the property that s[γ ] = s0. In other words, [γ ]∈K if and only if
sγγ is a loop in G. Clearly, K is a subgroup of π(F0, l ) and hence defines unram-
ified coverings V ρ−→ M and M µ−→ F0 with µρ = ν. By definition of K and M,
there exists an injective map M t−→ G with tρ = s and Qt = µ.

Since E is globally generated, E ′ is a sub-bundle of a trivial vector bun-
dle, E ′ ⊂ B × CN. By Lemma 2.1 we have ∂A ⊂ B × B, where B :=
{z ∈ CN : ‖z‖ ≤ 1/r}. Therefore, ∂A ∩ q−1(F0) ⊂ ∂A ∩ π−1(Fg) ⊂ Fg × B.
Let ∂A ∩ q−1(F0)

i−→ Fg × B denote this inclusion map. As a product of hyper-
bolic manifolds, Fg ×B is hyperbolic. Since the map M iet−→ Fg × B is injective,

M is hyperbolic. Since M µ−→ F0 is a covering, F0 is hyperbolic.

Corollary 2.21. Let PE → P n be a projective bundle with nonzero discrimi-

nant, and let PE
f−→ PE be a self-map with topological degree at least 2. Then the

Fatou components of f are Stein and Kobayashi hyperbolic. When rank(E) ≥ 3,
the Julia set of f is connected.

Proof. By Theorem 1.9, such a mapping PE
f−→ PE has well-defined algebraic

degree d > 1. Let P n g−→ P n be the self-map induced by f. By Theorem 1.16, we
may assume that E is globally generated and that f lifts to E ′. Theorem 2.17 im-
plies that Fg is Stein, and then F is Stein. By Theorem 2.19, J is connected when
rank(E) ≥ 3. By Theorem 2.20, F is hyperbolic.
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