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Horocyclically Convex Univalent Functions

D. Mejía & Ch. Pommerenke

1. Introduction: Convexity and Curvature

A domain G in C is convex if and only if, for every ω ∈ ∂G, there exists a half-
plane H such that ω ∈ ∂H and G ∩ H = ∅. The fact that C = ∂H is a line can be
expressed in two equivalent ways:

(i) C is a maximal curve of zero curvature;
(ii) C is a noncompact maximal curve of constant curvature.

Now we turn to the hyperbolic metric ds = (1 − |z|2)−1|dz| in the unit disk
D. Let C : w(s), s ∈ I, be a curve of class C 2 in D that is parameterized by the
hyperbolic arc-length s; that is,

|w ′| = 1 − |w|2, w ′′ is continuous in I. (1.1)

Then the hyperbolic (= geodesic) curvature κ satisfies the differential equation

w ′′

w ′ + 2w̄w ′

1 − |w|2 = iκ. (1.2)

Let T = ∂D. If C ⊂ D is a maximal (= cannot be extended to a larger curve in
D) curve of constant hyperbolic curvature κ , then we have three cases as follows.

|κ| ≤ 2: C is a circular arc from T to T;
|κ| = 2: C is a circle in D that touches T;
|κ| > 2: C is a full circle in D.

Thus the noncompact maximal curves of constant curvature are those with |κ| ≤
2, and we see that conditions (i) and (ii) are different in the hyperbolic case.

Ma and Minda [MaM1] considered condition (i). A domain G ⊂ D is hyper-
bolically convex (h-convex) if, for every ω ∈ D ∩ ∂G, there is a hyperbolic half-
plane H with ω ∈ ∂H and G ∩ H = ∅. See, for example, [MaM2; MeP1; MeP2;
MeP3; MePV] for results on the conformal maps of D onto h-convex domains.

In this paper we shall consider condition (ii), namely, the extremal case |κ| =
2. A horocycle is, by definition, the inner domain of a circle in D that touches T.

A domain G ⊂ D will be called horocyclically convex (horo-convex) if, for every
ω ∈ D ∩ ∂G, there exists a horocycle H such that

ω ∈ ∂H and G ∩ H = ∅. (1.3)

Received May 6, 2004. Revision received March 22, 2005.
This research was supported in part by the DFG (Deutsche Forschungsgemeinschaft).

483



484 D. Mejía & Ch. Pommerenke

A horocyclically convex function f is a conformal map of D onto a horo-convex
domain G ⊂ D. It turns out that these functions are more difficult to study than
the h-convex functions.

In Section 2 we show that every horo-convex function f is continuous in D̄,
and in Section 5 we establish some sharp estimates for f(ζ) and f ′(ζ) for ζ ∈ T =
∂D. In Section 6 we study the coefficient growth.

We have not yet been able to obtain any distortion theorems—that is, estimates
for f(z) and f ′(z) for given z∈ D under the normalization f(0) = 0 and f ′(0) =
α. In the final section we list some open problems.

2. Some General Properties

It is clear that horo-convexity is Möbius-invariant: If Möb(D) is the group of all
Möbius transformations of D onto D, then

f horo-convex & σ, τ ∈ Möb(D) 
⇒ σ � f � τ horo-convex. (2.1)

As a consequence we can achieve the normalization f(0) = 0 and f ′(0) > 0.

Theorem 1. Every horocyclically convex function has a continuous extension
to D̄.

Proof. Let f be horo-convex with f(0) = 0 and let G = f(D). Let (Cn) be a
null-chain of G (see e.g. [P2, p. 29]). Let w±

n ∈ ∂G be the two endpoints of the
crosscut Cn of G. We have to show that the component Vn of G \Cn with 0 /∈Vn

satisfies diamVn → 0 as n → ∞. Since G is horo-convex there exist horocycles
Hn ⊂ D \G with w±

n ∈ ∂H ±
n if w±

n ∈ D. We may assume that w±
n → w0 ∈ ∂G.

First suppose w0 ∈ D, in which case we may assume that the H ±
n converge to

horocycles H ± as n → ∞. Then w0 ∈ ∂H ± ⊂ D \G. We construct an arc An ⊂
D \G from w−

n to w+
n as follows: We take arcs along the inner normal to ∂H ±

n at
w±

n until we meet ∂H ±; then we go along ∂H ± until we meet ∂H∓. It follows from
Janiszewski’s theorem (as in [P2, p. 2]) that Vn lies in the domain Un bounded by
An and Cn. Hence

diamVn ≤ diamUn ≤ diamAn + diamCn → 0 as n → ∞.

Next we consider the case w0 ∈ T. We begin by assuming that w+
n and w−

n are
in D. It is easy to see that H +

n ∩ H−
n = ∅ in this case. Let ρ±

n denote the Eu-
clidean radius of H ±

n and let ω±
n denote the point where ∂H ±

n touches T. Since
|w±

n − ω±
n (1 − ρ±

n )| = ρ±
n , we have

1 ≥ cos(argw±
n − argω±

n ) = 1 + |w±
n | − 2ρ±

n

2|w±
n |(1 − ρ±

n )
→ 1 (2.2)

as n → ∞, because |w±
n | → |w0| = 1 and ρn < 1

2 . It follows that ω±
n → w0.

Since H ±
n ⊂ D \ G and w±

n ∈ ∂H ±
n , we see that Vn lies in the component Un of

D \ (H̄ +
n ∪ H̄−

n ∪ Cn) with 0 /∈Un, and we conclude that

diamVn ≤ diamUn ≤ |ω+
n − ω−

n | + diamCn → 0 as n → ∞. (2.3)
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Now we assume that w+
n ∈ D and w−

n ∈ T. Then (2.2) holds for w+
n and Vn lies

in the component Un of D \(H̄ +
n ∪Cn) with 0 /∈Un. We conclude that (2.3) holds.

Finally, if w+
n ∈ T and w−

n ∈ T then diamVn ≤ diamCn → 0.

Next we show by an example that, in spite of Theorem 1, the family of all horo-
convex functions normalized by f(0) = 0 is not equicontinuous.

Let ϑn = π
6 + 1

n
, n∈ N. The two horocycles

H ±
n = {

w : |w − 2
3e

±iϑn | < 1
3

}
are disjoint and do not meet R. Let fn map D onto Gn = D \ (H̄ +

n ∪ H̄−
n ) such

that fn(0) = 0 and fn(1) = 1, and determine z±
n such that

fn(z
±
n ) = w±

n = e±i/n/
√

3 ∈ ∂H ±
n .

Since Gn contains the disk
{|w| < 1

3

}
and since fn(0) = 0, we see as in [P1,

Cor. 11.5] that

|z+
n − z−

n | ≤ c|w+
n − w−

n |1/2 → 0 (n → ∞)

for some constant c. We conclude that z+
n → 1 whereas |fn(z

+
n ) − fn(1)| ≥

1 − 1/
√

3.

3. The Canonical Example

The following function plays an important role in the theory of horo-convex func-
tions. Let 0 < λ < 1. We define

hλ(z) =
(

log
1 + eiπλz

1 + e−iπλz

)/(
2πλ − log

1 + eiπλz

1 + e−iπλz

)
. (3.1)

This function hλ is analytic in D and has a continuous extension to D̄. It is easy to
verify that

hλ : {eit : |t | < π(1 − λ)} → T \ {−1} and

hλ : {eit : π(1 − λ) < t < π(1 + λ)} → ∂Hλ\ {−1} (3.2)

are bijective maps, where Hλ is the horocycle

Hλ =
{
w :

∣∣∣∣w + 1

1 + λ

∣∣∣∣ < λ

1 + λ

}
(3.3)

and we have

hλ(1) = 1, hλ(e
±iπ(1−λ)) = −1, hλ(−1) = −1 − λ

1 + λ
. (3.4)

By the boundary principle [P2, p. 16] it follows from (3.2) and (3.3) that hλ maps
D conformally onto D \ H̄λ. Hence hλ is horo-convex.

It follows from (3.1) that

hλ(z) = sinπλ

πλ
z +

((
sinπλ

πλ

)2

− sin 2πλ

2πλ

)
z2 + · · · . (3.5)
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The inverse function is

h−1
λ (w) = p(w) − 1

eiπλ − e−πiλp(w)
with p(w) = exp

2πiλw

1 + w
. (3.6)

Now we shall prove that

min
t

|h′
λ(e

it )| = 2λ

π(1 + λ)2
cot

πλ

2
(3.7)

with equality for t = π.

If |t | ≤ π(1−λ) then hλ(e
it )∈ T, and since hλ(0) = 0 it follows from the Julia–

Wolff lemma [P2, p. 82] that |h′
λ(e

it )| ≥ 1, which is greater than the right-hand
side of (3.7).

Now let π(1 − λ) < t < π(1 + λ) and write w = hλ(e
it ). It follows from

(3.6) that
d

dw
h−1
λ (w) = 2 sinπλ

(eiπλ − e−iπλp(w))2

2πλp(w)

(1 + w)2
. (3.8)

By (3.2) we can write w = −(1 + λe2iϑ )/(1 + λ), so that

1 + w = −2iλe iϑ sinϑ

i + λ
, p(w) = −eiπλ exp[π(1 + λ) cotϑ].

Writing c = π(1 + λ)2 sin(πλ)/(2λ), we obtain from (3.8) that

c|h′
λ(e

it )| = [cosh(π(1 + λ) cotϑ) + cos(πλ)] sin2 ϑ

≥
(

1 + π2

2
(1 + λ)2

)
cos2 ϑ + cos(πλ) sin2 ϑ

≥ 1 + cos(πλ) = 2 cos2

(
πλ

2

)
,

with equality for ϑ = π
2 , and thus t = π. This implies (3.7).

4. The Argument of the Derivative

Let % be a Jordan arc or a Jordan curve of the form % = %1 ∪ · · · ∪ %n, where the
%ν (ν = 1, . . . , n) are smooth arcs from pν−1 to pν that are otherwise disjoint. Let
�(%ν) denote the change of the tangent angle along the arc %ν and let �(pν) (ν =
1, . . . , n − 1) denote the change of the tangent angle at the corner pν. Then

�(%) =
n∑

ν=1

�(%ν) +
n−1∑
ν=1

�(pν) (4.1)

is, by definition, the change of the tangent angle along %.

If % is a positively oriented Jordan curve, then

�(%) = 2π; (4.2)

see [H]. We also need the following result [J; K]; see [P2, Prop. 4.22].
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Proposition 1. Let f map D conformally onto G ⊂ C and let S be a hyper-
bolic segment in D. If D is a disk in G such that ∂D is tangent to f(S), then
D ∩ f(S) = ∅.
First we prove a theorem about general conformal maps.

Theorem 2. Let f map D conformally onto G ⊂ C and suppose that, for any
pair of points ω1,ω2 ∈ ∂G, there is a piecewise smooth Jordan arc A from ω1 to
ω2 such that

A ⊂ C \G and |�(A)| ≤ a, (4.3)

where a is a constant. If z∈ D then

|arg f ′(z) − arg f ′(0)| ≤ a + 10π, (4.4)

and log f ′ belongs to the Hardy spaces Hp (0 < p < ∞).

Proof. Let z1 = 0, z2 = z, and S = [0, z]. Furthermore, let Dj (j = 1, 2) be the
largest disk in G such that ∂Dj touches f(S) at f(zj ) from the left. Hence there
exists a ωj ∈ ∂Dj ∩∂G. Let Cj be the positively oriented arc of ∂Dj between f(zj )

and ωj . By assumption, there is a piecewise smooth Jordan arc A satisfying (4.3).
Then

% = f(S) ∪ C1 ∪ A ∪ C2

is a positively oriented Jordan curve by Proposition 1 and (4.3).
Since C1 ∪ f(S) ∪ C2 is smooth, it follows from (4.1) and (4.2) that

2π = �(f(S)) + �(C1) + �(A) + �(C2) + �(ω1) + �(ω2)

and thus, by (4.3),

|�(f(S))| ≤ |�(A)| + 10π ≤ a + 10π.

This implies (4.4) because arg f ′(z) − arg f ′(0) = �(f(S)).

It then follows from (4.4) that log f ′(z) − log f ′(0) is subordinate to the strip
mapping

g(z) = b

2
log

1 + z

1 − z
(z∈ D), where b = 4a

π
+ 40.

Since g ∈Hp, we have log f ′ ∈Hp.

5. Some Sharp Estimates

Theorem 3. Let f be horocyclically convex and let f(0) = 0. Then

|arg f ′(z) − arg f ′(0)| < 2π for z∈ D, (5.1)

and 2π cannot be replaced by a smaller constant. Furthermore,

f ′ ∈Hp for 0 < p < 1
4 . (5.2)
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Proof. Let G = f(D) and let ζ ∈ T be such that the angular derivative f ′(ζ) �=
0, ∞ exists. We assume that ω = f(ζ)∈ D. Because G is horo-convex, there is a
horocycle H ⊂ D \G with ω ∈ ∂H. Since f is isogonal [P2, p. 80] at ζ, the curve
C = {f(rζ) : 0 ≤ r ≤ 1} is normal to ∂H at ω. Let eit be the point where ∂H

touches T.

Let D0 be the largest disk in G that touches C at 0 = f(0) from the right. We
assume that D̄0 ⊂ D. Then there is a horocycle H0 that touches D0 at some point
ω0 ∈ ∂H0 ∩ ∂D0. Let eit0 be the point where ∂H0 touches T. Let %0 be the posi-
tively oriented arc of ∂H0 from eit0 to ω0 and let %1 be the negatively oriented arc
of ∂D0 from ω0 to 0; we use T to denote the positively oriented arc of T from eit

to eit0.

We now assume that H0 �= H. Let %± be the positively/negatively oriented arcs
of ∂H from ω to eit. Then

J ± = C ∪ %± ∪ T ∪ %0 ∪ %1 (5.3)

are closed piecewise smooth curves. It follows from Proposition 1 that C is dis-
joint from the rest of J ±. Hence the only possible multiple points of J ± lie on
%± ∩ %0 ⊂ ∂H ∩ ∂H0, and it is not difficult to show that either J + or J− is a
Jordan curve.

Let ϑ0, ϑ ∈ [0, 2π), denote the geometric tangent angle of C at 0 and ω. Then

�(%0 ∪ %1) = ϑ0 − t0 + 3π

2
and �(T ) = t0 − t.

For J + we have

�(%+) = t − ϑ + π, �(ω) = −π

2
, �(e it ) = 0,

whereas for J− we have

�(%−) = t − ϑ − π, �(ω) = π

2
, �(e it ) = π.

Hence it follows from (5.3) that, in both cases,

�(J ±) = ϑ0 − ϑ + 2π + �(C). (5.4)

Now J ± is a positively oriented Jordan curve for a suitable choice of the sign, and
thus �(J ±) = 2π by (4.2). Hence we obtain from (5.4) that

|arg f ′(ζ) − arg f ′(0)| = |�(C)| = |ϑ − ϑ0| ≤ 2π if f ′(ζ) �= 0, ∞ exists.
(5.5)

We have made the three assumptions that ω ∈ D, D̄0 ⊂ D, and H0 �= H. The
proof of (5.5) is similar if any one of these assumptions does not hold.

It follows from Theorem 2 that log f ′ ∈H1. Therefore we have the Poisson in-
tegral representation

arg f ′(z) = Im[log f ′(z)] = 1

2π

∫
T

1 − |z|2
|ζ − z|2 arg f ′(ζ) |dζ|.

Hence (5.1) follows from (5.5). We conclude from (5.1) that f ′ is subordinate to
the function
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g(z) = f ′(0) exp

[
4 log

1 + z

1 − z

]
= f ′(0)

(
1 + z

1 − z

)4

,

and since g ∈Hp for p < 1
4 we see that (5.2) holds.

Finally, we show that (5.1) is best possible. Let f be the function hλ defined in
(3.1), and choose ζλ ∈ T such that

π(1 − λ) < arg ζλ < 4(1 − λ) and |hλ(ζλ) + 1| < 1 − λ;
see (3.2). Then

arg ζλ → 0 and arg[ζλh
′
λ(ζλ)] → 2π as λ → 1

and thus argh′
λ(ζλ) → 2π.

Theorem 4. Let f be horocyclically convex, and let

f(0) = 0 and |f ′(0)| = sinπλ

πλ
(0 < λ < 1). (5.6)

Then
1 − λ

1 + λ
≤ |f(z)| ≤ 1 for z∈ T. (5.7)

The angular derivative exists and satisfies

2λ

π(1 + λ)2
cot

πλ

2
≤ |f ′(z)| ≤ +∞ for z∈ T. (5.8)

If f = hλ, then equality holds in all inequalities (5.7) and (5.8) for suitable z∈ T.

Because f(D) ⊂ D we have 0 < |f ′(0)| ≤ 1, so we can choose λ such that (5.6)
holds except in the trivial case f(z) ≡ eiϑz. We have log f ′ ∈ H1 by Theorem 3.
Hence it follows from (5.8) that

|f ′(z)| > 2λ

π(1 + λ)2
cot

πλ

2
for z∈ D.

Proof of Theorem 4. Let z ∈ T. First we assume that f(z) ∈ D. Then there exists
a horocycle Hµ (see (4.3)) such that

e−iϑf(z)∈ ∂Hµ and (e iϑHµ) ∩ f(D) = ∅. (5.9)

Hence we can write (see (3.5))

f = e−iϑhµ � g with g(D) ⊂ D, g(0) = 0. (5.10)

It follows from Schwarz’s lemma and (5.6) that

sinπλ

πλ
= |f ′(0)| ≤ |h′

µ(0)| = sinπµ

πµ
.

Hence λ ≥ µ and it follows from (5.9) that |f(z)| ≥ (1 − µ)/(1 + µ) ≥
(1 − λ)/(1 + λ). The upper estimate (5.7) is trivial.

We see from (5.9) that the angular derivative exists and satisfies 0 < |f ′(z)| ≤
+∞ (see e.g. [P2, p. 83]). Differentiating (5.10) then yields
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|f ′(z)| = |h′
µ(g(z))||g ′(z)|.

Since g(z) ∈ T by (5.9) and (5.10), it follows from (5.10) and the Julia–Wolff
lemma [P2, p. 82] that |g ′(z)| ≥ 1. Hence

|f ′(z)| ≥ |h′
µ(g(z))| ≥ 2µ cot(πµ/2)

π(1 + µ)2
≥ 2λ cot(πλ/2)

π(1 + λ)2
(5.11)

by (3.7) and because λ ≥ µ.

Next we assume that f(z)∈ T. Since f(0) = 0 it follows from the Julia–Wolff
lemma that the angular derivative exists and satisfies

+∞ ≥ |f ′(z)| ≥ 1 >
2λ cot(πλ/2)

π(1 + λ)2
.

Finally, let f = hλ. By (3.2), equality holds in (5.7) for both z = −1 and z =
1, and by (3.7) and (3.8), respectively, equality holds in (5.8) for both z = −1 and
z = −eiπλ.

If f is a conformal map of D onto any bounded domain G, then by the Koebe “one
quarter” theorem we have

|f ′(z)| ≤ 4

1 − |z|2 dist(f(z), ∂G) = o

(
1

1 − |z|
)

as |z| → 1.

Now we show that this trivial estimate is best possible even for the class of horo-
convex functions.

Theorem 5. For any positive function η(x) (0 ≤ x < 1) with η(x) → 0
(x → 1), there exists a horocyclically convex function f and a sequence (xk) with
xk → 1 (k → ∞) such that

|f ′(xk)| ≥ η(xk)

1 − xk

for all k. (5.12)

Proof. We shall recursively construct horo-convex functions fn (n = 1, 2, . . . )
such that

fn(D ∩ R) = D ∩ R and {z∈ D : |z − 1| < ρn} ⊂ fn(D) (5.13)

for some ρn > 0; we shall also construct numbers xn ∈ (
1 − 1

n
,1

)
such that

(1 − xk)f
′
n(xk) >

(
1 + 1

n

)
η(xk) for k = 1, . . . , n. (5.14)

We start with f1(z) ≡ z and x1 sufficiently close to 1. Suppose that fk and xk

have already been constructed for k ≤ n and consider the horocycles

H ±
n = H ±

n (ε, δ) = {|z − (1 − δ)e±iε±iπδ/2| < δ},
where 0 < ε < δ < ρn/5. Then D ∩ H̄ ±

n ⊂ fn(D) by (5.13). Let ϕn(z) =
ϕn(z, ε, δ) map D conformally onto fn(D) \ (H̄ +

n ∪ H̄−
n ) such that ϕn(0) = 0 and

ϕn(1) = 1. Then ϕn is horo-convex. If 0 < ε < δ → 0, then ϕn(z, δ, ε) → fn(z)

locally uniformly by the Carathéodory kernel theorem [P2, p. 14]. Hence we can
choose δn sufficiently small that
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(1 − xk)ϕ
′
n(xk , ε, δn) >

(
1 + 1

n + 1

)
η(xk) (k = 1, . . . , n) (5.15)

for 0 < ε < δn; see (5.14).
We can find un ∈ (0,1) and vn > 0 independent of ε such that

dist(H ±
n (ε, δn), un) > vn and dist(T, un) > vn. (5.16)

Let ξn(ε) be determined by ϕn(ξn(ε), ε, δn) = un. Then ξn(ε) → 1 as ε → 0 by
the Carathéodory kernel theorem. Hence there exist εn ∈ (0, δn) such that

η(xn+1) <
vn

4
, where xn+1 = ξn(εn) > 1 − 1

n + 1
.

We define fn+1(z) = ϕn(z, εn, δn) for z∈ D. Then

(1 − xn+1)f
′
n(xn+1) >

1

2
dist(fn(xn+1), ∂fn+1(D))

>
1

2
vn > 2η(xn+1) >

(
1 + 1

n + 1

)
η(xn+1)

by (5.15). Together with (5.16) this shows that (5.14) is true for n+1 instead of n,
and (5.13) for n + 1 holds by our construction.

This completes our construction. Now we let n → ∞. Then f = limn→∞ fn

exists locally uniformly in D, and f is again horo-convex. It follows from (5.14)
that (5.12) is satisfied.

6. Coefficient Estimates

Now we consider the Taylor expansion of the conformal map

f(z) =
∞∑
n=0

anz
n

of D onto G. Let ; denote the Euclidean length. If ;(∂G) < ∞ then f ′ ∈H1 by
the Riesz–Privalov theorem [P2, p. 134] and thus an = o(1/n).

It is not difficult to construct a horo-convex domain G of the form

G = D

∖ ∞⋃
n=1

kn⋃
k=1

H̄nk , diamHnk = 1

kn

(k = 1, . . . , kn), (6.1)

where all the horocycles Hnk (k = 1, . . . , kn; n = 1, 2, . . . ) have disjoint closures.
Then ;(∂G) = ∞ and thus f ′ /∈ H1. But we do not yet have an example of a
horo-convex function with an �= o(1/n).

Theorem 6. If f is horocyclically convex then

|an| < c log n

n
for n = 2, 3, . . . , (6.2)

where the constant c depends only on a0.
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The proof is based on the following purely geometrical result, which may well be
known. Note that inequality (6.4) is linear whereas the isoperimetric inequality is
quadratic.

Proposition 2. Let H be a bounded open set in C of the form

H =
m⋃

n=1

Dn, (6.3)

where the Dn are disks of radius ≥ r > 0. Then

areaH ≥ r

2
;(∂H ). (6.4)

Proof. Let

Hn =
n⋃

ν=1

Dν (n = 0, . . . ,m) (6.5)

and
bn = π−1 areaHn, =n = (2π)−1;(∂Hn), (6.6)

and let rn be the radius of Dn. Now Hn−1 ∩ ∂Dn consists of finitely many arcs
Ank on ∂Dn (possibly none). Let Unk be the component of Dn ∩Hn−1 with Ank ⊂
∂Unk , and define λnk by

2πλnk = ;(∂Unk) = ;(Ank) + ;(Dn ∩ ∂Unk). (6.7)

By (6.5) we have

areaHn = areaHn−1 + areaDn − area(Dn ∩ Hn−1)

and

;(∂Hn) = ;(∂Hn−1) −
∑
k

;(Dn ∩ ∂Unk) + ;(∂Dn) −
∑
k

;(Ank),

and thus by (6.6) and (6.7) we have

bn = bn−1 + r 2
n − 1

π

∑
k

areaUnk , (6.8)

=n = =n−1 + rn −
∑
k

λnk. (6.9)

Now 4π areaUnk ≤ ;(∂Unk)
2 by the isoperimetric inequality [BuZ, p. 69] and

therefore, by (6.7) and (6.8),

bn ≥ bn−1 + r 2
n −

∑
k

λ2
nk
. (6.10)

With xn = =n − =n−1 ∈ R, we obtain from (6.9) that∑
k

λnk = rn − xn and max
k

λnk ≤ rn − xn; (6.11)
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hence, by (6.10),

bn − bn−1 ≥ r 2
n − (rn − xn)

2 = (2rn − xn)xn.

We always have bn − bn−1 ≥ 0 by (6.5) and (6.6). Since b0 = 0, it follows that

bm ≥
m∑ ′

n=1

(2rn − xn)xn ≥
m∑ ′

n=1

rnxn,

where we sum only over the indices n with xn > 0; note that xn ≤ rn by (6.11).
By assumption we have rn ≥ r and so

bm ≥ r

m∑ ′

n=1

xn ≥ r

m∑
n=1

xn = r=m,

which by (6.6) yields our assertion.

Proof of Theorem 6. Let a = |a0| and m = [log(1 − a)−1] + 1. Let the sequence
(wν) be dense in ∂G. Since G is horo-convex, there is a horocycle Hν ⊂ D \G

with wν ∈ ∂Hν. For N = 1, 2, . . . let

fN(z) =
∞∑
n=0

aN,nz
n

be the conformal map of D onto

D

∖ N⋃
ν=1

Hν (6.12)

with fN(0) = f(0) = a0 and arg f ′
N(0) = arg f ′(0). By the Carathéodory kernel

theorem, the functions fN converge to f locally uniformly in D as N → ∞. It fol-
lows that aN,n → an for fixed n. Hence we may assume that G has the form (6.12).

For k ≥ m, let Gk be the component of G ∩ {|w| < 1 − e−k} with a0 = f(0)∈
G. We define Uj as the union of all the horocycles H ⊂ D \G that touch ∂G and
satisfy e−j < diamH ≤ e−j+1, where j = 0,1, . . . , k. Then

areaUj ≤ area{1 − e−j+1 < |w| < 1} ≤ 2πe−j+1

and therefore, by Proposition 2,

;(∂Uj ) ≤ 4(areaUj)

inf(diamH )
≤ 8πe (6.13)

because diamH > e−j. Furthermore,

∂Gk ⊂ {|w| = 1 − e−k} ∪
k⋃

j=1

∂Uj .

Hence we conclude from (6.13) that

;(∂Gk) ≤ 2π + 8πek < 80k for k ≥ m. (6.14)
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Now let n > em. We determine k > m such that ek−1 ≤ n < ek. Then Ck =
f −1(∂Gk) is a Jordan curve in D̄ around 0 and therefore

nan = 1

2πi

∫
Ck

f ′(z)
zn

dz. (6.15)

If z∈ D ∩ Ck , then
f(z)∈ ∂Gk ⊂ {|w| = 1 − e−k}

and thus, with a = |f(0)|,
1 − e−k ≤ |f(z)| ≤ a + |z|

1 + a|z|
because f(D) ⊂ D. Since 1 − a ≥ e−m, it follows that

|z| ≥ 1 − e−k − a

1 − a(1 − e−k )
≥ e−m − e−k

e−m + e−k
≥ 1 − 2em−k,

and this holds trivially if z∈ T. Hence we conclude from (6.15) that

2πn|an| ≤ (1 − 2em−k )−n

∫
Ck

|f ′(z)| |dz|

≤ (1 − 2em−k )−ek

;(∂Gk).

With constants c1, c2 , c3 depending only on m and thus on a0, it follows from
(6.13) that

n|an| ≤ c1;(∂Gk) ≤ c2k ≤ c3 log n.

7. Some Open Problems

1. Internal characterization. Our definition of horo-convexity is in terms of
supporting horocycles. It is reasonable to conjecture that a domain G ⊂ C is
horocyclically convex if and only if every pair of points can be connected by a
curve C ⊂ G of class C 2 with hyperbolic curvature |κ| < 2. We want to thank
Dirk Ferus and Ekkehard Tjaden for our discussions about this problem.

2. Analytic characterization. Now suppose that ∂G is a Jordan curve of class
C3 in D. If f maps D conformally onto G, then f ′′ is continuous in D̄ and f ′(z) �=
0 for z∈ D̄. The hyperbolic curvature of ∂G is given by

κ(z) = 1 − |f(z)|2
|z f ′(z)| Re

(
1 + z

f ′′(z)
f ′(z)

+ 2zf ′(z)f(z)
1 − |f(z)|2

)
(z∈ T). (7.1)

The horocycle H ⊂ D \ G that touches ∂G at f(z) has h-curvature −2, and it
follows that κ(z) ≥ −2 for z∈ T.

Now let G be any domain in D. We ask if the following statement is true: G is
horo-convex if and only if

Re

(
1 + z

f ′′(z)
f(z)

+ 2zf ′(z)f(z) + 2|zf ′(z)|
1 − |f(z)|2

)
> 0 for z∈ D. (7.2)
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A closely related question is whether {f(rz) : |z| < 1} is also horo-convex for
0 < r < 1.

3. Interior estimates. In Theorems 3 and 4, we have several sharp bounds for
z∈ T but none for z∈ D. We can always achieve the normalization

f(z) = αz + a2z
2 + a3z

3 + · · · , 0 < α ≤ 1. (7.3)

What are the sharp bounds for |f(z)| and |f ′(z)| for z ∈ D? These are known
for hyperbolically convex functions [MaM1] and related quantities [MeP2]. An-
other quantity of interest, because of its invariance properties, is the Schwarzian
derivative. Barnard and colleagues [BCPW] have recently proved the conjecture
of [MeP2] that

sup
z∈D

(1 − |z|2)2|Sf (z)| = 2.38 . . .

is the sharp bound for the class of h-convex functions.

4. Coefficient estimates. Let f be horo-convex and normalized as in (7.3). In
view of the invariance property (2.1), estimates of a2 and a3 in terms of α lead, for
instance, to estimates of Sf (z) for z ∈ D. It would be interesting to determine the
growth of

max{|an| : f(z) = αz + · · · horo-convex}
as n → ∞, and of related quantities. In particular, is (6.2) a good estimate?

If f(D) is given by (6.1) then f ′ /∈ H1. Is it true that f ′ ∈ Hp for all p < 1?
Compare Theorem 3. The proof of Theorem 6 suggests that∫ 2π

0
|f ′(re it )| dt = O

(
log

1

1 − r

)
as r → 1

might perhaps be true.
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