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On Orientability and Degree of Fredholm Maps

Shuguang Wang

1. Introduction

The degree of a map between two manifolds has played important roles in various
mathematical areas. Certain orientability is always required in order to make sense
of the concept of degree. In the case of finite-dimensional nonorientable manifolds,
this goes back to Hopf, Olum, and Steenrod, after Brouwer’s pioneering work on
orientable manifolds (cf. [9] and references therein). Elworthy and Tromba [4] took
the first study in the case of infinite-dimensional Banach manifolds, where they
introduced the degree on orientable Fredholm manifolds. This orientability restric-
tion on manifolds is, however, often too severe and unnatural. It was Fitzpatrick,
Pejsachowicz, and Rabier [6] who pointed out explicitly that the only requirement
was the orientability of maps involved rather than that of manifolds. (The finite-
dimensional version was in Olum’s work.) Their approach is based on the concept
of parity of paths, which makes it particularly useful in problems dealing with
crossing singular strata. Indeed this is often the only practical way to check the
orientability of a map. More recently, Benevieri and Furi [1] took another approach
to orienting Fredholm maps that is conceptually more clear and seems more natu-
ral, since it comes directly from pointwise orientations of all Fredholm operators.

The approach taken in this paper has a more geometric flavor and also provides
an instance where geometry and analysis interact nicely. The use of a determinant
line bundle that arises from geometry links conveniently the notions of Benevieri–
Furi and Fitzpatrick–Pejsachowicz–Rabier. In fact, many properties in [1], [2], and
[6] become much easier to understand through our new approach. Conversely, the
geometric approach allows us to apply functional analysis tools to some problems
in gauge theory involving a real structure, where the relevant manifolds are often
nonorientable or with no natural orientation, hence making it necessary to orient
relevant maps instead. More details will appear in [10].

2. Fredholm Operator Families

We first consider orientability for families of Fredholm operators. To motivate
the definition, we start with the case of a finite-dimensional manifold. Here ori-
entability of the manifold can be characterized as the triviality of the orientation
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line bundle, namely the determinant of the tangent bundle of the manifold. To any
smooth map, one can also associate the determinant bundle. Indeed this can be
carried out for any Fredholm map between two Banach manifolds, which we now
review.

Let � be a topological space and let E,F be Banach spaces. We use �n(E,F )
to denote the set of index-n Fredholm operators with the usual norm topology.
Consider a continuous family of operators parameterized by �—namely, a con-
tinuous map h : � → �n(E,F ).

The dimensions dim kerh(λ) and cokerh(λ) can jump at points in �; hence
kerh and cokerh in general do not form vector bundles over �, although indh =
kerh−cokerh can be viewed as a virtual bundle in theK-theoryKO(�). However,
using some elementary algebra involving exact sequences, one can show that the
determinant

det indh = ∧max kerh⊗ (∧max cokerh)∗

is a continuous line bundle on�, where the maximum wedge product ∧max kerh =
∧dim kerh kerh and where the ∗ signifies the dual space. Since the construction will
be used afterwards, let us sketch the argument; the interested reader can check [3,
Chap. 5] for more details.

It suffices to show that det indh is a continuous line bundle locally. At any point
λ0 ∈�, since dim cokerh(λ0) < ∞ and since surjective operators form an open
set, it is possible to find a neighborhood U of λ0, a vector space V of a finite di-
mension N ≥ dim cokerh(λ), and a linear map ϕ : V → F such that ϕ stabilizes
h on U ; namely, h⊕ ϕ : E ⊕V → F is surjective on U. Thus ker(h⊕ ϕ) → U

is a vector bundle of rank indh+N, and there exists a canonical isomorphism

µ : det indh ≈ ∧max ker(h⊕ ϕ)⊗ (∧maxV )∗ (1)

on U that induces a continuous line bundle structure on the left side over U. As an
elementary algebraic result, the isomorphism (1) in turn follows from the canoni-
cal isomorphism

∧max kerh⊗ ∧maxV ≈ ∧max ker(h⊕ ϕ)⊗ ∧max cokerh,

which is associated with the exact sequence

0 −→ kerh −→ ker(h⊕ ϕ) −→ V
ϕ−→ cokerh −→ 0. (2)

(That is, collect even and odd terms together and then take the tensor product for
each group.)

Remark. In order to glue together the line bundles on two different open sets
U,U ′, one must choose consistently the parity of the dimensions N,N ′, an over-
looked requirement that was recently pointed out by Froyshov [7]. (Of course,
one can always increase the value ofN by any integer.) Precisely, let ϕ ′ : V ′ → F

be a second map satisfying a similar condition as ϕ. Then, as shown in [7], the
transition function µ′ � µ−1 on U ∩ U ′ is (−1)(N+N ′ ) dim kerh up to a continuous
factor. Since dim kerh(λ) mod 2 is not a local constant in general, one needs to
impose N + N ′ ≡ 0 mod 2 to guarantee the continuity of µ′ � µ−1. Using either
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even- or odd-dimensional vector spaces V throughout the stabilizing, one obtains
two continuous determinant bundles, which are then naturally isomorphic via the
homeomorphism of fiberwise multiplication by (−1)dim kerh(x). For certainty, we
will work with even parity in this paper. (According to the referee, there is an-
other approach to the topology of det indh that is included in a forthcoming book
by P. Kronheimer and T. Mrowka.)

Note that when h is an isomorphism (i.e., when kerh = cokerh = R0 = {0}),
one should apply the convention that ∧maxR0 equals R canonically, as is required
in the foregoing argument.

We now concentrate on the case of index-0 Fredholm operators for the consid-
eration of degree. Given that the determinant line bundle characterizes the ori-
entability of a finite-dimensional manifold, it seems natural to make the following
definition.

Definition. Let h : � → �0(E,F ) be a continuous family of index-0 Fred-
holm operators. We say h is ∗-orientable (for lack of better terminology) if the
determinant line bundle det indh is orientable. If orientable, a ∗-orientation of h
is that of det indh.

In other words, h is ∗-orientable if and only if det indh is trivial or, equivalently, iff
the bundle has a nowhere vanishing section (i.e., a trivilization). A ∗-orientation
is then an equivalence class of trivilizations in which any two differ by a factor of
a positive function.

Note that our definition is not redundant, since the entire family�0(E,F ) is not
orientable in general—for example, whenE,F are infinite-dimensional separable
Hilbert spaces (by a well-known result of Kuiper).

It turns out that our formulation is closely related to that of Benevieri and Furi
[1]. The definition of their orientation is recalled here for the reader’s convenience.
Consider a Fredholm operator L ∈�0(E,F ). A corrector A : E → F of L is by
definition a finite-rank operator; that is, dim ImA < ∞ such that L+A : E → F

is an isomorphic operator (equivalently L + A is surjective, since its index is 0).
Denote the set of all correctors by C(L), and let A′ ∈ C(L) be another corrector.
Consider the following automorphism on F :

T := (L+ A)(L+ A′)−1

= (L+ A′ + A− A′)(L+ A′)−1

= I + (A− A′)(L+ A′)−1.

Clearly S := (A − A′)(L + A′)−1 has a finite rank, which implies that det T is
well-defined. (Indeed, det T = det(T |Im S : Im S → Im S).) Then an equivalence
relation can be defined on C(L) as A ∼ A′ if det T = det(L + A)(L + A′)−1 >

0. A Benevieri–Furi orientation α(L) of L is then just one of the two equivalence
classes in C(L)/∼, and each corrector in the chosen class is called a positive correc-
tor of the Benevieri–Furi orientation. In particular, if L is already an isomorphic
operator then it carries a canonical Benevieri–Furi orientation represented by the
trivial corrector A = 0.
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Given a continuous family h : � → �0(E,F ), we call h Benevieri–Furi ori-
entable if h carries a Benevieri–Furi orientation—namely, a continuous choice of
orientations α(λ) of h(λ) for λ ∈�. Continuous choice means that α can be rep-
resented by the same corrector locally; equivalently, any positive corrector of α at
a point is a positive corrector of α in a neighborhood of the point. Again, as sur-
jective operators form an open set, h is always locally Benevieri–Furi orientable.

The proof of the next theorem will require a slight extension of the previous
constructions to the bundle versions. A continuous family h : � → �n(E,F ) can
be viewed as a continuous homomorphism h : E → F between the trivial vec-
tor bundles. In general, we can consider a continuous Fredholm homomorphism
h : Ẽ → F̃ between two bundles of Banach fibers over �. Then the determi-
nant bundle det indh can be topologized locally using a bundle homomorphism
ϕ : Ṽ → F̃ over U, where Ṽ is a vector bundle of a finite (even) rank such that
h⊕ ϕ : Ẽ ⊕ Ṽ → F̃ is surjective fiberwise on U. Then det indh inherits a topol-
ogy using a canonical isomorphism similar to (1):

µ : det indh ≈ ∧max ker(h⊕ ϕ)⊗ (∧maxṼ )∗.

Analogously, the bundle homomorphism h with index n = 0 is said to have a
Benevieri–Furi orientation α(λ) if locally there is a continuous bundle homomor-
phism A : Ẽ → F̃ on U with a fiberwise finite rank such that h+ A : Ẽ → F̃ is
an isomorphism on U and A(λ)∈ α(λ) for all λ∈U.
Theorem 1. Suppose � is a locally connected topological space. Then a con-
tinuous family h : � → �0(E,F ) is ∗-orientable if and only if it is orientable in
the sense of Benevieri–Furi. Moreover, if h is orientable then there is a canonical
correspondence between the two orientation sets.

Proof. We first establish the canonical (algebraic) correspondence between the
pointwise orientations in the two setups. Set L = h(λ0) at a point λ0 ∈ � and
let α ∈ C(L)/∼ be a Benevieri–Furi orientation class of L. We intend to assign a
unique orientation class α̃ of the fiber det indh(λ0) = ∧max kerL⊗(∧max cokerL)∗
of the determinant bundle. The idea is to use a finite-dimensional reduction in the
Benevieri–Furi theory that parallels the finite-dimensional stabilizing spaces in
the definition of determinant bundles.

Choose an even-dimensional vector space F1 so that F = ImL+F1. Let E1 =
L−1(F1). Then L restricts to an index-0 operator L1 : E1 → F1 and, in particular,
dimE1 = dimF1 is finite. Choose any vector spaceE0 so thatE = E0⊕E1, and let
F0 = L(E0). ThenL restricts to an isomorphismL0 : E0 → F0 and F = F0 ⊕F1.

Moreover L = L0 ⊕ L1, kerL = kerL1, and cokerL = cokerL1 naturally (and
independent of the choice of E0). Therefore we have a natural isomorphism

det indL = det indL1. (3)

Any correctorA1 : E1 → F1 ofL1 yields a correctorA = 0⊕A1 : E → F ofL.
Further, two correctors A1,A′

1 are equivalent if and only if A,A′ are equivalent.
Hence there is a canonical one-to-one correspondence between the Benevieri–Furi
orientation classes of L1 and L.
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Choose a corrector A1 of L1 that is compatible with α, namely, such that A =
0 ⊕ A1 ∈ α. (So A1 represents the orientation class α1 of L1 that corresponds
to α.) Now the isomorphism K := L1 + A1 : E1 → F1 gives an isomorphism
∧K : ∧maxE1 → ∧maxF1 and hence a nonzero vector in (∧maxE1)

∗ ⊗ ∧maxF1, the
last being a 1-dimensional space. We can therefore take the dual vector s of ∧K
in ∧maxE1 ⊗ (∧maxF1)

∗. The exact sequence

0 −→ kerL1 −→ E1
L1−→ F1 −→ cokerL1 −→ 0 (4)

yields a canonical isomorphism det indL1 = ∧maxE1 ⊗ (∧maxF1)
∗. Combining this

with (3) gives det indL = ∧maxE1 ⊗ (∧maxF1)
∗. Hence we have a well-defined

nonzero vector s ∈ det indL. Define α̃ = [s] to be the orientation class of the fiber
det indL associated to the Benevieri–Furi orientation class α.

We need to check that α̃ is independent of all choices made in the process. Inde-
pendence ofA1: IfA′

1 ∼ A1 is another corrector, then (∧K)−1 � (∧K ′) : ∧maxE1 →
∧maxE1 is equal to det[(L1+A1)

−1(L1+A′
1)], which is positive. Hence [s] = [s ′ ].

Independence of E0: the choice of E0 only affects A up to equivalence, hence not
the class [s]. Independence of F1: Suppose F ′

1 is another even-dimensional vec-
tor space satisfying F = ImL + F ′

1. We can assume F ′
1 ⊃ F1 without loss of

generality. Define E ′
1 = L−1(F ′

1 ) and L′
1 : E ′

1 → F ′
1, similar to E1 and L1. Since

ImL + F ′
1 = ImL + F1 it is easy to see that F ′

1 = ImL′
1 + F1. Replace F by

F ′
1 and L by L′

1 and repeat the foregoing construction. Then a corrector A1 of
L1 yields a corrector A′

1 of L′
1, and A1 is compatible with α if and only if A′

1 is
compatible with α. Furthermore, the nonzero vector s ′ ∈ ∧maxE ′

1 ⊗ (∧maxF ′
1 )

∗ as-
sociated to A′

1 is the vector s ∈ ∧maxE1 ⊗ (∧maxF1)
∗, after both vector spaces are

naturally identified with det indL. (Recall that the corrector 0 should correspond
to the vector 1 in the determinant fiber of the isomorphism L′

0.)

One sees that −α corresponds to −α̃ by reversingA1. Thus we have established
a one-to-one correspondence between the orientation classes of L and det indL.

Next we consider the topological part. Suppose h is Benevieri–Furi orientable
with continuous orientation α(λ), λ∈�. We intend to show det indh is orientable
by showing that α̃(λ) is continuous (i.e., locally represented by continuous sec-
tions). We continue with the preceding construction. In a neighborhood U of λ0,
F = Imh(λ) + F1 continues to hold for a fixed F1. So we have the similar de-
compositions E = E0(λ)⊕ E1(λ), F = F0(λ)⊕ F1, and h(λ) = h0(λ)⊕ h1(λ).

By continuity of α(λ) it follows thatA = 0 ⊕A1 : E → F is in α(λ) for all λ∈U.
Note that dimE1(λ) = dimF1 is constant (and even), so Ẽ1 = E1(λ) → U gives
a subbundle of E on U. Moreover, the natural bundle isomorphism

∧Ẽ1 ⊗ (∧F1)
∗ → det indh1 = det indh (5)

arising from (3) and (4) is continuous onU, since dimF1 is even and since det indh
has been given the even-parity topology throughout this paper.

Consider the bundle homomorphism h1(λ) : Ẽ1 → (U × F1) once more. Here
we need to use the bundle version of the Benevieri–Furi theory outlined previ-
ously. ExtendA1(λ0) = A1 to a continuous bundle homomorphismA1(λ) : Ẽ1 →
(U × F1) over U. Then A(λ) = 0 ⊕A1(λ) : E → F is a continuous family of
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correctors of h(λ) on U. By definition, A(λ) represents α(λ) at λ0 and hence (by
continuity of α) should represent α on U. Thus A1(λ) represents the orientation
α1(λ) onU. The bundle isomorphism h1(λ)+A1(λ) : Ẽ1 → (U×F1) yields a con-
tinuous section s = s(λ) of det indh onU via the isomorphism (5). SinceA1(λ)∈
α1(λ), s(λ) represents α̃(λ) on U by definition of α̃. Thus α̃ is represented locally
by a continuous section at each point λ0 and, as a consequence, the determinant
bundle det indh is orientable on �.

Conversely, suppose det indh is orientable and we are given a family of fiber-
wise orientations α̃ that is locally represented by continuous sections of det indh.
We need to show that the corresponding pointwise-defined Benevieri–Furi orien-
tation α is continuous. Take any point λ0 and a neighborhood U. One can as-
sume U is connected since� is locally connected. Since h is locally orientable in
Benevieri–Furi and ∗ senses both, we have exactly two continuous orientations:
β ′,β ′′ for Benevieri–Furi and β̃ ′, β̃ ′′ for ∗, both on U. By the argument in the pre-
ceding paragraph, one must match the two pairs entirely on U under the algebraic
correspondence introduced before: say, β ′ matches β̃ ′ and β ′′ matches β̃ ′′. Now α̃
becomes one of β̃ ′, β̃ ′′ entirely on U by continuity of α̃. Hence α must be one of
β ′,β ′′ also on U, since it corresponds to α̃. Therefore α is continuous on U (i.e.,
locally at each point λ0) and consequently on � as well.

(The topological part of the proof is essentially to compare the orientability/
orientations of the determinant bundle and the associated principal Z2-bundle
that is defined using the pointwise Benevieri–Furi orientations. See the remark at
the end of this section.)

Let Rh ⊂ � be the set of regular points of h, in other words, those points
where cokerh = 0. Combining this with Benevieri–Furi’s result [2] then yields
the equivalence of all three notions of orientability, but under some conditions.

Corollary 2. Suppose that the family h : � → �0(E,F ) is nondegenerate
(namely, Rh is nonempty) and that � is connected and locally path connected.
Then the following are equivalent:

(i) h is orientable in the Fitzpatrick–Pejsachowicz–Rabier sense;
(ii) h is orientable in the Benevieri–Furi sense;

(iii) h is ∗-orientable.

Moreover, orientation in any one case induces canonically orientations in the
other two cases.

Proof. The equivalence (i) ⇔ (ii) is proved in [2]. Alternatively, one can prove
(i) ⇔ (iii) as in the ensuing discussion.

The equivalence (ii) ⇔ (iii) and the rest of the corollary is a special case of
Theorem 1.

We now illustrate why the ∗-orientability provides a convenient way to explain
some of the important features in both [6] and [1], thus making it a useful link be-
tween the two notions. As cited in the beginning, the key feature of the Fitzpatrick–
Pejsachowicz–Rabier approach is the introduction of the parity of a path in �,
which involves the Leray–Schauder degree possessing a mod 2 value. In terms of
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our new setup, this parity can be defined using the determinant bundle as follows.
Given a path γ : [0,1] → �, the bundle det indh restricts trivially on γ. Any triv-
ilization defines a bijection (orientation transport) between the orientation sets of
the fibers of det indh over γ (0) and γ (1), which in the end is independent of the
trivilization used. If γ (0) and γ (1) are regular points of h, then the fibers over them
are canonically oriented and the bijection just defined is essentially a value in Z2 ,
which is equal to the Fitzpatrick–Pejsachowicz–Rabier (FPR) parity along γ (cf.
[6, Prop. 1.5]). Putting it differently, we have given a geometric interpretation of
the Leray–Schauder degree in the current context. This is interesting because the
Leray–Schauder degree is defined using the eigenvalues of some linear operators,
which is purely a functional analytic object.

Incidentally, these remarks show the equivalence between (i) and (iii) in Corol-
lary 2. We continue to assume that h is nondegenerate. Then h is FPR-orientable
if and only if the parity of any loop at a regular point λ0 ∈ Rh equals 1 (by [6,
Prop. 1.7]). The latter in turn is equivalent to stating that the orientation transport
is trivial over any loop at λ0, which means exactly that the determinant bundle
det indh is trivial.

As for the Benevieri–Furi approach, it is pointed out in [1] that the crucial
property is the stability of their orientation. Namely, for a homotopy class of
Fredholm families, H : � × [0,1] → �0(E,F ), the orientability of any section
Ht : �× {t} → �0(E,F ) for some t implies the orientability of the entire homo-
topy class H (see [2, Thm. 3.14]). This property can be interpreted and verified
easily using ∗-orientability: IfHt is orientable, then the bundle det indHt is trivial
on�×{t}. Since�× [0,1] contracts to�×{t}, the determinant bundle det indH
should be trivial as well. Hence the whole H is orientable. Similarly, the rela-
tion between orientations of Ht and H can be verified using trivilizations of their
respective determinant bundles.

Remark. A main technique in [2] is to introduce the double cover �̂0(E,F )
of �0(E,F ) using pointwise orientations. This can be viewed as a principal Z2-
bundle over �0(E,F ). Then the argument of Theorem 1 shows that det indh is
the vector bundle associated with the pull-back principal bundle h∗�̂0(E,F ) via
h : � → �0(E,F ). Hence a ∗-orientation of h corresponds precisely to a section
of h∗�̂0(E,F ), namely a lifting ĥ : � → �̂0(E,F ) of h in the notation of [2].
This provides another way to validate the main Definition 3.9 of [2]. Conversely,
if one starts with the principal bundle h∗�̂0(E,F ) → � using the Benevieri–
Furi orientations, then one has an alternative definition of the determinant bundle
det indh as the associated vector bundle—in the case of zero Fredholm index. In
general, if h : � → �n(E,F ) has a positive index n, then one defines det indh
to be det indh′ with h′ = (h, 0) : � → �0(E,F ⊕ Rn). Negative index n can be
dealt with similarly.

3. Fredholm Maps on Banach Manifolds

In this section we briefly examine how to define orientability and degree of a Fred-
holm map between two Banach manifolds using determinant bundles. In spirit
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this is quite similar to [1] and [6], and the interested reader is left to fill in the
details.

Suppose f : X → Y is a smooth, index-0 Fredholm map between two Banach
manifolds. Then the Fréchet derivative Df(x) : TxX → Tf(x)Y leads to a family
of Fredholm operators parameterized by X, with varying Banach spaces. How-
ever, the determinant bundle of Df , det f = det indDf → X, can be constructed
as before without any change (unlike in [2], where additional care was needed
for the manifold case). Then f is called ∗-orientable if det f is a trivial bundle
on X and is called ∗-oriented if det f is, in addition, given a specified class of
trivilizations.

Remark. It is worth spelling out that the determinant line bundle is used here
differently than in typical gauge theory, where the focus is on the determinant
bundle over each individual set f −1(y) for a regular value y (i.e., a moduli space
corresponding to a parameter y). But our focus here is on the entire manifold X
in order to impose the orientability of f.

If f is proper and ∗-oriented, then the degree can be defined as

deg f =
∑

x∈f −1(y)

signDf(x),

where y ∈ Y is a regular value and signDf(x) is determined as follows. Since
x ∈ f −1(y) is a regular point, it follows that kerDf(x) = cokerDf(x) = {0}.
Thus the fiber det f(x) = det indDf(x) = R has a canonical orientation as pre-
viously noted. The sign of Df(x) is obtained by comparing this orientation with
the global orientation already provided for f.

That deg f is independent of the choice of y follows from the invariance of ori-
entations under oriented homotopy discussed previously, much the same as in the
situation of [6] and [2]. Any interested reader may check that other properties of
the degree given in [1], [2], and [6] can be readily transplanted.

Of course, Theorem 1 and Corollary 2 continue to hold for the Fredholm map f.
Hence the value of deg f remains the same for all three notions of orientability—
under the condition that f is nondegenerate.

It is interesting to compare this with the classical degree of Olum. Suppose X
and Y are both finite dimensional. Denoting the orientation bundles of the mani-
folds by OX and OY , respectively, we have

det f = OX ⊗ f ∗OY (6)

by using a fiberwise exact sequence similar to (4). It follows easily from (6) that f
is ∗-orientable if and only if f is “orientation true” in the sense of [9]. Moreover,
deg f is precisely the integer degree (twisted degree) of Olum when f is oriented
and proper.

As another application of (6), we verify that the nondegeneracy condition is in-
deed required in both Corollary 2 and its manifold version. To see that the equiva-
lence between (i) and (iii) breaks down without this condition (cf. the remark after
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Corollary 2), consider a constant map c : X → Y, where X is nonorientable and
Y is orientable. Since c has no regular point, it is FPR-orientable by default (and
the associated degree is 0). But c is not ∗-orientable, since the determinant bundle
det c = OX is nontrivial. (This simple example is also used in [2].) On the other
hand, ifX is taken to be orientable as well, then c is orientable in all three notions.
Nonetheless, the correspondence between the orientation sets still fails: c has one
orientation in the Fitzpatrick–Pejsachowicz–Rabier sense but two ∗-orientations
in our sense. At any rate, the case of degenerate maps is not so interesting because
the degree will always be zero whenever it is defined.

Note that a formula similar to (6) carries over to a Fredholm map between two
Banach manifolds, with OX, OY replaced by the classes of Fredholm structures on
X,Y, as appeared in the context of Elworthy–Tromba [4].

Adapting the terminology of Hopf in the finite-dimensional case, we callA(f ) =
|deg f | the absolute degree of f when f is orientable and proper. It is an invariant
under any homotopy, following from the oriented homotopy invariance of deg f.
We can also introduce the geometric degree G(f ): the smallest number of points
in f −1(y) for any regular value y ∈ Y. Using a proof similar to that in Epstein [5],
we generalize the Hopf–Olum theorem to Banach manifolds.

Proposition 3. Suppose f : X → Y is a smooth ∗-orientable proper Fredholm
map, and suppose that X admits partitions of unity. Then there is a homotopy g
of f such that A(f ) = G(g) = A(g).

Proof. This is actually simpler than Epstein’s situation because we assume that
f is smooth. Take a regular value y of f so that G(f ) = #f −1(y). If all points
in f −1(y) have the same sign under the orientation, then G(f ) = A(f ) and we
are done. Otherwise one can find two points, say a, b, in f −1(y), that have oppo-
site signs. This means there is a path α joining a, b with −1 parity. Then take any
tubular neighborhoodN of α (sinceX admits partitions of unity). SinceN is con-
tractible, one can find a homotopy of f that is constant outside N and cancels out
the pair a, b inside N (a special case of Whitney’s lemma). The proof is finished
by induction.

Typical examples of manifolds admitting partition of unity include paracompact
Hilbert manifolds modeled on a separable Hilbert space.
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