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A Note on Mappings of Finite Distortion:
The Sharp Modulus of Continuity

JANI ONNINEN & XI1A0O ZHONG

1. Introduction

We consider Sobolev mappings f € WL1(2,R"), where € is a connected, open
subset of R” and n > 2. Thus, for almost every x € €2, we can speak of the lin-
ear transform Df(x): R" — R”, called the differential of f at the point x. The
Jacobian determinant J(x, f) is the determinant of the matrix Df(x): J(x, ) =
det Df (x). We say that a mapping f: 2 — R” has finite distortion if the follow-
ing three conditions are satisfied:

(i) f e Wil (Q,R");
(ii) the Jacobian determinant J(x, f) of f is locally integrable; and
(iii) there is a measurable function Ky = Ko (x) > 1, finite almost everywhere,

such that f satisfies the distortion inequality
IDF()|" < Ko(x)J(x, f) a.e.x€Q. 1)
Here we have used the operator norm of the differential matrix, defined by

|Df (x)| = sup{|Df (x)h| : |h| = 1}.

We arrive at the usual definition of a mapping of bounded distortion, also called
a quasiregular mapping, when we additionally require that Ky, € L*°(R2). This
class of mappings can be traced back to the work of Reshetnyak [12]. Mappings
of bounded distortion are a natural generalization of analytic functions to higher
dimensions. Undoubtedly, the theory of conformal mappings, or more generally
of analytic functions, has also expanded in many other different directions.

In [12] Reshetnyak studied the continuity of mappings of bounded distortion.
He proved that they are locally Holder continuous with the exponent 1/K, where
K is the L®-norm of K. Here and in what follows, continuity for a Sobolev
function f means that f can be modified in a set of Lebesgue measure zero to be
continuous. For each constant K > 1, the radial stretching mapping

f(x) = x|x] 75
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shows the sharpness of the result, in the sense that the Holder exponent 1/K can-
not be improved. The theory of mappings of bounded distortion is by now well
understood; see the monographs by Reshetnyak [13], Rickman [14], and Iwaniec
and Martin [4].

Recently, mappings of finite distortion with exponentially integrable distortion
Ko, that is,

exp{AKop} € LIOC(Q) for some A > 0, (2)

have been shown to share many nice properties of mappings of bounded distor-
tion (see e.g. [2; 3; 6; 7]). In particular, Iwaniec, Koskela and Onninen proved in
[3] that, under this integrability assumption on the distortion function, a mapping
of finite distortion is continuous. It has a modulus of continuity of the type

C
< .
f(y)' = 1Oglog1/n(ee + 1/|X — yl)

[f(x) — 3)
It may be observed that the modulus of continuity does not depend on the con-
stant A. In fact, the modulus of continuity should get better when A increases. In
[9], Koskela and Onninen showed that the inequality (3) is far from optimal and
also established the following essentially sharp modulus of continuity for such
mappings:

C

oghn=¢(1/|x — yI)

for every small ¢ > 0. Here the constant C depends also on ¢. A logarithmic
modulus of continuity in the plane case was obtained earlier by David in [1] and
by Iwaniec and Martin in [5], but with a worse exponent. For A > 0, the radial
stretching mapping

Lf(x) = fODI = I 4)

1 1 —i/n
flx) = H(Ogﬁ og Ogﬁ> ,
defined on the ball B(0, e ~¢), shows that the modulus of continuity estimate (4) is
essentially sharp. Namely, we can not replace the exponent A/n — & by A/n + €.
All of this raises the following question: Is the modulus of continuity estimate (4)
true with the exponent A /n? The purpose of this note is to give an affirmative an-
swer to this question.

THEOREM 1. Let f: Q — R” be a mapping of finite distortion whose distortion
function Ko satisfies, for some A > 0,

K = / exp{AKop(x)}dx < oo, (®)]
B

where B = B(xg, R) CC 2. Then, for every x,y € B(xo, (%)E[LK](I%)/"),

Wp—1

we have the estimate
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Ck,Rn,n /n
1700 = F) < W(/B J(z,f)dz) , ©)

op—1|x—y|"

where w,,_1 is the surface measure of the unit sphere 0B (0, 1).

2. A More General Theorem

Theorem 1 will be obtained as a corollary to a more general result. Let us replace
the assumption exp{AKp} € LIIOC(Q) with exp{A(Kp)} € Llloc(SZ), where A is an
Orlicz function. We call an infinitely differentiable and strictly increasing function
A: [0,00) — [0, 00) with A(0) = 0 and lim,_,», A(f) = oo an Orlicz function.
We will assume for all Q' CC Q that

f exp{A(Kp(x))}dx < oo, 7

where A satisfies

o g/ 1 [lC/explAmy'? 1
/ A(s)dsz—/ ——————dt =0 (8)
1 s B Jo t A7 (log C/1P)

for all C, 8 > 0. We wish to warn the reader that conditions (7) and (8) do not
require Ko to be even locally integrable and thus an additional technical assump-
tion on .4 must be posed. To fill up this gap, we assume that A satisfies also the
following condition:

3ty € (0,00) : A'(t)t — oo Vt > to. )

It was proven in [8] that, under these assumptions on the distortion function, a
mapping f of finite distortion is continuous. It was also shown in [8] that the as-
sumption (8) is sharp.

Let A be an Orlicz function satisfying the integrability condition (8), n €
{2,3,4,...}, K > 0, and 8 > 0. We introduce the strictly increasing function
a(r) = a4 k,np(r) defined for 0 < r" < nK/w,_; by the formula

r r/2 1
cnsns®r=sofie (05) [ a2 o) @

Now we can formulate our main theorem. The argument in [9, p. 1911] shows that
this technical version easily yields Theorem 1; for a slightly simpler version see
[9, Rem. 4.4].

THEOREM 2. Assume that an Orlicz function A satisfies both (8) and (9). Let
f: Q2 — R" be a mapping of finite distortion whose distortion function satisfies

K = / exp{A(Kp(x))}dx < o0, (11)
B

where B = B(xg, R) CC Q. Then
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1/n
1) = FO)l < CA,K<n,ﬁ>( /B Iz f) dz)

L ] o
X X —
P17 Jaciamsp 1A (log Can(nK Jan_it™)

whenever x,y € B(xg,2(R/80)).

It was shown in [9, Ex. 5.1] that the modulus of continuity in Theorem 2 cannot be
improved on. Notice that the role of ! is not significant when |x — y| is small
(see [9, Rem. 4.4]).

As in [9], for the analogue of Theorem 2 we will split the proof of Theorem 2
into two parts, Lemma 1 and Lemma 2. Lemma 1 is proved in [9, Lemma 4.2], so
here we need only verify Lemma 2.

LeEmMA 1. Under the hypotheses of Theorem 2, we have
dt
llognK /w,_1t")

= Cy,x(n) J(z, f)dz (13)

B(x0,R)

R)2
lf(x)—f(y)l"/ —

whenever x,y € B(xg,r) C B(xg, R/2).

LEmMMA 2. Under the hypotheses of Theorem 2, we have

R/e? dt
J(x, f)dx <expl—n / }
/B(xo,r) ) p{ r l‘.A_l(IOg Can(e)(nK/wy_1t"))

X / J(x, f) dx (14)
B(x0,R)

whenever r € (0, R/e?).

3. Proof of Lemma 2

A crucial tool in establishing the sharp modulus of continuity in our case is the
following integral-type isoperimetric inequality:

nf(n=1)
][ J(x f)dx < ( ][ IDfI’”do> 15)
B(xq,s) 3B (x0,5)

for almost every 0 < s < dist(xg, d$2), where do is the area element of the sphere

0B (xq,s) and
1
dp = —/ du
][Eg W) Je 8

denotes the average integral. We refer to [11, Thm. 1.1] for the proof of inequal-
ity (15). Under the assumptions of Theorem 2, the assumptions of [11, Thm. 1.1]
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are fulfilled and hence (15) holds; see [8] and also [10]. The interested reader may
find more details in [9, Sec. 3].

Write B; = B(xg,s). The distortion inequality (1) together with Holder’s in-
equality applied to the right-hand side of (15) yields

1/(n—1)
][ J(x, f)dx < <][ Kglda> ][ J(x, f)do. (16)
B 0By 0By

Hence, the following elementary differential equation is satisfied:

d n

By the assumption (9), it is easy to prove that there exists a 19 = to(n,.4) > 0
such that the functions T — exp{A(t)} and T — exp{A(z"/"~D)} are convex on
(19, 00); see [9, Lemma 2.4]. We set an auxiliary distortion function

Ro(x) = { Ko(x) %f Ko(x) > 7o, (18)

70 if Kop(x) < 19.

The preceding differential equation gets the slightly weaker form

d n
a(log(/& J(x, f) dx)) > s(faBs Igg’lda)l/("_l). (19)

The desired decay estimate (14) on the integrals of Jacobians of f over balls then
follows if we can show that

R R/e
/ - = oD = / I & —. (20
r S(fBBS Kgild(’) r A~ (log(nCu, g /@wn-1t"))

Toward this end, let ig and i, be integers such that log R — 1 < ix < log R and
logr <i, <logr + 1. We have

R ds ir—1 eitl ds
/ (f K" ld 1/(n—1) Z/ JC Kn 1d )l/(n - e2y)
0B 0Bg

We estimate each integral in the right-hand side of (21) in the following way. Fix
i €{i,,i, +1,...,ig — 1}. Changing the variable by setting s = e’, we have

i+1

e ds i+1 dt

/,- B 4o\ /D Zf Bl g )/ (22)
¢ s(fBBK 0 G) ! (fase, 0 U)

Since the function t — 1/t defined on (0, o0) is convex, the Jensen inequal-
ity yields

i+1 dt i+l B 1/(n=1) -1
/ (£, Ko )1/(n—1) = [/ <][ Kg_lda) dt} - (23
i K' 'do i 0B,
9B, "0 e
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Recall that the functions 7 — exp{A(t/"~D)} and © — exp{.A(t)} are convex
on (tg,00). We apply the Jensen inequality twice to obtain that

i+1 5 1/(n—1)
/ <][ Kg_l da) dt
i AB,:
i+1 ~
5/ A <10g][ exp{A(Kp)} da) dt
i 9B,

it1
< A_l(log/ ][ exp{A(I?O)} do dt)
i B,

_ Al(log / Tl ][ exp{A(zzo)}dads). (24)
el By

We made a change of variable in the last step. Now an easy computation gives
i+1 70

[ ewta®onas < (5)
el § JoB, w;,-_1€

Combining inequalities (21), (22), (23), (24), and (25), we conclude that

R ds ir—1 SOk 4
> A1<1 <_ ))}
/r s(fan[[eo(x)dx]n_1)1/(n—l) > ;[ og p—

iR—2 oK -1
= [ (G ))
ir—1 wp—1e"

R/e? TR -1
[ ((GER))

r wy—1t"
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