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Automorphisms of Affine Surfaces
with A1-Fibrations

R. V. Gurjar & M. Miyanishi

1. Introduction

Let X be a normal affine surface defined over the complex field C, which has
at worst quotient singularities. We call X simply a log affine surface. If further
Hi(X; Q) = (0) for i > 0 then X is called a log Q-homology plane (if X is smooth
then X is simply called a Q-homology plane). Let Ga denote the complex num-
bers with addition as an algebraic group. In this paper we are mainly interested
in log affine surfaces X that have an A1-fibration. Of particular interest are sur-
faces that admit a regular action of Ga. Such actions up to conjugacy correspond
in a bijective manner to A1-fibrations on X with base a smooth affine curve. Al-
gebraically, these actions correspond bijectively to locally nilpotent derivations of
the coordinate ring 
(X) of X. The set of all elements of 
(X) that are killed
under all the locally nilpotent derivations of 
(X) is called the Makar-Limanov
invariant of X and denoted by ML(X).

If a smooth affine surface has two independent Ga actions then its Makar-
Limanov invariant is trivial. Gizatullin [9] and Bertin [2] gave a necessary and
sufficient condition for this to happen. More recently, Bandman and Makar-
Limanov [1] proved that a smooth affine surface X with trivial canonical bun-
dle and ML(X) = C is an affine surface in A3 defined by {xy = p(z)}, where
p(z) is a polynomial with distinct roots. Masuda and Miyanishi [12] applied this
to determine the structure of a Q-homology plane with trivial ML-invariant. They
proved that such a surface is a quotient of the Bandman–Makar-Limanov hypersur-
face by the action of a finite cyclic group (see result (3) in the listing that follows).

In this paper we extend the last result to the case of log Q-homology planes
in Section 2. Similar and related results in Section 2 and Section 3 have been
obtained independently by Daigle and Russell [4] and Dubouloz [5]. An auto-
morphism of a smooth affine surface sends fibers of one A1-fibration with affine
base to the fibers of another A1-fibration. If these two fibrations are different then
the Makar-Limanov invariant of the surface is trivial. If a smooth affine surface
has an A1-fibration whose base is not an affine curve, then this fibration does not
correspond to a Ga action. In this case the geometry of the fibration enters into
the picture. In Section 4 we give a sufficient condition for uniqueness of an A1-
fibration on a smooth affine surface. This involves the number of multiple fibers
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of a given A1-fibration and the type of the base of the fibration. The proof of this
result is rather involved. However, as a consequence we are able to prove a re-
sult about the automorphism group of a smooth affine surface with an A1-fibration.
We also prove two results that deal with uniqueness of a C∗-fibration on a normal
quasi-homogeneous surface. In the last section we give typical examples to illus-
trate the various results proved in this paper. Throughout, we denote by An the
affine n-space.

We now summarize our main results.

(1) Let X be a log affine surface. Then ML(X) = C if and only if the divisor at
infinity for X in a suitable minimal normal compactification of X is a linear
chain of rational curves (Theorem 3.1).

(2) If X is a log Q-homology plane, then ML(X) = C if and only if π1,∞(X) is
finite cyclic (Lemma 2.5, Theorem 2.9).

(3) If X is as in (2) then the quasi-universal cover of X is isomorphic to the sur-
face xy = za − 1 in A3. Here a = 1 is allowed, so the quasi-universal cover
is isomorphic to A2 (cf. Theorem 2.8; for the definition of the quasi-universal
cover, see Section 2).

(4) Let X be a smooth affine surface with an A1-fibration ψ : X → B. Assume
that one of the following conditions is satisfied:

(i) B is nonrational;
(ii) B is rational with at least two places at infinity;

(iii) B ∼= A1, and ψ has at least two multiple fibers;
(iv) B ∼= P1, every fiber of ψ is irreducible, and ψ has at least three multiple

fibers.
Then ψ is the unique A1-fibration on X (Theorem 4.1).

(5) Let X be a smooth affine surface with an A1-fibration ψ : X → P1 with at
least three multiple fibers. If every fiber of ψ is irreducible, then Aut(X) is
finite (Theorem 4.2).

(6) Let X be a normal affine surface with a good C∗-action such that at least three
orbits exist with nontrivial isotropy subgroups. Then any curve contained in
the smooth locus of X that is isomorphic to C∗ is one of the orbits of the
C∗-action (Theorem 4.6).

Remark. We conjecture that (4)(iv) and (5) are true without the condition of ir-
reducibility of every fiber of ψ.

The authors would like to thank the referee for pointing out some incompleteness
in our original arguments.

2. Case of Log QQQ-Homology Planes

We will deal only with complex algebraic varieties. For a normal projective sur-
face W with only quotient singularities (abbreviated as a log projective surface),
a curve C on W is an (n)-curve if C is a smooth, irreducible, rational curve con-
tained in W − Sing W and with (C2) = n. For a (possibly reducible) curve C on
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a log projective surface W, by a “component” of C we mean an irreducible com-
ponent of C. Let Z be a normal quasi-projective surface. By a P1-fibration (resp.,
an A1-fibration) on Z we mean a morphism Z → B onto a smooth algebraic curve
whose general fiber is isomorphic to P1 (resp., A1). A C∗-fibration on a normal
quasi-projective surface is defined similarly. We say that a normal affine surface Z

is quasi-homogeneous or, equivalently, that it has a good C∗-action if there is an
algebraic action of the algebraic group of C∗ on Z such that Z contains a unique
point, say ν, that is in the closure of every orbit. The point ν is called the vertex
of Z. Corresponding to such an action is a quotient map X − {ν} → �, where �

is a smooth projective curve.
For any variety Z we denote the set of smooth points of Z by Z 0. For a nor-

mal algebraic surface X such that π1(X
0) is finite, the normalization of X in the

function field of the universal covering Y 0 of X 0 is called the quasi-universal cov-
ering of X (cf. [20]). Let X be a complex affine surface with at worst quotient
singularities. By a minimal normal compactification of X we mean a projective
completion V of X such that V is smooth outside X and D := V − X is a simple
normal crossing divisor such that any (−1)-curve in D meets at least three other
components of D. Suppose that the divisor D is a tree of rational curves. In [21],
Mumford gives a presentation of the fundamental group of the boundary of a nice
tubular neighborhood of D in V in terms of the intersection matrix of the compo-
nents of D. Following Ramanujam [23], we call this the “fundamental group at
infinity of X” and denote it by π1,∞(X).

Recall that a log Q-homology planeY is a log affine surface such thatHi(Y; Q)=
(0) for i > 0. It is well known that the divisor at infinity of Y in a minimal normal
compactification is a (connected) tree of rational curves (see [19]). Hence we can
use the foregoing presentation of π1,∞(Y ). If D is a linear tree of smooth rational
curves then it follows easily from Mumford’s presentation that π1,∞(Y ) is a finite
cyclic group with a generator corresponding to an end component of D. This ob-
servation will be quite useful later. We will use repeatedly the following general
properties of a singular fiber of a P1-fibration proved by Gizatullin [8].

Lemma 2.1. Let p : V → B be a P1-fibration on a smooth projective surface V

with base a smooth curve B. Let G be a singular fiber of p. Then the following
assertions hold.

(1) G is a tree of smooth rational curves.
(2) G contains a (−1)-curve, and any (−1)-curve in G meets at most two other

components of G. If a (−1)-curve E occurs with multiplicity 1 in the scheme-
theoretic fiber G, then G contains another (−1)-curve.

(3) By successively contracting (−1)-curves in G and their images, we can reduce
G to a regular fiber.

We now recall a result about singular fibers of an A1-fibration on a normal affine
surface (cf. [16]).

Lemma 2.2. Let Z be a normal affine surface with an A1-fibration f : Z → B,
where B is a smooth curve. Then we have the following assertions.
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(1) Z has at most cyclic quotient singularities.
(2) Every fiber of f is a disjoint union of curves isomorphic to A1.

(3) A component of a fiber of f contains at most one singular point of Z. If a com-
ponent of a fiber occurs with multiplicity 1 in the scheme-theoretic fiber, then
no singular point of Z lies on this component.

The next result clarifies the relation between Ga-actions and A1-fibrations on a
normal affine surface (cf. 14, Chap. I, Lemma 1.5; 16]).

Lemma 2.3. Let X be a normal affine surface. Then the quotient morphsim un-
der any nontrivial algebraic action of the additive group Ga on X gives rise to an
A1-fibration ρ : X → B with a smooth affine curve B. Conversely, given an A1-
fibration ρ : X → B with a smooth affine curve B, there is a nontrivial Ga-action
on X such that ρ is the associated A1-fibration.

We use repeatedly the following result of Bundagaard and Nielsen [3] and Fox [7],
which is the solution of Fenchel’s conjecture.

Lemma 2.4. Let C be a smooth projective curve of genus g and let P1, . . . , Ps

be points of C. Let m1, . . . , ms be integers larger than 1. Then there exists a finite
Galois covering p : C̃ → C that ramifies over the points Pi with respective rami-
fication indices m1, . . . , ms unless either (i) g = 0 and s = 1 or (ii) g = 0, s = 2,
and m1 �= m2.

The next result is quite important for the proofs of the main results (1), (2), and
(3) stated in the Introduction.

Lemma 2.5. Let X be a log affine surface such that D, the divisor at infinity for
X in a minimal normal compactification V of X, is a linear tree of rational curves
such that the intersection form on the irreducible components of D has nonzero
determinant. Then X has an A1 fibration f : X → A1 with at most one multiple
fiber mF1 with m > 1. Further, π1(X

0) is isomorphic to Z/(m).

Proof. Since X is affine, the intersection form on the components of D has at least
one positive eigenvalue. By assumption, 0 is not an eigenvalue of this form. It is
easy to see that, by a suitable sequence of blow-ups with centers in D and con-
tractions of (−1)-curves in the proper transforms of D, we can transform D into
a linear tree of rational curves D1, D2 , . . . , Dr such that D2

1 = D2
2 = 0 (cf. [11,

Lemma 5]). Now KV · D1 = −2. It follows that V is a rational surface and |D1|
gives a P1-fibration ϕ : V → P1 such that D1 is a full fiber, D2 is a cross-section,
and D3, . . . , Dr are contained in a fiber of ϕ. Hence f := ϕ|X is an A1-fibration
on X with base A1. By Mumford’s result quoted earlier, π1,∞(X) is finite cyclic.
By a Lefschetz theorem for open surfaces (see [22, Cor. 2.3]), there is a surjection
π1,∞(X) → π1(X

0). This implies that π1(X
0) is finite cyclic.

Suppose m1F1, m2F2 , . . . , mrFr are all the multiple fibers of f. By Lemma 2.4,
there is a finite Galois covering � → A1 such that the ramification index over the
point f(Fi) is mi for i = 1, 2, . . . , r. Then the normalization of the fiber product
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Z := X ×A1 � contains a Zariski-open subset that is a finite unramified covering
of X 0 with a noncyclic covering transformation group. This contradicts the fact
that π1(X

0) is finite cyclic, so f has at most one multiple fiber mF1. If such a
multiple fiber exists then we consider again the surface Z just described. There is
an induced A1-fibration on Z with base A1 (now � ∼= A1) without multiple fibers.
By Lemma 4.3 (to follow), there is a short exact sequence

π1(A
1) → π1(Z

0) → π1(A
1) → (0).

This shows that Z 0 is simply connected and π1(X
0) ∼= Z/(m).

Lemma 2.5 applies in particular to a log Q-homology plane with ML(X) = C,
since we will show (in Lemma 2.6) that the divisor at infinity for X in a minimal
normal compactification of X is a linear tree of rational curves.

Lemma 2.6. Let X be a log Q-homology plane and let ρ : X → B be an A1-
fibration. Then the following assertions hold (cf. [19]).

(1) B is isomorphic to the affine line A1. Hence there is a smooth normal com-
pactification V of X such that the A1-fibration ρ extends to a P1-fibration
p : V → B̄ ∼= P1 and the fiber at infinity F∞ = p−1(P∞) is a smooth fiber,
where B̄ − B = {P∞}. The fibration p has a cross-section S lying outside X.

(2) Every fiber of ρ is irreducible, and its reduced form is isomorphic to A1.

The hypothesis that ML(X) = C for a log Q-homology plane X implies more
precise results, as follows.

Lemma 2.7. Let X be a log Q-homology plane with ML(X) = C. Assume that
X �∼= A2. Then the following assertions hold.

(1) Every A1-fibration ρ : X → B has a unique multiple fiber mA with m > 1.
(2) There is a smooth normal compactification V of X such that D := V − X is

a linear chain of rational curves.
(3) The surface X has at most one singular point P such that P ∈A.

Proof. (1) Let ρ : X → B be an A1-fibration. Since B ∼= A1, ρ is the quotient mor-
phism with respect to a Ga-action σ. If there are no multiple fibers in ρ, then X is
smooth and isomorphic to A2. Hence ρ has at least one multiple fiber. We use the
argument in Lemma 2.5. If ρ has r ≥ 2 multiple fibers then we consider (a) the
finite Galois cover � of B ramified over ρ(Fi) for 1 ≤ i ≤ r and (b) the point at
infinity for B such that the ramification index at any point over ρ(Fi) is mi and at
any point over ∞ is equal to 2. Then the normalized fiber product Z = X ×B �

has an A1-fibration over �. It is easy to see that � is either nonrational or rational
with at least two places at infinity. By assumption, X has a transverse A1-fibration;
let G be a general fiber of this transverse fibration. Then the map G → X 0 lifts to
a map G → Z 0. But then G dominates �, a contradiction. Hence ρ has exactly
one multiple fiber mA. By the argument in part (3) of Lemma 2.2, X has at most
one singular point and it is a cyclic quotient singular point.
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(2) We consider a minimal normal compactification V of X such that the A1-
fibration ρ extends to a P1-fibration p : V → B̄. We may assume that the fiber F∞
lying over the point at infinity P∞ of B is smooth. Let S be the cross-section of
p contained in D := V − X. Let G be the part of the singular fiber F0 of p lying
over the point P0 := ρ(A). Let σ ′ be a Ga-action that is algebraically indepen-
dent of the Ga-action σ, and let ρ ′ : X → B ′ be the associated A1-fibration. Let *′
be the linear pencil spanned by the closures of the general fibers of ρ ′ on V. Now
the arguments in [12, Lemma 2.4 & Thm. 2.5] apply (up to some minor modifica-
tions) to the pencil *′, enabling us to conclude that G is a linear chain.

The following results give a characterization of log Q-homology planes with triv-
ial Makar-Limanov invariants.

Theorem 2.8. Let X be a log Q-homology plane with ML(X) = C. Then
π1(X

0) ∼= Z/(m) (cf. Proof of Lemma 2.5). The quasi-universal cover of X is
isomorphic to either A2 or the surface za − 1 = xy in A3.

Proof. We consider the A1-fibration ρ : X → B, which is associated to a Ga-action
σ. Let mA be a unique multiple fiber of ρ. Then the quasi-universal covering Y of
X is obtained as the normalization of X ×B �, where � is an m-tuple cyclic cov-
ering of B totally ramifying over the point P0 := ρ(A) and the point at infinity
P∞ of B (cf. Lemma 2.5). Let f : Y → X be the composite of the normalization
morphism and the projection of X ×B � to X. Since the induced A1-fibration on
Y has only reduced fibers, it follows by Lemma 2.2(3) that Y is a smooth surface
and that f is étale and finite over X 0. If all the fibers of the induced A1-fibration
on Y are irreducible then Y is isomorphic to A2. Any Ga-action on X extends to
Y, since f is étale over X 0. Hence ML(Y ) = C. Now, by the result of Bandman
and Makar-Limanov [1], Y is isomorphic to the surface za − 1 = xy in A3.

We now give another proof of the result of Bandman and Makar-Limanov just
cited, generalized slightly to work for normal surfaces.

Theorem 2.9. Let X be a log affine surface with trivial Makar-Limanov invari-
ant. Then X has a minimal normal compactification V such that D := V − X is
a linear chain of rational curves. In particular, π1,∞(X) is a finite cyclic group.

Proof. For the proof we will use some arguments from [12, Lemma 2.6 & Thm.
2.7]. If X is isomorphic to the affine plane A2, it is well known (see [23]) that the
boundary divisor of any minimal normal compactification of A2 is a linear chain.
Hence we may and shall assume that X is not isomorphic to A2. Let σ, σ ′ be two
Ga-actions on X. By making use of one Ga-action σ on X, we consider an asso-
ciated A1-fibration ρ : X → B. We claim that B ∼= A1. First of all, by Lemma 2.3,
B is an affine curve. Since a general fiber of the A1-fibration corresponding to σ ′
dominates B, we conclude that B ∼= A1.

For a suitable smooth compactification V of X, we can extend ρ to a P1-fibration
p : V → B̄ ∼= P1 such that D := V − X consists of a smooth fiber F∞, a cross-
section S, and a union G1 of irreducible components contained in a degenerate
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fiber of p. By using Lemma 2.1 repeatedly we can assume that, for any compo-
nent C of G1, (C2) < −1.

Let *′ be the pencil of rational curves corrresponding to σ ′ and let T ′ be the
closure of a general orbit of σ ′. If T ′ ∩F∞ = ∅ then the A1-fibrations correspond-
ing to σ, σ ′ are the same. Hence T ′ meets F∞. Suppose that *′ has no base point
on F∞. Then we get another P1-fibration p ′ on V such that F∞ is a cross-section
for p ′. We then claim that X ∼= A2. Since a general fiber of p ′ is disjoint from S, it
follows by the Hodge index theorem that (S2) ≤ 0. If (S2) = 0 then S is a mem-
ber of the pencil *′. In this case, D = F∞ ∪ S and we see that X ∼= A2. Suppose
(S2) < 0. Then S ∪ G1 is contained in a fiber of p ′. In fact, since the base of the
A1-fibration on X corresponding to p ′ is also isomorphic to A1, the union S ∪ G1

is a full fiber of p ′. It follows that (S2) = −1 and, starting with the contraction
of S, we can contract S ∪ G1 to a smooth rational curve with self-intersection 0.
Then again we see that X ∼= A2.

Now, we know that *′ has a base point on F∞. By performing elementary trans-
formations at F∞ ∩ S we can further assume that this base point is not the point
F∞ ∩ S. By the Hodge index theorem, (S2) < 0. Blowing up the base point of
*′ and its infinitely near points yields a surface V ′ that admits a P1-fibration p ′
such that the proper transform of F∞, S, G1, and some exceptional curves obtained
by blow-ups form a single fiber—say, G′ of p ′. By Lemma 2.1 we can contract
G′ to a regular fiber. Since no irreducible component of G1 is a (−1)-curve, the
first (−1)-curve to be contracted is the proper transform of F∞ or S. Again using
Lemma 2.1, we deduce that D = F∞ ∪ S ∪ G1 is linear. In particular, π1,∞(X) is
a finite cyclic group.

Next we show that the converse to Theorem 2.8 holds when X is a log Q-homology
plane. We shall prove the following result.

Theorem 2.10. Let X be a log Q-homology plane. Suppose that π1,∞(X), the
fundamental group at infinity, is a finite cyclic group. Then X has a minimal nor-
mal compactification V such that D := V −X is a linear chain of rational curves.
Furthermore, ML(X) is trivial.

We first recall the following result from [24].

Lemma 2.11. Let X be a smooth affine surface. Assume that the fundamental
group at infinity of X is finite cyclic. Then X has a minimal normal compactifi-
cation V such that: (a) D := V − X is a tree of rational curves; (b) D contains
components D1, D2 with the self-intersections of D1, D2 both zero; and (c) after
removing D1, D2 from D we get a connected linear chain of rational curves that
has a negative definite intersection form. Moreover, V is rational.

With the notation of Theorem 2.10, D then supports a divisor with strictly positive
self-intersection, since X is affine. Because V is rational, the linear system |D1|
gives a P1-fibration p on V such that D2 is a cross-section of p and all the other
components of D are contained in a singular fiber G of p. By Lemma 2.5 we can
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see that p has no singular fiber other than G. The part of D contained in G is a
linear chain. This observation will be used in what follows.

Proof of Theorem 2.10. If X is isomorphic to A2, then all the assertions hold.
Hence we assume that X is not isomorphic to A2; in particular, Pic(X 0) �= 0. The
restriction of p to X is an A1-fibration ρ : X → B ∼= A1. Since X is a Q-homology
plane, we see easily that every fiber of ρ is irreducible. For example, G = G1∪A1

where G1 = D ∩ G and A := A1 − D ∼= A1. By Lemma 2.1 we can assume that
no component of G1 is a (−1)-curve and hence A1 is a unique (−1)-curve in G

after the desingularization of a possible singular point on A, and the multiplicity
m of A1 in G exceeds unity.

Let P0 := p(G). By assumption, G1 is a linear chain. Let D3 be the compo-
nent of G1 that meets D2. We claim that D3 meets at most one other component of
G1. Suppose that D3 meets two components of D, say D4 and D5. Then G1 − D3

has exactly two connected components, say �1 and �2. Starting with A1 we can
successively contract (−1)-curves in G, the exceptional curves arising from the
desingularization of a possible singular point on A, and their images in order to
reduce G to a (0)-curve.

Suppose that at some stage the image of D3, say D ′
3, becomes a (−1)-curve

and that D ′
3 still meets two other components of the image G′ of G. Then the

multiplicity of D ′
3 in G′ is at least 2. This is a contradiction, since D3 meets the

cross-section D2. Hence, if D ′
3 is a (−1)-curve then it meets only one other com-

ponent of G′. Further, all the other components of G′ have self-intersection < −1.
Since G′ is still a linear chain, it clearly follows that G′ cannot be contracted to a
(0)-curve. Now we see that D is a linear chain of rational curves. This proves the
first part of Theorem 2.10; the second part follows from Theorem 3.1.

3. The General Case

Our objective in this section is to prove the following result, which will completely
explain the relation between ML(X) and π1,∞(X).

Theorem 3.1. Let X be a log affine surface. Then ML(X) is trivial if and only
if X has a minimal normal compactification V such that the dual graph of D :=
V − X is a linear chain of rational curves and π1,∞(X) is a finite group.

Proof. The “only if” part follows from Theorem 2.9; here we show the “if” part.
Again, for simplicity we will assume that X is smooth. The proof for the log affine
case is almost similar.

By assumption, X has a minimal normal compactification V such that D :=
V − X is a linear chain of smooth rational curves. We can also assume that D =
D1 + D2 + · · · + Dr such that D2

r−1 = 0 = D2
r . We call Dr−1 + Dr an appen-

dix of D. Then the linear system |Dr | gives a P1-fibration p on V such that Dr is
a full fiber and Dr−1 is a cross-section. Restricting p to X yields an A1-fibration
ρ : X → B with B ∼= A1. By Lemma 2.3, X admits a Ga-action such that a gen-
eral fiber of ρ is an orbit for this action. If r = 2 then X ∼= A2 and obviously
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ML(X) = C. So, we assume that r > 2. Then D2
r−2 ≤ 0 by the Hodge index

theorem. If D2
r−2 = 0 then r = 3 and π1,∞(X) ∼= Z , a contradiction. Therefore,

D2
r−2 < 0 and hence D2

i < 0 for 1 ≤ i ≤ r − 2. Observe that D1 is contained in
a singular fiber of p and is thus disjoint from a general fiber of p.

The idea of the proof is to shift the appendix to the beginning of the linear chain
so that D1 becomes a (0)-curve and then use |D1| to construct another Ga-action
on X. The proof of [11, Lemma 5] shows that, by blowing up points in D and blow-
ing down (−1)-curves that are proper transforms of irreducible components of D,
we reach a minimal normal compactification of X, say W, such that the proper
transform of D1 in W becomes a (0)-curve. We will indicate a few steps in this
process.

Let (D2
r−2) = −a ≤ −2. Blow up Dr−1 ∩ Dr to obtain a surface V ′ and let E

be the exceptional curve obtained by this blow-up. Then (D ′2
r−1) = −1 = (E 2) =

(D ′2
r ), where the prime denotes proper transform. Blow down D ′

r−1 to obtain the
surface V1. On V1 the proper transform of Dr−2 has self-intersection −a +1. The
self-intersections of the images of E and D ′

r on V1 (say, E1 and Dr,1) are 0 and
−1, respectively. We see that the pencil in V1 corresponding to |Dr | has a base
point on the proper transform Dr−2,1 of Dr−2. Next blow up E1 ∩ Dr,1 and blow
down the proper transform of E1 to obtain the surface V2. The self-intersection of
Dr−2,2 on V2 is −a + 2, and the self-intersection of the proper transform of Dr,1

is −2. The pencil on V2 has a base point on Dr−2,2. Continue this process to ob-
tain the surface Va such that the self-intersection of the proper transform Dr−2,a

of Dr−2 on Va is 0. The pencil has a base point on Dr−2,a. Observe that the proper
transform of D on V is still linear, (E 2

a ) = 0, and that Ea meets Dr,a. Now we
start blowing up Dr−2,a ∩ Ea , and so forth.

Finally, we reach a surface Vb on which the proper transform of D is a lin-
ear chain, the proper transform D1,b of D1 is a (0)-curve, and the curve next to
it is also a (0)-curve. The pencil corresponding to |Dr | on Vb has a base point
on D1,b. Using |D1,b|, we get another A1-fibration on X that is transverse to the
original A1-fibration. By Lemma 2.3, ML(X) = C. This completes the proof of
Theorem 3.1.

Combining Theorems 2.8, 2.9, 2.10, and 3.1 completes our proof of the main re-
sults (1), (2), and (3) stated in the Introduction.

4. Uniqueness of AAA1-Fibrations and Aut(X)

In this section we give a sufficient condition for a smooth affine surface to have a
unique A1-fibration.

Theorem 4.1. Let ψ : X → B be an A1-fibration on a smooth affine surface X

with base B a smooth curve such that every fiber of ψ is irreducible. Assume fur-
ther that B is isomorphic to A1 or P1 and that ψ has at least two (resp., three)
multiple fibers if B ∼= A1 (resp., if B ∼= P1). Then X has no other A1-fibrations
whose general fibers are transverse to ψ.
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A consequence of this result is the following theorem.

Theorem 4.2. Let ψ : X → B be an A1-fibration such that B ∼= P1, all the fibers
of ψ are irreducible, and ψ has at least three multiple fibers. Then Aut(X) is fi-
nite. If, further, the multiplicities of the multiple fibers are pairwise coprime, then
Aut(X) is trivial.

Remarks. (1) The assumption in Theorem 4.1 that B is isomorphic to A1 or P1 is
quite harmless. For if X has another A1-fibration with general fiber transverse to
a general fiber of ψ, then (by Lüroth’s theorem) B will be isomorphic to A1 or P1.

(2) It is most probable that Theorem 4.1 is valid without assuming the irre-
ducibility of all the fibers of ψ. Similarly, Theorem 4.2 should be true without the
assumption of irreducibility of all the fibers of ψ.

(3) An example in Section 5 (see paragraph 4) shows that the hypothesis of hav-
ing at least three multiple fibers in Theorem 4.2 is necessary.

We shall first recall the following result (see e.g. [27, Sec. 1]). Let Y be a smooth
quasi-projective surface, let B be a smooth quasi-projective curve, and let f : Y →
B be a fibration in the sense that all fibers have pure dimension 1 and all but a fi-
nite number of them are smooth and connected. Let F0 = ∑n

i=1 µiCi be its fiber,
where the Ci are irreducible components and the µi are multiplicities of the Ci in
F0. Let µ = gcd(µ1, . . . , µn), which we call the multiplicity of F0. If µ > 1, we
call F0 a multiple fiber and write F0 = µF ′

0 , where F ′
0 = ∑n

i=1(µi/µ)Ci.

Lemma 4.3. With the preceding notation, let F be a general fiber of f , let
m1F1, . . . , msFs exhaust all multiple fibers of f , and let Pi = f(Fi). Set B ′ =
B − {P1, . . . , Ps}. Then there exists a short exact sequence

π1(F ) → π1(Y ) → 
 → (1),

where
 is the quotient of π1(B
′) by the normal subgroup generated by e

m1
1 , . . . , ems

s

with the ei corresponding to a small loop in B around the point Pi.

This lemma shows that even a reducible fiber without reduced components be-
haves like a smooth fiber in π1(Y ) if the multiplicity of the fiber is 1.

Proof of Theorem 4.1

Let X be as in the statement of Theorem 4.1. Let X ⊂ V be a smooth projective
compactification such that (a) D := V − X is a simple normal crossing divisor
and (b) ψ extends to a P1-fibration 0 : V → B̄, where B̄ is a smooth projective
compactification of B. An irreducible component of D will be called a boundary
component. There is a unique component S of D that is a cross-section of 0 such
that the point at infinity for a general fiber of ψ lies on S. Using Lemma 2.1, we
can contract (−1)-curves in any singular fiber of 0 that are contained in D and can
assume that D does not contain any (−1)-curve that is contained in a fiber of 0.

Hence, if B ∼= P1 then every boundary fiber component of 0 has self-intersection
number ≤ −2, and if B ∼= A1 then the same holds—except for the full fiber of
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0, which is contained in D. In this latter case we can assume that this fiber is a
P1 with self-intersection 0. Let mF ′

0 be a multiple fiber of ψ with m > 1. Then
0−1(P ) − F ′

0 is nonempty, connected, and meets the section S (F ′
0 is the closure

of F ′
0 in V ). This is because X is affine.

Now assume that X has another A1-fibration g : X → B ′ whose general fiber,
say G′, is horizontal with respect to ψ (or, equivalently, transverse to ψ). We will
arrive at a contradiction. Again by Lüroth’s theorem, B ′ is isomorphic to A1 of P1

(since a general fiber of ψ dominates B ′).

Step 1. First we will deal with the case where B ∼= A1. Then the assertion fol-
lows from a more general result.

Lemma 4.4. Let ψ : X → B be an A1-fibration from a smooth affine surface X

onto the affine line B. Suppose that m1F1, . . . , mrFr exhaust all multiple fibers of
ψ, where mi ≥ 2, r ≥ 2, and the Fi might be reducible. Then there are no curves
G′ such that G′ is isomorphic to the affine line and transverse to the fibration ψ.

Proof. Let Pi = ψ(Fi) for 1 ≤ i ≤ r, and let P∞ be the point at infinity of B when
B is embedded into B̄ = P1. Now apply Lemma 2.5 to B̄, P1, . . . , Pr , P∞ and in-
tegers m1, . . . , mr , m∞ in order to find a finite Galois covering τ̄ : �̄ → B̄, where
m∞ is a positive integer to be chosen arbitrarily. By the Riemann–Hurwitz theo-
rem, it is easy to show that either �̄ has genus > 0 or τ̄ −1(P∞) has at least two
points. More precisely, �̄ has positive genus if either (i) r ≥ 3 or (ii) r = 2 and
m∞ ≥ 6, except for the case r = m1 = m2 = 2 in which �̄ has two places above
the point P∞.

Let � = τ̄ −1(B) and τ = τ̄ |�. Then τ : � → B is a finite Galois covering. Let
Y be the normalization of the fiber product X ×B �. Then Y is an étale covering
of X and so � either is nonrational or is a rational curve with at least two places
at infinity.

Suppose that there exists a curve G′ such that G′ is isomorphic to A1 and trans-
verse to ψ. Then the inverse image of G′ in Y is a disjoint union of curves iso-
morphic to A1 each of which dominates �. This is a contradiction.

We shall make use later of the following well-known result.

Lemma 4.5. Let ψ : X → B be an A1-fibration from a smooth affine surface X

with a smooth curve B. Then the following assertions hold.

(1) Let nP be the number of irreducible components of the fiber ψ−1(P ) for P ∈
B, and let N be the number of places of B lying at infinity. Then the Picard
number of X is equal to

ρ(X) = 1 +
∑
P∈B

(np − 1) − ε,

where ε = 0 or 1 according as N = 0 or N ≥ 1.
(2) Let χ(Y ) denote the topological Euler–Poincare characteristic of a topolog-

ical manifold Y. Let F be a general fiber of ψ and let F1, . . . , Fs exhaust all
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the singular fibers, which are (by definition) the fibers not isomorphic to A1 in
the scheme-theoretic sense. We have the following formula of Suzuki [26] and
Zaidenberg [28]:

χ(X) = χ(F )χ(B) +
s∑

i=1

(χ(Fi) − χ(F )).

Proof. For the proof of the first assertion, consider a smooth projective compact-
ification X ⊂ V such that ψ : X → B extends to a P1-fibration 0 : V → B̄. We
assume that the fibers contained in V \ X are irreducible if they exist at all. Now
V is obtained from a relatively minimal P1-fibration by iterating blow-ups with
centers on the fibers. Then the result is standard.

Hereafter in the proof of Theorem 4.1, we assume that B ∼= P1 and that ψ has
irreducible multiple fibers m1F1, . . . , mrFr with r ≥ 3.

Step 2. We make the following claim.

Claim.

(1) B ′ ∼= P1.

(2) Let G′ be a general fiber of g. Then G′ meets each Fi for 1 ≤ i ≤ r.

(3) Suppose m1 ≤ m2 ≤ · · · ≤ mr. Then r = 3 and (m1, m2 , m3) = (2, 2, n),
(2, 3, 3), (2, 3, 4), or (2, 3, 5). Namely, it is one of the Platonic triplets.

(4) All fibers of g ′ are irreducible, and there are three multiple fibers of g ′ whose
multiplicities form one of the Platonic triplets.

For the proof of (1), let F be a general fiber of ψ and let


 = 〈e1, e2 , . . . , er | e1e2 · · · er = e
m1
1 = e

m2
2 = · · · = emr

r = 1〉
be the group given by generators and relations, which is the group given in
Lemma 4.3 for B ∼= P1. Hence we obtain an isomorphism π1(X) ∼= 
 because
π1(F ) = (1). By the assumption that r ≥ 3, it follows that π1(X) is not a finite
cyclic group. Furthermore, we know by Lemma 4.5 that the Picard group Pic(X)

has rank 1 and that the topological Euler–Poincaré characteristic χ(X) is 2. Now
we show that B ′ ∼= P1. Suppose to the contrary that B ′ ∼= A1. Since Pic(X) has
rank 1, it follows that the fibration g has one reducible fiber µ1C1 +µ2C2 and that
all other fibers are irreducible. Lemma 4.3 implies that g has at least two multiple
fibers because π1(X) is not a finite cyclic group. We then have a contradiction by
Lemma 4.4, since a general fiber F is transverse to g. Hence, B ′ ∼= P1.

We now show that G′ meets each Fi. If G′ does not meet some Fi then we
consider X ′ := X − Fi. Then X ′ is a smooth affine surface that has an induced
A1-fibration from ψ with at least two multiple fibers with base A1 and another
A1-fibration induced from g. This is impossible (by Lemma 4.4), so we know that
G′ meets each Fi.

We show that r = 3 and that (m1, m2 , m3) is one of the Platonic triplets. In fact,
if either r ≥ 4 or (m1, m2 , m3) is not a Platonic triplet then we use the argument
in the proof of Lemma 4.4. The curve � in this case is nonrational, whereas the
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inverse image of G′ in Y is a disjoint union of the affine lines. Hence we obtain a
contradiction.

The last assertion is easy to see. Since the Picard number of X is 1 and since
B ′ ∼= P1, it follows that all fibers of g ′ are irreducible. Then Lemma 4.3 implies
that g ′ has at least three multiple fibers because π1(X) is not a finite cyclic group.
If one notes that a general fiber of ψ is transverse to the fibration g ′, then the same
argument as in the previous assertion (3) implies that the multiplicities of the sin-
gular fibers of g ′ form one of the Platonic triplets.

Step 3. Taking the closures of the fibers of g yields a pencil of rational curves *

with at most one base point on V. Note that the base point lies on D if it exists.

Claim.

(1) * has no base point. In particular, V has another P1-fibration (say, g̃) whose
general fiber is transverse to 0.

(2) S is also a cross-section for g̃.

For the proof of (1), suppose that Q is a base point of *. Then Q lies either on
S or on a boundary fiber component of 0. Let W be obtained from V by a short-
est succession of blow-ups at Q (and its infinitely near points), so that W has a
P1-fibration g̃ that extends g. The last (−1)-curve E obtained by blow-ups is a
cross-section of g̃. We note that every irreducible component of W −X, except for
E and possibly the proper transform S ′ of S, has self-intersection number ≤ −2.

The proper transform S ′ is contained in a fiber (say, G) of g̃ and either (a) meets
at least three other components of G or (b) meets two components of G and also
meets E. This follows from the assumption that there are at least three multiple
fibers of ψ. In either case, by Lemma 2.1(2) we can see that S ′ is not a (−1)-curve.
On the other hand, the proper transforms of at least two singular fibers (which re-
main untouched under the blow-ups W → V ) of 0 corresponding to the multiple
fibers of ψ, say F̃1 and F̃2 , have the property that (Supp F̃1 − F1)∪(Supp F̃2 −F2)

is contained in G. All the components of this last union are components of D, and
none is a (−1)-curve (by our initial assumption). Every fiber of g is also irre-
ducible, as remarked in Step 2. It follows that the closure of every singular fiber
of g in W is the unique (−1)-curve in the corresponding fiber of the P1-fibration
g̃ on W.

The curve S ′ is connected to E by a connected union of irreducible components
G (possibly, S ′ ∩ E �= ∅). If we successively contract (−1)-curves in G using
Lemma 2.1, we reach a stage when the image of S ′ becomes a (−1)-curve and
either (a) meets at least three other irreducible components of the image of G or
(b) meets two irreducible components of the image of G and meets the image of
E. In case (a) we have a contradiction to Lemma 2.1(2). Suppose that case (b)
occurs. Because the image of S ′ meets two irreducible components of the image
of G, the multiplicity of S ′ in G is 2. But then its image cannot meet the image of
E ′. This proves part (1) of the claim.

For the proof of part (2) we observe that, if S is not a cross-section of g̃, then it
is contained in a fiber of g̃. In this case we argue exactly as in part (1) and arrive
at a contradiction.
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Step 4. Now changing the notation, let G be a general fiber of 6*. Then G2 =
0. The idea of the proof is to blow down V to a minimal model and then calcu-
late the arithmetic genus of the image of G in the minimal model in two different
ways in order to arrive at a contradiction.

The only singular fibers of 0 are the fibers F̃i containing Fi for i = 1, 2, 3, and
the multiplicities form a Platonic triplet. We have already seen that the closure
F̄i of Fi is the only (−1)-curve in F̃i . Starting with F̄i, we successively contract
(−1)-curves for all i and arrive at a P1-bundle V0 over B̄. The component of F̃i

meeting S occurs with multiplicity 1 in F̃i . Hence, by Lemma 2.1, in the process
of these contractions there will always be a (−1)-curve that differs from the im-
age of this curve. Let G0, S0 be (respectively) the images of G, S in V0, and let F
be a general fiber of 0.

Let n := G · F. We denote the general fiber of the P1-bundle V0 → B̄ again
by F. Write G0 ∼ aF + bS0, and denote S2

0 by −c. Since G0 · F = n, we have
b = n. From G0 · S0 = 1, we obtain 1 = a + nS2

0 = a − cn. Hence G0 ∼
(1+ cn)F + nS0. This gives G2

0 = 2n + cn2. Now let K be the canonical divisor
of V0. Then K ∼ −2S0 − (c+2)F and so K ·G0 = (1+ cn)(−2)+n(−2+ c) =
−2n − cn − 2. Therefore, pa(G0) = cn(n − 1)/2. Now we calculate pa(G0) in
a different way.

Clearly G · F̄i = n/mi for each i. Thus, contraction of F̄i produces a singular
point of multiplicity n/mi on the image of G. Let

ei1 = n/mi ≤ ei2 ≤ · · · ≤ eiri

be the multiplicities of the images of G after the succession of contractions of
(−1)-curves. Because G is rational,

pa(G0) =
3∑

i=1

ri∑
j=1

eij

eij − 1

2
.

Since G2 = 0, we get G2
0 = ∑

i,j e2
ij . Suppose cn(n−1)/2 = ∑

i,j eij(eij −1)/2.
Then cn2 −cn = G2

0 −∑
eij and hence

∑
eij = 2n+cn. From

∑
e2
ij = 2n+cn2

we have ∑ (
eij

n

)2

= 2

n
+ c. (4.1)

Similarly, from
∑

eij = 2n + cn we obtain
∑ eij

n
= 2 + c. (4.2)

Subtracting (4.1) from (4.2) then yields

∑ eij

n
−

(
eij

n

)2

= 2 − 2

n
. (∗)

We will now use the observation made in Step 2 that (m1, m2 , m3) is a Platonic
triplet. Then m1 = 2. First we concentrate on the fiber F̃1. Since F̄1 is the only
(−1)-curve in F̃1, it follows that the self-intersection of any other component of F̃1
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is ≤ −2. Write F̃1 = 2F̄1 +� as the scheme-theoretic fiber. Then K · F̃1 = −2 =
−2 + K · �. From this and the fact that Supp � is connected (since X is affine)
we infer that every component of Supp � is a (−2)-curve. By [29, Lemma 1.5],
the dual graph of F̃1 has exactly one branch point and F̄1 is a tip of one of the
branches at the branch point. Hence we see that the multiplicity sequence on the
image of G during contractions of curves in F̃1 is n/2, n/2, . . . , n/2 (at least three
blow-downs). Hence the contribution to the sum

∑
(eij/n) − (eij/n)

2 from this
fiber is at least 3/4.

Now consider the other two fibers. If m2 = m3 = 2 then by the same observa-
tion as before we see that the LHS of (∗) is greater than 2 whereas the RHS is less
than 2. Suppose that m2 = 2 and m3 > 2. We will show in what follows that, in
this case, the contribution from F̃3 is at least 2/3. Hence in all the cases we get a
contradiction to (∗).
Step 5. Finally we consider the case when m2 > 2 and m3 > 2. For simplicity
we consider only the case of m3 and write m3 = m. Since G meets F3 transversally
in n/m distinct points, we have n/m smooth subarcs of G meeting F3 in distinct
points. We consider the images of these arcs in V0, say G0,1, G0,2 , . . . , G0,n/m.

Since G is a general fiber of g, the multiplicity sequences for all these unibranch
curves are the same. In particular, it follows that e3j is divisible by n/m. Now
G0,j · F = m for each j. Let n1 be the multiplicity of G0,j of the singular point
lying on the fiber L on V0 that is the image of F̃3. We consider the reverse process
to obtain F3.

If n1 = 1, then the proper transform L′ of L in V is a (−1)-component lying
in the boundary V \ X. Because such a component does not exist on V (by our
assumption), we have n1 > 1. Then the Euclidean transformation with respect to
the pair (m, n1) (see [14]) will be the first process that we must perform in order
to produce the singular fiber F̃3. This process produces a linear chain of the com-
ponents. Then we have to blow up a point on the (−1)-component of the linear
chain (not the end components of the linear chain) as well as additional points to
obtain the multiple fiber F3 on X. This last process produces the side tree.

Let n1 > n2 > · · · > ns be the multiplicities of G0,1 in the Euclidean trans-
formation. Then ns ≥ 1. It follows that the distinct multiplicities occurring in the
resolution of singularities for G0 contain n1 · n/m, n2 · n/m, . . . , ns · n/m. Hence
the contribution to the LHS of (∗) from F̃3 is at least

a1(n1/m − n2
1/m

2) + a2(n2/m − n2
2/m

2) + · · · + as(ns/m − n2
s /m

2),

where the integers a1, a2 , . . . , as are defined as follows:

m = a1n1 + n2 , n2 < n1,

n1 = a2n2 + n3, n3 < n2 ,

...
...

ns−2 = as−1ns−1 + ns , ns < ns−1,

ns−1 = asns.
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From G0j · F = m we see that the arc G0j on V0 has a parameterization of the
form

z1 = t n1, z2 = t m + higher-degree terms.

Hence, in the resolution by blow-ups, the multiplicity sequence for G0j contains
n

a1
1 , . . . , nas−1

s−1 , nas
s (where na signifies that n is repeated a times). We thus have

1 = a1 · n1/m + n2/m,

n1/m = a2 · n2/m + n3/m,

...

ns−2/m = as−1 · ns−1/m + ns/m,

ns−1/m = as · ns/m.

Adding up both the left- and right-hand sides yields

1 + n1

m
− ns

m
=

s∑
i=1

ai · ni

m
. (4.3)

Again multiplying respectively by n1/m, n2/m, . . . , ns/m, we obtain

n1/m = a1(n1/m)2 + n1n2/m
2,

n1n2/m
2 = a2(n2/m)2 + n2n3/m

2,

...

ns−1ns/m = as(ns/m)2.

Hence it follows that
n1

m
=

s∑
1

ai

(
ni

m

)2

. (4.4)

From (4.3) and (4.4) we can derive

∑
ai

{
ni

m
−

(
ni

m

)2}
= 1 − ns

m
.

Here we note that ns |m and ns < m. If m is a prime number then ns = 1; if
ns �= 1, then the first blow-up to produce the side tree of F̃3 will give a contribu-
tion (ns/m) − (ns/m)2. Hence the contribution is at least 1 − 1/m if ns = 1 and
1 − (ns/m)2 if ns �= 1. That is, the contribution is at least 2/3, 3/4, 4/5 as m =
3, 4, 5 (respectively) and 3/4 if m > 5. Therefore, the contributions to the left side
of (∗) from F̃1, F̃2 , and F̃3 are at least 2. This is a contradiction to the relation (∗)
in Step 2 and so completes the proof of Theorem 4.1.

Proof of Theorem 4.2

Let X be a smooth affine surface with an A1-fibration π : X → B. By Theo-
rem 4.1, X has no A1-fibration whose fibers are transverse to the fibers of ψ.
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Hence any automorphism of X permutes the fibers of ψ. Let G := Aut(X), and
let m1F1, m2F2 , . . . , mrFr be all the multiple fibers of ψ and Pi := ψ(Fi). By hy-
pothesis, r ≥ 3. Hence there exists a subgroup H of finite index in G such that
every fiber of ψ is stable under every element of H. If the multiplicities are pair-
wise coprime, then clearly every element of G keeps every fiber of ψ stable and
hence the induced action of G on B is trivial. Now we can assume that G itself
keeps every fiber stable and acts trivially on B.

Step 1. First we will show that G is finite.
By Lemma 2.4, there exists a finite Galois covering τ : � → B such that the

ramification index at any point over Pi is mi for every i. Then the normalization
of the fiber product Y := X ×B � is an étale covering of X. There is an induced
A1-fibration ψ ′ on Y whose fibers are all reduced; the group G also acts on Y,
permuting the fibers. By taking a subgroup of finite index of G, we can assume
that every element of G keeps stable every component of every fiber of ψ ′. Let Z
be obtained by omitting all components but one from every reducible fiber of ψ ′.
Then Z is a smooth affine surface with an A1-bundle π̃ : Z → � and G acts on
Z by automorphisms, keeping every fiber stable. There is a smooth compactifica-
tion W ⊂ T such that T − Z is a cross-section S̃ of ψ̃. The action of G extends
to T, keeping S̃ pointwise fixed. Assuming that the action of G on T is nontrivial,
we will show that such a surface T does not exist; this will prove that G is finite.
Observe that W is affine.

Case 1. Suppose that T = P1 × P1 such that G keeps each {x} × P1 stable and
keeps S̃ pointwise fixed. Then the action of G is independent of the point x in the
first factor P1. This implies that the fixed point locus of G cannot contain an ample
irreducible curve (in this case, S̃ ). (This argument was shown to us by A. Fujiki.)

Case 2. Suppose next that T is a rational surface that is not isomorphic to
P1 × P1. Then T contains a unique irreducible curve 
 with 
2 < 0 and 
 is a
cross-section of ψ̃ that is also pointwise fixed by G. Hence most fibers of ψ̃ have
at least two fixed points. Let Q1, Q2 , . . . , Qs be the points in S̃ ∩ 
. Each Qi is
fixed by G. By performing elementary transformations at these points repeatedly,
we can separate the proper transforms of S̃ and 
 and still have a G-action along
fibers of a P1-bundle T ′ → � while keeping the proper transforms of S̃ and 


pointwise fixed. Then it is easy to see that the G-action extends to an action of
the multiplicative group C∗ on T ′ and that the process of obtaining T from T ′ is
C∗-equivariant. Hence the G-action on T extends to an action of C∗ on T. At Qi,
the fixed point locus of this action is not smooth; this is a contradiction, since C∗
is reductive.

Case 3. Now assume that � has genus g > 0, that S̃ is an ample cross-section
of ψ̃ : T → �, and that G acts on T keeping every fiber stable and keeping S̃

pointwise fixed. Let U1, U2 be Zariski-open subsets of � such that the A1-bundle
is trivial over both U1, U2 and � = U1 ∪ U2. We can use the section S̃ to choose
a point at infinity on every fiber; W is obtained from U1 × A1 and U2 × A1 by
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patching. Let z, w be fiber coordinates on U1 × A1 and U2 × A1, respectively. On
U1 ∩ U2 we have w = a(u)z + b(u), where a, b are regular functions on U1 ∩ U2

and a is nowhere zero. Next we use an automorphism σ in G.

Now suppose that σ(u, z) = (u, α1(u)z + β1(u)) on U1 × A1 and σ(u, w) =
(u, α2(u)w + β2(u)) on U2 × A1, where αi(u) are units on Ui, et cetera. Hence
a(α1z+β1)+b = α2(az+b)+β2 on (U1 ∩U2)×A1. This gives aα1 = aα2 and
aβ1 + b = bα2 +β2 on U1 ∩U2. Then α1 = α2 on U1 ∩U2 , whence the functions
ai on Ui patch together to give an invertible regular function on �. It follows that
α1 = α2 is a nonzero constant α. We claim that α = 1. In fact, if this is not true,
then σ has another fixed point on every fiber and our argument for Case 2 works
in this case also to give a contradiction.

Assume that α = 1. Now we have aβ1 = β2 on U1 ∩ U2. The conormal bundle
of S̃ in T is I/I 2, where I is the ideal sheaf of S̃ in T. On U1 × P1 the ideal sheaf
is generated by 1/z = z ′ and on U2 × P1 by 1/w = w ′. Since w = az + b, it fol-
lows that w ′ = z ′/(a + bz ′) = z ′/a (mod I 2). Thus, on S̃ the equation aβ1 = β2

gives a cross-section β1z
′ = β2w

′ of I/I 2. But S̃2 > 0 since W is affine. Hence
there is no such nonzero cross-section of I/I 2 and thus no such automorphism
can exist.

Step 2. Now assume that m1, m2 , . . . , mr are pairwise coprime. We will show
that Aut(X) is trivial; for this purpose, it suffices to show that there is no non-
trivial finite automorphism of X. Suppose that σ is such an automorphism. By
Sumihiro’s result [25], we can find a smooth projective compactification X ⊂ V

such that (a) V has a P1-fibration ψ̃ : V → P1 that extends ψ and (b) the action
of σ extends to V. In the fiber F̃i of ψ̃ containing Fi, we may assume that the clo-
sure F̄i is the only (−1)-curve and hence is stable under σ. Since F̄i is a tip of F̃i

and since S̃ is stable under σ, we can see that there exists a component (say, Gi)

of F̃i that meets at least three other components of F̃i and that is pointwise fixed
by σ. Let z1, z2 be suitable local coordinates at a general point pi of Gi such that
Gi is {z1 = 0} and ψ is given by (z1, z2) → z

mi

1 . The action of σ on the base B

is trivial. Hence we can diagonalize the action of σ at pi as σ(z1, z2) = (ζz1, z2),
where ζmi = 1. It follows that σmi is trivial in a neighborhood of pi and thus triv-
ial everywhere on X. If m1, m2 , . . . , mr are pairwise coprime then σ is the identity.
This completes the proof of Theorem 4.2.

Further Results

Our next result deals with C∗-fibrations on (affine) quasi-homogeneous surfaces.

Theorem 4.6. Let X be a normal quasi-homogeneous surface with vertex ν.

Suppose there exist at least three orbits with nontrivial isotropy subgroups. Then
any curve C in X 0 that is isomorphic to C∗ is one of the orbits of the good C∗-
action on X.

Proof. Let the C∗-action be denoted by σλ for λ ∈ C∗. For a general λ, the trans-
late σλ(C) meets a general orbit transversally if C is not an orbit. There exists a
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normal projective compactification V of X such that the C∗-action extends to V

and V − X contains an irreducible curve B that is pointwise fixed by this action.
There is a natural map X 0 → B whose fibers are the orbits.

Suppose that C is not an orbit. Then C dominates B and so B is a rational curve.
Now C and σλ(C) define a pencil of rational curves on V. There are at most two
base points for this pencil that are contained in B ∪ {ν}. Resolving the base locus
yields a P1-fibration on a blow-up of V whose restriction to X 0 is a C∗-fibration
π : X 0 → �. Every fiber of π contains a reduced irreducible component. The
only possible member of the pencil that does not intersect X 0 is B. Hence � ∼=
A1 or P1.

By Lemma 2.4, we have an exact sequence

π1(C∗) → π1(X
0) → (1).

This implies that π1(X
0) is cyclic. Since σλ has at least three orbits with nontriv-

ial isotropy subgroups, the map X 0 → B has at least three multiple fibers. By the
argument in the proof of Lemma 2.5 and using Lemma 2.4, we can construct a
noncyclic étale finite covering of X 0. This is a contradiction, proving that C is an
orbit of σλ.

An easy consequence of Theorem 4.6 is the following result.

Theorem 4.7. With X as in Theorem 4.6, there is a short exact sequence

(1) → Gm → Aut(X) → 
 → (1),

where 
 is a finite group.

Our next result is similar in spirit to Theorem 4.6.

Theorem 4.8. Let (X, ν) be a quasi-homogeneous surface with the correspond-
ing quotient map ψ : X 0 → B. If ψ either has at least four multiple fibers or has
three multiple fibers whose multiplicities do not form a Platonic triplet, then the
image of any nonconstant morphism f : C∗ → X 0 is a fiber of ψ.

Proof. We will give only a brief sketch of the proof, since most of the arguments
have already been made. Suppose that the result is false. Then B ∼= P1 because B

is rational. Let P1, P2 , P3, . . . be the points in B corresponding to the orbits with
nontrivial isotropies. By Lemma 2.4, we can construct a Galois ramified covering
� → B that is correctly ramified over the points Pi. Then � is nonrational. The
normalization Y ′ of the fiber product X 0 ×B � is an étale finite covering of X 0,
and there is a C∗-action on Y ′ such that the map Y ′ → X 0 is equivariant. Now
π1(Y

′) → π1(X
0) has finite index. From this we see that there is a suitable mor-

phism C∗ → Y ′ whose image is not contained in a fiber of the quotient map Y ′ →
�. This is a contradiction, since � is nonrational.

Theorem 4.8 has the following consequence.

Theorem 4.9. For X as in Theorem 4.8, any self-map X → X permutes the or-
bits of the good C∗-action.
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5. Examples

1. Let W = P1×P1 and let G1, G2 be two fibers of one of the natural P1-fibrations
on W. Let S be a cross-section of this fibration. By blowing up points of G1 suit-
ably we obtain a surface V such that the inverse image of G1 in V is the linear
chain D1 + D2 + D3 + D4 + D5, where D1, D5 are (−1)-curves, D2 , D3, D4 are
(−2)-curves, the proper transforms S ′, G′

2 of S, G2 on V are (0)-curves, and S ′
meets D3. It is easy to see that X := V − (D2 +D3 +D4 + S ′ +G′

2) is an affine
surface. The curve B := D2 +D3 +D4 + S ′ +G′

2 is the divisor at infinity for X.

By Lemma 2.5, π1,∞(X) is finite cyclic (of order 4). We claim that ML(X) �= C,
for if ML(X) = C then (by Theorem 2.9) X has a minimal normal compactifi-
cation Z such that D := Z − X is a linear chain of rational curves. But then Z

is obtained from V by blow-ups and blow-downs of (−1)-curves with points in B

and hence D is the proper transform of B. However, we can see that this is not
possible and so ML(X) �= C.

2. As an application of Theorem 3.1, we will prove the following result related
to the Jacobian problem.

Proposition. Let ϕ : X1 → X2 be an étale endomorphism of the affine plane,
where X1 and X2 are isomorphic to A2. Let X̃2 be the normalization of X2 in the
function field of X1. Then X1 is a Zariski open subset of X̃2 and ML(X̃2) �= C,
provided there are at least three singular points on X̃2.

Proof. It is known by [16; 17] that X1 is a Zariski open set of X̃2 , that X̃2 is a log
affine surface with at most cyclic quotient singularities, and that X̃2 − X1 is a dis-
joint union of irreducible components isomorphic to the affine line. Note that any
A1-fibration on X1 extends to an A1-fibration ρ : X̃2 → B for B ∼= A1 or P1 and
that the restriction ρ|X1 consists only of reduced irreducible fibers because X1

∼=
A2. Let V be a minimal normal compactification of X̃2 such that ρ extends to a
P1-fibration p : X̃2 → B̄, with a cross-section S contained in the boundary D at
infinity. Suppose that X̃2 �= X1. Write X̃2 − X1 = ∐n

i=1 Ci, where the Ci are irre-
ducible. We argue separately in the two cases B ∼= A1 and B ∼= P1.

First assume that B ∼= A1. Then the closure C̄i of Ci in V is an irreducible com-
ponent of a fiber p−1(P ), where P ∈ B. Let Ai := (ρ|X1)

−1(P ) and let Āi be its
closure on V. Since Āi has multiplicity 1 in the fiber p−1(P ), it follows that p−1(P )

contains components other than Āi and C̄i (otherwise, Āi and C̄i must meet on
the cross-section S, which is impossible). Let Di be the component of p−1(P )

that meets the cross-section S. Then Di �= Āi, C̄i, for otherwise Āi or C̄i has more
than one puncture. Suppose that #{ρ(Ci);1 ≤ i ≤ n} ≥ 2. Then the divisor D

is not a linear chain because the fiber F∞ of p−1(P ) lying over the point P∞ at
infinity of B is contained in the boundary divisor D. Suppose that #{ρ(Ci);1 ≤
i ≤ n} = 1. Namely, we assume that all the components Ci are contained in one
and the same fiber p−1(P ). If there are two or more singular points then they lie
on some of the Ci and the C̄i are connected to the component Di, which meets S.

If there is a singular point on Ci then the multiplicity of C̄i in the fiber p−1(P ) is
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at least 2. Hence there exists a nonempty subtree in D that connects C̄i and Di. If
there are two or more singular points, then the divisor D is not a linear chain.

Next assume that B ∼= P1. Then some component, say Cj , is contained in the
fiber F∞ = p−1(P∞). If F∞ is reducible, it must be that F∞ contains a component
of D. We then argue as in the case B ∼= A1 to conclude that the existence of two
or more singular points on X̃2 implies that D is not a linear chain. So, assume that
F∞ = Cj is irreducible and hence (C2

j ) = 0. Then the existence of three or more
singular points on X̃2 implies that D is not a linear chain. Hence ML(X̃2) �= C
by Theorem 3.1.

3. Let X be a Q-homology plane with an A1-fibration π : X → B, where B ∼= A1.

Then X has a Ga-action such that every fiber of π is an orbit for this action. We
assume that π has at least two multiple fibers. If Y is obtained from X by remov-
ing a finite number of regular fibers, then clearly Aut(Y ) contains Ga. Meanwhile,
X has no other A1-fibrations whose general fibers are transverse to π (by Theo-
rem 4.1). Similar examples can be given when base of the fibration is a curve of
positive genus.

4. Let V be a Hirzebruch surface Bn with n � 0. Choose a cross-section S of
the P1-bundle π on Bn with S2 = n. By blowing up two points of S and its in-
finitely near points successively, we can create two singular fibers G̃1, G̃2 on the
blow-up Ṽ of V such that C2

i = D2
i = −2 for 1 ≤ i ≤ 3, C2

4 = D2
4 = −1,

(C3 · C4) = (D3 · D4) = 1, and C1, D1 are the proper transforms of the fibers of
V. The surface X := Ṽ − (S ′ ∪C1 ∪C2 ∪C3 ∪D1 ∪D2 ∪D3) is affine, where S ′
is the proper transform of S in Ṽ. The divisor at infinity for X is a linear chain of
P1s. Hence X admits two nonconjugate actions of the additive group Ga. Observe
that there is an A1-fibration on X with exactly two multiple fibers (of multiplic-
ity 2 each) over P1. Therefore, the hypothesis of Theorem 4.2—that π has at least
three multiple fibers—is necessary to conclude the assertion.

5. We calculate the Makar-Limanov invariant of X := P2 − C, where C is a
curve defined by X0X

m−1
1 = Xm

2 with m > 2. We will show that X has a unique
Ga-action up to conjugacy that is associated to the pencil generated by C and mL,
where L is the line X1 = 0.

Using blow-ups to resolve the base locus of this pencil yields an A1-fibration on
X with base A1. Hence X has a nontrivial Ga-action. By suitable further blow-
downs we can find a minimal normal compactification V of X such that D :=
V − X is a nonlinear tree of rational curves.

We can easily show that X is a Q-homology plane and that the A1-fibration has
a unique multiple fiber of multiplicity m. By Theorem 3.1, ML(X) �= C; in fact,
ML(X) = C[x], which is a polynomial ring in one variable. The surface X also
has a C∗-action given by σλ([X0, X1, X2 ]) = [X0, λmX1, λm−1X2 ]. This action of
C∗ on P2 keeps C stable and hence induces an action on X. The action of C∗ on P2

has only finitely many fixed points. We claim that a general orbit of the C∗-action
on X is transverse to the fibers of the A1-fibration just described; otherwise, the
fibers of the A1-fibration will be stable under the C∗-action. Then on every fiber
there will be at least one fixed point for the C∗-action. This is not possible.
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6. The surface X of paragraph 5 is one of the affine pseudo-planes, which—
together with their universal coverings—have various interesting properties (cf.
[13]). Using a different example, we shall offer just one remark about the A1-
fibrations on such surfaces. Let Y be a smooth affine surface xry = zd −1, where
r ≥ 2 and d ≥ 2. The quotient surface X of Y under a (Z/dZ)-action defined by
ζ · (x, y, z) = (ζx, ζ−ry, ζz) is an affine pseudo-plane, where ζ is a primitive dth
root of unity. In fact, the quotient morphism Y → X is a universal covering map
of X.

It is known that any Ga-action on X lifts up to a Ga-action on Y that com-
mutes with the (Z/dZ)-action and vice versa (cf. [12]). Now (x, y, z) �→ x gives
rise to an A1-fibration on Y over the base A1, so Y has a nontrivial Ga-action that
commutes with the (Z/dZ)-action. But one can show that this is a unique A1-
fibration on Y over an affine base curve. Meanwhile, there are at least 2d distinct
A1-fibrations on Y over P1. In fact, a mapping (x, y, z) ∈X �→ [xr : z − ζ i] (or
[y : z − ζ i]) yields an A1-fibration over P1 for 0 ≤ i < d. This example shows
that ML(Y ) �= C while Y has at least two independent A1-fibrations.
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