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Dynamics of Quadratic Polynomial
Mappings of C2

Vincent Guedj

Introduction

A remarkable feature of one-dimensional complex dynamics is the prominent role
played by the “quadratic family” Pc(z) = z2 + c. The latter has revealed an ex-
citing source of study and inspiration for the study of general rational mappings
f : P

1 → P
1 as well as for more general dynamical systems [L]. Our purpose

here is to introduce several quadratic families of polynomial self-mappings of C
2

that we hope will be the complex two-dimensional counterpart to the celebrated
quadratic family.

We partially classify quadratic polynomial endomorphisms of C
2 (see Section 2)

using some numerical invariants (dynamical degrees λ1(f ), dt(f ) and dynamical
Lojasiewicz exponent DL∞(f )), which we define in Section 1. We then use this
classification to test two related questions.

Question 1. Does there exist a unique invariant probability measure of maximal
entropy?

Question 2. Does there exist an algebraically stable compactification?

Simple examples show that there may be infinitely many invariant probability
measures of maximal entropy when dt(f ) = λ1(f ). When dt(f ) > λ1(f ), it is
proved in [Gu2] that the Russakovskii–Shiffman measure µf is the unique mea-
sure of maximal entropy. We push further the study of µf , when f is quadratic,
by showing that it is compactly supported in C

2 (Section 4). Moreover, every
plurisubharmonic function is in L1(µf) (Section 5) and the “exceptional set” is
algebraic (Section 6).

When dt(f ) < λ1(f ), one also expects the existence of a unique measure of
maximal entropy (this is the case when f is a complex Hénon mapping [BLS1]). If
f is algebraically stable on some smooth compactification of C

2, then one can con-
struct invariant currents T+ , T− such that f ∗T+ = λ1(f )T+ and f∗T− = λ1(f )T−
(see [Gu1]). It is usually difficult to define the invariant measure µf = T+ ∧ T−.
However, this can be done when f is polynomial in C

2, since T+ admits continu-
ous potentials off a finite set of points. We briefly discuss Question 1 for quadratic
mappings with dt(f ) < λ1(f ) in Section 3; the answer is positive for an open set
of parameters but unknown in general.
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1. Numerical Invariants

1.1. Algebraic Stability

Let f : C
2 → C

2 be a polynomial mapping. We always assume f is dominating,
that is, the Jacobian Jf of f does not vanish identically. Let us denote by dt(f )
the topological degree of f (i.e., the number of preimages of a generic point) and
by δ1(f ) its algebraic degree (i.e., the degree of the preimage of a generic line
in C

2). If f = (P,Q) in coordinates, then δ1(f ) = max(degP, degQ). Clearly
dt behaves well both under iteration (dt(f j ) = [dt(f )]j ) and under conjugacy
(dt(f ) = dt(�

−1 � f � �)). Concerning δ1, we also have the straightforward
inequality

δ1(f � g) ≤ δ1(f ) · δ1(g); (∗)
however, equality fails in general. Nevertheless, (∗) shows that the sequence
(δ1(f

j )) is submultiplicative, so we can define

λ1(f ) := lim[δ1(f
j )]1/j =: first dynamical degree of f.

It follows again from (∗) that λ1(f ) is invariant under conjugacy.
In order to compute λ1(f ), one needs to compute δ1(f

j ) for all j ≥ 1. Although
this can be achieved “by hand” in some simple situations, there is a subtler
way of computing λ1(f ) that, moreover, yields interesting information about the
dynamics. Let X = C

2 ∪ Y∞ be a smooth compactification of C
2, where Y∞ de-

notes the divisor at infinity. We still denote by f the meromorphic extension of f
to X and let If ⊂ Y∞ be the indeterminacy set of f , that is, the finite number of
points at which f is not holomorphic.

Definition 1.1. We say f is algebraically stable inX if, for every curve C ofX
and every j ≥ 1, f j(C \ If j ) /∈ If , where If j denotes the indeterminacy set of f j.

It is known [PSch] that every smooth compactification of C
2 is a projective alge-

braic surface X = C
2 ∪ Y∞, where the divisor at infinity Y∞ = C1 ∪ · · · ∪ Cs

consists of a finite number of rational curvesC1, . . . ,Cs. Since we are dealing with
polynomial mappings, it follows that f(C2) ⊂ C

2 and that the indeterminacy set
If is located inside Y∞. Hence, the only curves that can be contracted to a point
of indeterminacy are the Cj . The condition of algebraic stability is thus quite easy
to check here.

Question 1.2. Let f : C
2 → C

2 be a polynomial dominating mapping. Can one
always find a smooth compactification of C

2 on which f becomes algebraically
stable?

We will see in what follows that the answer is positive when δ1(f ) = 2. The answer
is negative in general for rational mappings [F]. The point is that if f : X→ X is
algebraically stable inX, then λ1(f ) equals the spectral radius of the linear action
induced by pull-back by f on the cohomology vector spaceH1,1(X, R).Moreover,
this is is the starting point for the construction of invariant currents (see [Gu1]).
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1.2. Dynamical Lojasiewicz Exponent

A general principle is that the behavior of f at infinity governs its dynamics at
bounded distance. Recall that the Lojasiewicz exponent L∞(f ) of f at infinity is
defined by

L∞(f ) = sup{ν ∈R | ∃(C,R) > 0, ‖m‖ ≥ R ⇒ ‖f(m)‖ ≥ C‖m‖ν}.
It is known that L∞(f ) is always a rational number (possibly−∞) which is pos-
itive if and only if f is proper. Moreover, there are explicit formulas that yield
L∞(f ) by simple computation [CK].

Lemma 1.3. Let f , g : C
2 → C

2 be polynomial dominating mappings. Then:

(i) L∞(f ) ≤ δ1(f )with equality if and only if f extends holomorphically to P
2;

(ii) L∞(f � g) ≤ δ1(f ) · L∞(g) if g is proper; and
(iii) L∞(f ) · L∞(g) ≤ L∞(f � g) if g is proper.

Proof. Let us denote by ω the Fubini–Study Kähler form on P
2.

(i) Set d = δ1(f ). Then f = (P,Q), where P,Q are polynomials such that
d = max(degP, degQ), so there exists a C1 > 0 such that

‖m‖ ≥ 1 �⇒ ‖f(m)‖ ≤ C1‖m‖d.
This yields L∞(f ) ≤ d.

Assume ‖f(m)‖ ≥ C‖m‖d for ‖m‖ ≥ R. It then follows from Taylor’s lemma
(see Lemma 1.5) that

dt(f ) =
∫

C2
f ∗(ω2) ≥ d

∫
C2
f ∗ω ∧ ω = d 2 =

∫
P2
(f̃ )∗(ω2).

Hence the meromorphic extension f̃ of f to P
2 has no point of indeterminacy; that

is, f extends holomorphically to P
2. Conversely, if f̃ is holomorphic on P

2, then
f has nondegenerate homogeneous components of degree d and so L∞(f ) = d.

(ii) Set again d = δ1(f ). Then there exists a C1 > 0 such that

‖g(m)‖ ≥ 1 �⇒ ‖f � g(m)‖ ≤ C1‖g(m)‖d.
When g is proper this reads, for every R > 1 large enough,

‖m‖ ≥ R �⇒ ‖f � g(m)‖ ≤ C1‖g(m)‖d.
The desired inequality follows.

(iii) Assume ‖f(m)‖ ≥ C1‖m‖ν for ‖m‖ ≥ R1. When g is proper we may de-
duce ‖f �g(m)‖ ≥ C2‖g(m)‖ν for ‖m‖ ≥ R2. This yieldsL∞(f �g) ≥ νL∞(g),
hence L∞(f � g) ≥ L∞(f ) · L∞(g).
If f is not proper, then (ii) and (iii) of Lemma 1.1 are false, as simple exam-
ples show. The lemma shows that the sequence (L∞(f j ))j∈N is supmultiplicative
when f is proper.

Definition 1.4. Let f : C
2 → C

2 be a proper polynomial mapping. Then the
dynamical Lojasiewicz exponent of f at infinity is

DL∞(f ) := lim[L∞(f j )]1/j.
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Let us recall the following useful lemma [T].

Lemma 1.5. Let S be a positive closed current of bidegree (1,1) on P
2, and

let u be a locally bounded plurisubharmonic function in C
2. Assume u(m) ≥

ν log+‖m‖ + C on the support of S for some C, ν > 0. Then∫
C2
S ∧ ddcu ≥ ν

∫
C2
S ∧ ω.

The proof is an integration-by-parts argument (see [Gu1, Prop. 4.3]).

Proposition 1.6. Let f : C
2 → C

2 be a proper polynomial mapping. Then the
following statements hold.

(i) L∞(f ) is invariant under affine conjugacy, andDL∞(f ) is invariant under
polynomial conjugacy.

(ii) 0 < L∞(f ) ≤ DL∞(f ) ≤ λ1(f ) ≤ δ1(f ).

(iii) L∞(f ) ≤ dt(f )/δ1(f ), so DL∞(f ) ≤ dt(f )/λ1(f ).

Remark 1.7. All these inequalities are strict in general. Note that ifDL∞(f ) >
1 then infinity is an “attracting” set for f : there exist a neighborhood V of in-
finity in C

2 and an l ≥ 1 such that f lV ⊂ V and
⋂
j≥0 f

j(V ) = ∅. Hence
every point a ∈ B+(∞) := ⋃

n≥0 f
−n(V ) escapes to infinity in forward time,

so the nonwandering set of f is included in the compact set K+ := {p ∈ C
2 |

(f n(p))n≥0 is bounded} = C
2 \ B+(∞).

Proof of Proposition 1.6. Everything follows immediately from Lemma 1.3 ex-
cept for part (iii). Assume ‖f(m)‖ ≥ C‖m‖ν for ‖m‖ ≥ R, where C, ν,R > 0.
It follows from two applications of Lemma 1.5 that

dt(f ) =
∫

C2
f ∗ω ∧ f ∗ω ≥ ν

∫
C2
f ∗ω ∧ ω = νδ1(f ).

Therefore dt(f ) ≥ δ1(f )L∞(f ) and, by iteration, dt(f ) ≥ λ1(f )DL∞(f ).

Examples 1.8. (1) Consider f(z,w) = (P(w),Q(z) + R(w)), where P,Q,R
are polynomials of degree p, q, d respectively, with d > max(p, q). We obtain
λ1(f ) = δ1(f ) = d and dt(f ) = pq as well as L∞(f ) = DL∞(f ) = pq/d =
dt(f )/λ1(f ).

(2) Consider f(z,w) = (w, z2 + aw + c), where (a, b)∈C
2. Observe that the

second iterate f 2 extends holomorphically to P
2, so

dt(f ) = 2, λ1(f ) =
√

2 < 2 = δ1(f ), L∞(f ) = 1<
√

2 = DL∞(f ).
See [GN] for a detailed study of this mapping.

(3) Let f be a polynomial automorphism of C
2. It is known [FrM] that f is con-

jugate to either an elementary automorphism or a composition of complex Hénon
mappings. In the elementary case we have dt(f ) = λ1(f ) = 1 and DL∞(f ) =
L∞(f ) = 1/d. In the Hénon case dt(f ) = 1 and λ1(f ) = d, so DL∞(f ) ≤ 1/d.
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On the other hand, L∞(f ) ≥ 1/d, as follows from Lemma 1.3(ii) applied to f and
f −1. Therefore, L∞(f ) = DL∞(f ) = 1/d.

2. Classification of Quadratic Polynomial Mappings of CCC2

In this section we classify up to conjugacy the quadratic dominating polynomial
self-mappings of C

2 according to their dynamical degrees. For our purposes, the
precise nature of the normal form is not important: the essential point will be to
determine their numerical invariants and behavior at infinity. This section is de-
voted to a proof of the following result.

Theorem 2.1. Let f : C
2 → C

2 be a dominating polynomial mapping with
δ1(f ) = 2. Then f is conjugate, by a linear affine automorphism of C

2, to one of
the following families.

(1) dt(f ) < λ1(f )

(1.1) f(z,w) = (w + c, zw + c ′),
where c, c ′ ∈C. In this case, dt(f ) = 1 and λ1(f ) =

(
1+√5

)
/2.

(1.2) f(z,w) = (w + c,w[w − az]+ bz+ c ′),
where a, b, c, c ′ ∈C with (a, b) �= (0, 0). Here dt(f ) = 1 and λ1(f ) = 2.

(2) dt(f ) = λ1(f )

(2.1) dt(f ) = λ1(f ) = 1
(a) f(z,w) = (az+ c, z2 + bw + c ′), where a, b, c, c ′ ∈C with

ab �= 0.
(b) f(z,w) = (az+ c, zw + c ′), where a, c, c ′ ∈C with a �= 0.

(2.2) dt(f ) = λ1(f ) = 2
(a) f(z,w) = (P(z),Q(z,w)), where degP = degQ = 2 and

degw Q = 1.
(b) f(z,w) = (P(z),Q(z,w)), where degP = 1 and degQ = 2 =

degw Q.
(c) f(z,w) = (w,Q(z,w)), where degz Q = degw Q = degQ = 2.
(d) f(z,w) = (zw + c, z[z+ aw]+ bz+ c ′), where a, b, c, c ′ ∈C.

(3) dt(f ) > λ1(f )

(3.1) f(z,w) = (w, z2 + aw + c),
where a, c ∈C. Here, dt(f ) = 2 and λ1(f ) =

√
2 = DL∞(f ).

(3.2) f(z,w) = (aw + c, z[z− w]+ c ′),
where a, c, c ′ ∈C, a �= 0. In this case, dt(f ) = 2, λ1(f ) =(
1+√5

)
/2, and DL∞(f ) = 1.

(3.3) f(z,w) = (az2 + bz+ c + w, z[w + αz]+ c ′),
where a, b, c, c ′,α ∈C, a �= 0. Here dt(f ) = 3, λ1(f ) = 2, and
DL∞(f ) > 1.
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(3.4) f(z,w) = (zw + c, z[z+ αw]+ bz+ c ′ + aw),
where a, b, c, c ′,α ∈C with a �= 0. Here dt(f ) = 3 and λ1(f ) = 2, but

DL∞(f )
?= 1.

(3.5) f(z,w) = (P(z,w)+ L1(z,w),Q(z,w)+ L2(z,w)),

where P,Q are homogeneous polynomials of degree 2 with P ∧Q = 1
andL1,L2 are polynomials of degree ≤ 1. Here we have dt(f ) = 4 and
λ1(f ) = 2 = DL∞(f ).

Remark 2.2. In the sequel we shall focus on quadratic mappings with dt(f ) �=
λ1(f ). For the remaining six families, observe that families 2.1a, 2.1b, 2.2a, and
2.2b are skew products whose dynamics are rather one-dimensional. The remain-
ing two families 2.2c and 2.2d may display more intricate dynamical behavior. A
special case of 2.2.d arises in the study of density of states of self-similar diffusion
on the interval [0,1] [Sa].

Proof of Theorem 2.1. This is a case-by-case analysis.
We first decompose f(z,w) = (P(z,w)+L1(z,w);Q(z,w)+L2(z,w)), where

P,Q are homogeneous polynomials of degree 2 and L1,L2 are polynomials of
degree ≤ 1. When P ∧Q = 1, f extends holomorphically to P

2 and we obtain
the family 3.5. Hence we need only consider the cases P ≡ 0 or P = AP̃ and
Q = AQ̃ with A, P̃, Q̃ homogeneous of degree 1 and P̃ ∧ Q̃ = 1. Indeed, the re-
maining cases Q ≡ 0 and P = λQ are both conjugate to the case P ≡ 0 by
(z,w) �→ (w, z) and (z,w) �→ (z+ λw,w), respectively.

Case 1: P ≡ 0. We get f(z,w) = (αz+ βw+ c,Q(z,w)+L2(z,w)). If β =
0 then f is a skew product, and a further case-by-case analysis yields the families
2.1a, 2.1b and 2.2b. So let us assume β �= 0. Conjugating by (z,w) �→ (z,w/β)
yields β = 1. Conjugating further by (z,w) �→ (z,w−αz− c) yields α = c = 0,
hence f(z,w) = (w,Q(z,w)+ L2(z,w)).

Subcase A: degz Q = 0. Since f is dominating, it follows that degz L2 = 1 and
that Q = Q(w) is a degree-2 polynomial. In this case, f is a quadratic Hénon
mapping—that is, a mapping in the family 1.2 with a = 0 (see [FrM] for a precise
normal form).

Subcase B: degz Q = 1. Then dt(f ) = 1; that is, f is a birational mapping.
However, its inverse is not polynomial in C

2.

If degw Q = 2 then we may conjugate by (z,w) �→ (z, λw) to obtain

f(z,w) = (w,w[w − az]+ bz+ b ′w + c ′) with a �= 0.

Further conjugacy by a translation yields the remaining cases of the family 1.2.
Observe that f is then algebraically stable in P

2, so λ1(f ) = δ1(f ) = 2.
If degw Q = 1 then conjugating by (z,w) �→ (λz, λw) yields

f(z,w) = (w, zw + bz+ b ′w + c ′).
We can further conjugate by a translation to derive the normal form of the fam-
ily 1.1. Observe that f is then algebraically stable in P

1× P
1, so that λ1(f ) is the
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spectral radius of the matrix
[

0 1
1 1

]
of the degrees of f in P

1×P
1. That is, λ1(f ) =(

1+√5
)
/2 [FGu].

Subcase C: degz Q = 2. Then dt(f ) = 2.
If degw Q = 2, then f is algebraically stable in P

2 and so λ1(f ) = δ1(f ) = 2.
Thus we obtain the family 2.2c.

If degw Q = 0, then conjugating by (z,w) �→ (λz + c, λw + c/λ) yields the
family 3.1. These mappings f have the property that the second iterate f 2 is still
quadratic and admits a holomorphic extension to P

2 (i.e., f 2 belongs to the family
3.5). The assertion on the dynamical invariants easily follows.

If degw Q = 1, then conjugating by (z,w) �→ (λz,µw) yields

f(z,w) = (aw, z[z− w]+ αz+ βw + c ′).
We can further conjugate by a translation to reach the normal form of the family
3.2. Using bihomogeneous coordinates as in [Gu1], one can check that these map-
pings admit an algebraically stable extension to P

2 blown up at the point [0 : 1 : 0],
with λ1(f ) =

(
1+√5

)
/2. We will check in Lemma 2.5 that DL∞(f ) = 1.

Case 2: P = AP̃ andQ = AQ̃. Observe that f is algebraically stable in P
2,

so λ1(f ) = δ1(f ) = 2. We can write A(z,w) = αz + βw with (α,β) �= (0, 0).
Conjugating by (z,w) �→ (w, z) if necessary, we can assume α = 1. Further con-
jugacy by (z,w) �→ (z− β,w) yields β = 0.

Similarly, we decompose P̃(z,w) = az + bw and Q̃(z,w) = a ′z + b ′w with
(a, b) �= (0, 0) �= (a ′, b ′) and [a : b] �= [a ′ : b ′ ] in P

1.

Subcase A: b = 0. In this case, ab ′ �= 0. Conjugating by (z,w) �→ (z/b ′,w)
yields b ′ = 1 and so

f(z,w) = (R(z)+ βw, z[w + αz]+ δz+ εw + c ′),
where R is a degree-2 polynomial. Either β = 0, in which case f is a skew prod-
uct of type 2.2a, or we can assume β = 1 after conjugating by (z,w) �→ (z,w/β).
A further conjugacy by a translation yields the normal form of the family 3.3. One
easily checks that dt(f ) = 3 in this case. The dynamical Lojasiewicz exponent at
infinity will be estimated in Lemma 2.4.

Subcase B: b �= 0. Conjugating by (z,w) �→ (z,w/b−aw/b) yields a = 0 and
b = 1. Thus,

f(z,w) = (zw + αz+ βw + c, z[a ′z+ b ′w]+ δz+ c ′ + aw) with a ′ �= 0.

Further conjugacy by a translation and (z,w) �→ (
z/
√
a ′,w

)
yields α = β = 0

and a ′ = 1. If a �= 0 then we have the normal form of the family 3.4. One easily
checks that dt(f ) = 3 in this case, and the exponent DL∞(f ) will be considered
in Lemma 2.6. Finally, if a = 0 then dt(f ) = 2 and f belongs to the family 2.2d.
This ends the proof of the classification.

Lemma 2.3. Consider f : (z,w)∈C
2 �→ (P(z)+w, z[w+αz]+c ′)∈C

2, where
P is a polynomial of degree 2 and α, c ′ ∈ C. Then L∞(f ) = 1 and L∞(f 2) =
3/2, so DL∞(f ) > 1.
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Proof. We leave it to the reader to check that L∞(f ) = 1. Fix (z,w) ∈ C
2 such

that max(|z|, |w|) = R  1, and set (z ′,w ′) = f(z,w) and (z ′′,w ′′) = f(z ′,w ′).
If |z| = max(|z|, |w|) = R then |z ′| � |z|2 = R2 and |w ′| � R2, so |z ′′| � R4.

We assume now that |w| = max(|z|, |w|) = R. We have one of the following
four possible cases.

Case 1: C1|w|1/2 ≤ |z| ≤ ε1|w|, where C1 (resp. ε1) is a fixed large (resp.
small) constant. Then |z ′| � |z|2 ≥ R2, |w ′| � |zw| � R3/2, and |z ′| � |z|2 ≤
ε1|zw| ≤ ε ′1|w ′|. Therefore,

|w ′| � |z ′||w ′| � R5/2.

Case 2: |z| ≥ ε1|w|. In this case, |z ′| � |z|2 � R2 while |w ′| � |z||w| � R2,
so |z ′′| � R4.

Case 3: C−1
1 |w|1/2 ≤ |z| ≤ C1|w|1/2. Then |w ′| � |zw| � R3/2 while |z ′| � R,

so |w ′′| � |z ′w ′| � R3/2 if |z ′| ≥ 1. Now, if |z ′| ≤ 1 then |z ′′| � |w ′| � R3/2.

Case 4: |z| ≤ C−1
1 |w|1/2. Here |z ′| � |w| = R and |w ′| � |zw| � R3/2. There-

fore, |z ′′| � |z ′|2 � R2.

Altogether this shows L∞(f 2) ≥ 3/2. On the other hand, if (z,w) ∈ C
2 is

such that P(z) + w = 0 and |w| = R  |z|  1, then w ′′ = c and |z ′′| =
|P(0)+ c ′ + z[w + αz]| � |zw| � R3/2, so L∞(f 2) = 3/2.

Lemma 2.4. Consider f : (z,w) ∈ C
2 �→ (aw + c, z[z − w] + c ′) ∈ C

2, where
a, c, c ′ ∈C with a �= 0. Then L∞(f j ) = 1 for all j , so DL∞(f ) = 1.

Proof. It is straightforward to check thatL∞(f ) = 1. Observe that f(w+a,w) =
(aw + c, aw + a2 + c ′) and hence

f 2(w + a,w) = (a2w + c2 , a[c − c ′ − a2]w + c ′2)
for some constants c2 , c ′2. This shows L∞(f 2) = 1. Continuing in this fashion,

f 2(w + a + ε1/w,w)

= (a2w + c2 +O(1/w), a[c − c ′ − a2 − ε1]w + c ′2 +O(1/w)),
and so by choosing ε1 = c − c ′ − a2 + a we obtain

f 3(w + a + ε1/w,w) = (a3w + c3 +O(1/w), a2αw + c ′3 +O(1/w))
for some constant α that depends on the next-order term in O(1/w). This shows
that f 3 grows linearly on the curve {zw = w2 + a + ε1} when |w| is large; hence
L∞(f 3) = 1. Moreover, we can choose the next-order term in O(1/w) so that
α = a. We leave it to the reader to check that there exist constants εj , cj , c ′j such
that, for all N ≥ 2,

f N
(
w + a +

N−2∑
j=1

εj

wj
,w

)
= (aNw + cN +O(1/w), aNw + c ′N +O(1/w)).

This yields L∞(f N) = 1 for all N and hence DL∞(f ) = 1.
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Note that we have εj = 0 when c− c ′ = a2+ a. In this case the line L = {z =
w + a} is invariant and f |L(z,w) = (az + c − a2, aw + c − a2). In particular:
if c = a2, c ′ = −a, and aN = 1, then f N |L = IdL and so L is a curve of peri-
odic points.

Lemma 2.5. Consider f : (z,w)∈C
2 �→ (zw, z[z+αw]+ bz+ c ′ + aw)∈C

2,
where a, b, c ′,α ∈C with a �= 0. Then L∞(f j ) = 1 for all j , so DL∞(f ) = 1.

Proof. Simple estimates yield L∞(f ) = 1. Observe that f(0,w) = (0, aw + c ′)
and so the line L = (z = 0) is invariant and f |L is linear. This shows L∞(f j ) =
1 for all j ≥ 1, hence DL∞(f ) = 1. Note, moreover, that L is a line of periodic
points when c ′ = 0 and aN = 1.

3. Birational Quadratic Mappings of CCC2

In this section we consider the families 1.1 and 1.2. Since dt(f ) = 1, these fami-
lies admit an inverse mapping f −1 that is rational. There has been intensive work
on these birational mappings (see references in [DF]). It is difficult in general to
analyze the dynamics near the points of indeterminacy. We show that this can be
done here at least for open subsets of the parameters.

3.1. Family 1.1

It is convenient to consider the meromorphic extension of f(z,w) = (w + c,
zw + c ′) to P

1× P
1, in bihomogeneous coordinates:

f : P
1× P

1 → P
1× P

1;
[z0 : z1; w0 : w1] �→ [w0 : w1+ cw0; z0w0 : z1w1+ c ′z0w0 ].

It should be understood that C
2 coincides with the chart (z0 = w0 = 1) and

that “infinity” consists of the two lines (z0 = 0) = (z = ∞) and (w0 = 0) =
(w = ∞). Observe that f has two points of indeterminacy, m = (∞, 0) and
m′ = (0,∞), and contracts the line (w0 = 0) to the superattractive fixed point
q∞ = (∞,∞) while sending (z0 = 0) to the line (w0 = 0). This shows that f is
algebraically stable in P

1× P
1 with λ1(f ) =

(
1+√5

)
/2 (see [FGu] for further

details). Observe also that

If 2 = {m,m′,m′′ } = If n ∀n ≥ 2,

where m′′ = (∞,−c) is sent by f to the point m′ = (0,∞). The inverse map-
ping f −1(z,w) = (

w−c ′
z−c , z − c) is rational in C

2. One easily checks that If −1 =
{q∞, q−}, where q− = (c, c ′)∈C

2, and that

If −n = {q∞, f j(q−), 0 ≤ j ≤ n− 1}.
It is therefore important to gain control of the orbit of q−. Note that

f −1(m) = m′, f −1(m′) = m′′, f −1(m′′) = m′,
so {m′,m′′ } is a 2-cycle for f −1 to which m is strictly preperiodic (if c �= 0).
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Lemma 3.1. The 2-cycle {m′,m′′ } is f −1-attracting if and only if |c| < 1.

Proof. A simple computation shows Df −2(m′) has eigenvalues 0 and −c.
Lemma 3.2. Assume |c|, |c ′| < 10−3. Let p0 denote the fixed point of f that is
closest to (0, 0). Then p0 is attracting and q− belongs to the basin of p0.

Remark 3.3. For such parameters, f can be considered as a small perturbation
of the case c = c ′ = 0, which is the complexification of the Anosov diffeomor-
phism (z,w) �→ (w, zw) on the real torus {|z| = |w| = 1}.
Proof of Lemma 3.2. Solvingf(z,w)= (z,w) yields two fixed pointsp0= (α,α−c)
and p1 = (1+ c− α,1− α), where α is the root of X2 − (1+ c)X+ (c+ c ′) = 0
with smallest modulus. The differential of f at p0 is

Df(p0) =
[

0 α − c
1 α

]
,

so p0 is an attractive fixed point if |c|, |c ′| are small enough. Let us make a local
change of coordinates to bring back p0 to (0, 0). Consider

g(x, y) = f(α + x,α − c + y)− (α,α − c) = (y, xy + αy + (α − c)x).
In these new coordinates, q− = (c−α, c ′ + c−α); hence q− belongs to the basin
of (0, 0) = p0 if |c|, |c ′| are small enough. It is then straightforward to check that
|c|, |c ′| < 10−3 is sufficient.

Lemma 3.4. Assume that |c| < 1 and |c ′| > 4/(1− |c|). Then q− = (c, c ′) be-
longs to the basin of the superattractive fixed point q∞ = (∞,∞).
Proof. It is more comfortable to work in a local chart near q∞. Using bihomo-
geneous coordinates, we work in the chart (z1 = w1 = 1). In this chart, f defines
a mapping

g(x, y) =
(

y

1+ cy ,
xy

1+ c ′xy
)

and q∞ has coordinates (0, 0). We have

g2(x, y) =
(

xy

1+ (c + c ′)xy ,
xy2

1+ cy + c ′xy + (c ′ + cc ′)xy2

)
.

Consider

5 :=
{
(x, y)∈C

2 | |y| < 1

4
and |xy| < 1

4|c + c ′|
}
.

We claim 5 is g2-invariant and g2 is contracting in 5, so 5 is part of the basin
of attraction of q∞. Indeed, let (x, y) ∈ 5 and set (x ′, y ′) = g2(x, y). Then
|1+ (c + c ′)xy| > 3/4 and so |x ′| < 4|xy|/3 < |x|/3. Moreover,

|cy| < |y| < 1

4
,

|c ′xy| < |c ′|
4|c + c ′| <

1

3
(since |c ′| > 4 > 4|c|),

|c ′(1+ c)xy2| < 2|c ′||xy||y| < 1

2
· |c ′|

4|c + c ′| <
1

6
;
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thus |1+cy+c ′xy+(c ′+cc ′)xy2|>1/4. This yields |y ′|< 4|xy2|< |y|/|c+c ′|<
|y|/3.

Now consider 5′ = 5 ∩ C
2. In our original coordinates (z,w), we thus get a

portion of the basin (in C
2) of the superattractive fixed point q∞,

5′ = {(z,w)∈C
2 | |w| > 1/4 and |zw| > 4|c + c ′|}.

We claim that q− = (c, c ′) belongs to f −1(5′) under our assumptions. Indeed,
f(q−) = (c ′ + c, cc ′ + c ′) and we know that |cc ′ + c ′| ≥ |c ′|(1− |c|) > 4 and
|cc ′ + c ′||c + c ′| > 4|c + c ′|. This shows that f(q−), and hence q−, belongs to
the basin of q∞.

3.2. Family 1.2

We now turn to mappings of family 1.2. When a �= 2, we can further conjugate by
a translation and suppose that c = 0. In order to simplify the exposition we will
thus consider the family of three parameters.

f(z,w) = (w,w[w − az]+ bz+ c ′),
where a, b, c ′ ∈C with (a, b) �= (0, 0). We consider their meromorphic extension
to P

2 = C
2 ∪ (t = 0), where (t = 0) denotes the line at infinity. In homogeneous

coordinates,

f [z : w : t] = [wt : w(w − az)+ bzt + c ′t 2 : t 2].

Hence If = {m,m′} = If n for all n ≥ 1, where m = [1 : 0 : 0] and m′ =
[1 : a : 0] and where f((t = 0) \ If) = q∞ := [0 : 1 : 0] is a superattractive
fixed point for f. Thus f is algebraically stable in P

2 and λ1(f ) = δ1(f ) = 2.
The inverse mapping f −1 is merely rational in C

2 when a �= 0, and f −1(z,w) =
([w − z2 − c ′ ]/[b − az], z). We therefore obtain If −1 = {q∞, q−}, where q− =
(b/a, b2/a2) ∈ C

2 except when a = 0, in which case q− = q∞ and then f is a
quadratic Hénon mapping. As a result,

If −n = {q∞, f j(q−), 0 ≤ j ≤ n− 1} ∀n ≥ 1.

Observe that f −1(m) = m′ = f −1(m′).

Lemma 3.5. The point m′ is attracting for f −1 if and only if |a| < 1.
If |a| < 1 and 4|a| ≤ |b|, then q− belongs to the basin of attraction of the

point q∞.

Proof. A simple computation shows that Df −1(m′) has eigenvalues 0 and a.
Assume |a| < 1 and 4|a| ≤ |b|. We work in the chart (w = 1) # q∞. Set x =

z/w, y = t/w, and

g(x, y) = f [x : 1 : y] =
(

y

1− ax + bxy + c ′y2
,

y2

1− ax + bxy + c ′y2

)
.

We set 5 = {(x, y) ∈ C
2 | |x| ≤ 1/4 and |y| ≤ max(1/|b|,1/|c ′|,1/16)}. Let

(x, y)∈5 and set (x ′, y ′) = g(x, y). Our assumption yields

|1− ax + bxy + c ′y2| > 1/4;
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therefore,
|x ′| ≤ 4|y| ≤ 1/4 and |y ′| ≤ 4|y|2 ≤ |y|/4.

This shows that 5 is g-invariant and that gn uniformly converges to q∞ = (0, 0)
on 5. Coming back to the canonical chart C

2 = (t = 1), we now have that

5′ = 5 ∩ C
2 = {(z,w)∈C

2 | 4|z| ≤ |w| and |w| ≥ min(|b|, |4c ′|,16)}
is part of the basin of attraction of the point q∞. It remains to check that q− =
(b/a, b2/a2) ∈ 5′, but this readily follows from our assumptions |b| ≥ 4|a|
and |a| < 1.

3.3. Ergodic Properties

We mention here some basic questions about ergodic properties of these two fami-
lies. Let f be one of these mappings. Since f is algebraically stable inX (P1×P

1

or P
2), there are two well-defined Green currents T+ and T− such that (f ±)∗T± =

λ1(f )T±. The current T+ has continuous potentials inX \If 2 , soµf := T+∧T− is
a well-defined invariant probability measure (if T+ , T− are properly normalized)
that is mixing [FGu] and hyperbolic [BD].

When |c| < 1 in the family1.1 (resp., |a| < 1 in the family1.2), thenµf has max-
imal entropy of log λ1(f ) [Gu1]. If we further assume that q− belongs to the basin
of attraction of some attractive fixed point (see Lemmas 3.2, 3.4, and 3.5), then f
is a biholomorphism in a neighborhood of Suppµf . In this case one can copy the
work of Bedford, Lyubich, and Smillie [BLS1; BLS2] on complex Hénon map-
pings to obtain thatµf is the unique measure of maximal entropy and that periodic
saddle points are equidistributed with respect to µf . It seems that the latter still
holds only if we assume |c| < 1 (resp., |a| < 1). However, it would be interesting
to understand the kind of bifurcation that may occur when, for example, c is fixed,
|c| < 1, and/or |c ′| varies (see Lemmas 3.2 and 3.4): Can q− belong to Suppµf?

Finally we raise the following question.

Question. Does µf always have maximal entropy = log λ1(f )?

4. Behavior at Infinity When dt > λ1

Let f : C
2 → C

2 be a dominating polynomial mapping with dt > λ1(f ). Russa-
kovskii and Shiffman [RSh] have proved that the sequences of probability mea-
sures d−nt (f n)∗6 converge toward the same limit measure µf . Here 6 denotes
any smooth probability measure in C

2. Our goal is to prove that µf has com-
pact support in C

2 when f is quadratic. Note that this is obvious when infinity is
f -attracting and in particular when DL∞(f ) > 1 (i.e., for mappings in the fam-
ilies 3.1, 3.3, and 3.5). For the two remaining classes, we will show that infinity
is indeed attracting for an open set of parameters and that it is attracting “on the
average” for remaining values of the parameters.

4.1. A Criterion of Compactness

The following proposition was inspired by a result of Douady [Do] that concerns
the Newton method for solving quadratic equations in C

2.
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Proposition 4.1. Let f : C
2 → C

2 be a proper polynomial mapping such that
dt(f ) > λ1(f ). Let gi denote the inverse branches of f , and assume

log+‖gi(p)‖ ≤ αi log+‖p‖ + C ∀p ∈C
2,

where C,αi > 0 and
∑dt(f )

i=1 αi < dt(f ).

Then the Russakovskii–Shiffman measure µf has compact support in C
2.

Proof. Fix ρ such that d−1
t

∑
αi < ρ < 1 and R0 > 0 large enough. Let ν be a

probability measure in C
2 such that

Hν(r) := ν(log+‖p‖ > r) ≤ C0(1/r) for r ≥ R0. (∗∗)
Set νn := d−nt (f n)∗(ν). We claim that

Hνn(r) := νn(log+‖p‖ > r) ≤ ρnC0(1/r) for r ≥ R0.

This clearly implies the proposition, since every smooth probability measure ν
with support in the ball of radius eR0 satisfies (∗∗) and νn → µf , so µf will be
supported on the ball of radius eR0.

Let hi(r) := H(gi)∗ν(r). Observe that

log+‖gi(p)‖ > r �⇒ log+‖p‖ > r − C
αi

,

so hi(r) ≤ Hν((r − C)/αi). We may thus deduce that

Hν1(r) =
1

dt

dt∑
i=1

hi(r) ≤ C0

r

1

dt

dt∑
i=1

αi
r

r − C ≤ ρ
C0

r

if r ≥ R0 for R0 large enough. A straighforward induction yields the claim.

Remark 4.2. One may expect that the Russakovskii–Shiffman measure is al-
ways compactly supported in C

2 when f is proper. Here is a heuristic argument
to support this conjecture. Let αi denote the mass of (gi)∗ω in C

2. Passing to an
iterate we may assume δ1(f ) < dt(f ), so

∑
αi =

∑ ∫
C2
(gi)

∗ω ∧ ω =
∫

C2
f∗ω ∧ ω = δ1(f ) < dt(f ).

On the other hand, it is well known from pluripotential theory that the mass of
(gi)

∗ω precisely controls the growth of log+‖gi‖.
It should be noted that examples of polynomial mappings of C

2 with noncom-
pactly supported Russakovskii–Shiffman measure are given in [FGu], but these
are nonproper mappings.

4.2. Family 3.2

We consider here mappings

f(z,w) = (aw + c, z[z− w]+ c ′), where a �= 0.

Lemma 4.3. If |a| > 1 then infinity is f-attracting.
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Proof. Assume |a| = 1+ 2t, t > 0. Set Vε = {(z,w) ∈ C
2 | max(|z|, |w|) >

1/ε}. The lemma will follow from the existence of ε0 > 0 such that

0 < ε < ε0 �⇒ f(Vε) ⊂ Vε/(1+t).
Fix (z,w)∈Vε and set (z ′,w ′) = f(z,w). If |w| = max(|z|, |w|) > ε−1, then

|z ′| = |aw + c| ≥ (1+ 2t)|w| − |c| > 1+ 3t/2

ε
if 0 < ε < ε1.

So assume |z| = max(|z|, |w|) > ε−1. Either |z − w| ≥ 1+ 2t and so |w ′| ≥
(1+ 2t)|z| − |c ′| > (1+ t)/ε for 0 < ε < ε2; or |z−w| < 1+ 2t, in which case
|w| > (1+ t)/(1+ 3t/2)ε−1 yields |z ′| > (1+ t)/ε for 0 < ε < ε3. We obtain the
desired inclusion by choosing ε0 = min(ε1, ε2 , ε3).

We now consider the remaining cases 0 < |a| ≤ 1. Recall that dt(f ) = 2. Since
f is proper, there are two well-defined inverse branches of f in C

2, which we de-
note by g+, g−, ordered so that if g±(x, y) = (z±,w±) then |z+| ≥ |z−|.
Lemma 4.4. There exists a C > 0 such that, for all (x, y)∈C

2,

log+‖g+ � g+(x, y)‖ ≤ log+‖(x, y)‖ + C,

log+‖g+ � g−(x, y)‖ ≤ 1
2 log+‖(x, y)‖ + C,

log+‖g− � g+(x, y)‖ ≤ 1
2 log+‖(x, y)‖ + C,

log+‖g− � g−(x, y)‖ ≤ 1
4 log+‖(x, y)‖ + C.

Therefore, µf has compact support in C
2.

Proof. Fix (x, y) ∈ C
2. The two preimages of (x, y) satisfy w = (x − c)/a

and z2 − (x − c)z/a + (c ′ − y) = 0. From |z+z−| = |c ′ − y| we get |z−| ≤
|c ′−y|1/2, hence |z−| ≤ C1 max(|y|1/2,1). Since |z++z−| = |x−c|/|a|, it follows
that |z+| ≤ C2 max(|x|, |y|1/2,1). Finally, |w±| = |x − c|/|a| ≤ C3 max(|x|,1).
Iterating these inequalities yields the lemma.

It follows from Proposition 4.1 that µf has compact support in C
2, since here∑

αi = 9/4 < 4 = dt(f 2).

4.3. Family 3.4

We consider here mappings of the form

f(z,w) = (zw + c, z[z+ αw]+ bz+ c ′ + aw), where a �= 0.

Lemma 4.5. If |a| > 1 then infinity is f-attracting.

Proof. Define t > 0 by |a| = 1+ 3t and fix λ > 0 small enough so that |αλ| < t.
For technical reasons we first conjugate f by (z,w) �→ (λz,w). Thus we will
show that infinity is attracting for g, where

g(z,w) = (zw + c1, z[λ2z+ αλw]+ αλz+ c2 + aw).
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Set Vε := {(z,w) ∈ C
2 | max(|z|, |w|) > 1/ε}. It is clearly sufficient to show

the existence of ε0 > 0 such that g(Vε) ⊂ Vε/(1+t) for 0 < ε < ε0. Pick (z,w) ∈
Vε and set (z ′,w ′) = g(z,w).

Assume first that |z| = max(|z|, |w|) > 1/ε. Then |z ′| ≥ |w||z| − |c1| >
(1+ t)/ε if |w| ≥ 1+ 2t and 0 < ε < ε1. Now, if |w| ≤ 1+ 2t then |w ′| ≥
λ2|z|2/2 > (1+ t)/ε for 0 < ε < ε2 , so (z ′,w ′)∈Vε/(1+t) in both cases.

Assume now |w| = max(|z|, |w|) > 1/ε. Then |z ′| ≥ (1+ t)/ε if |z| ≥ 1+ 2t
and 0 < ε < ε3. Now, if |z| ≤ 1+ 2t, we obtain

|w ′| ≥ (|a| − |αλ|)|w| − C ≥ (1+ 2t)|w| − C > 1+ t
ε

if 0 < ε < ε4.

The desired inclusion follows with ε0 = min(ε1, ε2 , ε3, ε4).

We now consider the case 0 < |a| ≤ 1.

Lemma 4.6. Let f be as before. Denote by g1, g2 , g3 the three inverse branches
of f ordered so that, if gi(x, y) = (zi,wi), then |z1| ≤ |z2| ≤ |z3|. Then there
exists a C > 0 such that, for all (x, y)∈C

2:

log+‖g1(x, y)‖ ≤ log+‖(x, y)‖ + C,

log+‖g2(x, y)‖ ≤ 2
3 log+‖(x, y)‖ + C,

log+‖g3(x, y)‖ ≤ 2
3 log+‖(x, y)‖ + C.

Therefore, µf has compact support in C
2.

Proof. We fix R0 = R0(a, b, c, c ′,α)  1. In order to simplify notation, we will
denote by � an inequality ≤ that holds true up to a constant that depends only
on the parameters a, b, c, c ′,α. Without loss of generality we may assume (x, y)∈
C

2 are such that max(|x|, |y|) > R0.

Let (zi,wi), 1 ≤ i ≤ 3, be the solutions of f(z,w) = (x, y) ordered so that
|z3| ≥ |z2| ≥ |z1|. Observe that zw = x − c; hence

z3 + bz2 + [α(x − c)+ c ′ − y]z+ a(x − c) = 0 = (z− z1)(z− z2)(z− z3).

From |z1z2z3| = |a(x − c)| it follows that

|z1| ≤ |a(x − c)|1/3 ≤ |z3|. (1)

Assume |x| > R0. Then, for R0 chosen large enough, using |z1+ z2 + z3| = |b|
yields

1
2 |a(x − c)|1/3 ≤ |z2|. (2)

Indeed, otherwise |z1| ≤ |z2| ≤ |a(x − c)|1/3/2 yields |z3| ≥ 4|a(x − c)|1/3 and
hence |b| = |z1+ z2 + z3| ≥ 3|a(x − c)|1/3, contradicting |x| > R0. From wi =
(x − c)/zi we infer that

|w3| ≤ |x − c|
|a(x − c)|1/3

� max(|x|2/3,1) (3)

and

|w2| ≤ 2
|x − c|

|a(x − c)|1/3
� max(|x|2/3,1). (4)
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We now give a bound from above for |w1|. Recall that z1+ α(x − c) + bz1+
c ′ + aw1 = y. Thus

|w1| ≤ 1

|a| (|y| + |α(x − c)| + |c
′| + |bz1| + |z1|2) � max(‖(x, y)‖,1), (5)

where the last inequality follows from (1). Note finally that z3 is one of the solu-
tions of z2 + bz + [c ′ + aw3 − y + α(x − c)] = 0. As a result, |z3| � max(|b|,
|c ′ + aw3 − y + α(x − c)|1/2). Together with (3) this yields

|z2| ≤ |z3| � max(‖(x, y)‖1/2,1). (6)

This gives the lemma when |x| > R0, so assume now that |y| > R0 ≥ |x|.
Without loss of generality we may actually assume |y| > R2

0  R0 ≥ |x|. There
only remains to show |z2| ≥ 1

2 |a(x − c)|1/3. Assume the contrary; then

|y| ∼ |α(x − c)+ c ′ − y| = |z1z2 + z1z3 + z2z3| � |y|1/2+1/3

by (6), a contradiction.
Using the notation of Proposition 4.1, we have

∑
αi = 7/3 < 3 = dt(f ) and

hence µf has compact support in C
2.

5. The Russakovskii–Shiffman Measure

Let f : C
2 → C

2 be a dominating polynomial mapping such that dt > λ1(f ).

Following [Gu2] we give in this section an elementary construction of the
Russakovskii–Shiffman measure µf . When infinity is f -attracting, we then show
that every plurisubharmonic function is in L1(µf). This is stronger than the gen-
eral result proved in [Gu1] that every quasi-plurisubharmonic function on P

2 is
in L1(µf).

Construction of µf . Let a ∈ C
2 be a noncritical value of f and let 6 be a

smooth probability measure supported near a. Then d−1
t f

∗6 is again a smooth
probability measure with compact support in C

2. Thus 6 and d−1
t f

∗6 are coho-
mologous when viewed as global smooth forms of maximal bidegree on P

2. Hence
there exists a smooth form T of bidegree (1,1) on P

2 such that

1

dt
f ∗6 = 6+ ddcT . (†)

Adding some multiple of the Fubini–Study form ω, we can further assume that
0 ≤ T ≤ Cω for some constant C > 0. Pulling back (†) by f n yields

1

d nt
(f n)∗6 = 6+ ddcTn, where Tn =

n−1∑
j=0

1

d
j
t

(f j )∗(T ). (††)

The sequence (Tn) is an increasing sequence of positive currents of bidegree (1,1)
on P

2 such that

0 ≤ Tn ≤ C
n−1∑
j=0

1

d
j
t

(f j )∗ω.
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The latter series is convergent, since (f j )∗ω has mass δ1(f
j ) ≤ [λ1(f )+ ε]j for

j ≥ jε and ε > 0 small enough that dt(f ) > λ1(f )+ ε. Therefore, Tn converges
toward some positive current T∞. This yields

1

d nt
(f n)∗6 = 6+ ddcTn→ µf := 6+ ddcT∞.

Observe that, if6′ is any other smooth probability measure, then6′ =6+ddcS
for some smooth (1,1)-form S on P

2, so

1

d nt
(f n)∗6′ = 1

d nt
(f n)∗6+ ddc

(
1

d nt
(f n)∗S

)
→ µf

because ‖(f n)∗S‖ = δ1(f
n) = o(d nt ). In particular d−nt (f n)∗ω2 → µf .

Remark 5.1. Assume that infinity is an attracting set for f in the following sense:
there exists a neighborhood V of infinity in C

2 such that
⋂
j≥1 f

j(V ) = ∅. In this
case we get C

2 = K+ ∪ B+(∞), where K+ = {a ∈C
2 | (f n(a))n≥0 is bounded}

is a compact subset of C
2 and B+(∞) denotes the basin of attraction of infinity,

B+(∞) = ⋃
n≥0 f

−n(V ). The measure µf is supported on the compact set ∂K+
in this case. Infinity is always an attracting set for f when DL∞(f ) > 1, but it
may also be attracting when DL∞(f ) = 1 as shown in Section 4.

An alternative construction of µf was given in [Gu1] under the more restrictive
assumption that DL∞(f ) = dt(f )/λ1(f ).

Theorem 5.2. Let f : C
2 → C

2 be a dominating polynomial mapping such that
dt(f ) > λ1(f ). Assume that (a) µf has compact support and (b) either infin-
ity is f-attracting or dt(f ) > λ1(f )

3/2. Then every plurisubharmonic function is
in L1(µf).

Proof. Let B be a ball in C
2 containing Suppµf and let ϕ be a plurisubharmonic

function near B̄. Without loss of generality, ϕ ≤ 0 on B. Let χ ≥ 0 be a test func-
tion in B such that χ ≡ 1 near B1 and Suppµf ⊂ B1 ⊂⊂ B. Then

0 ≤
∫
B1

(−ϕ) dµf =
∫
B1

(−ϕ)6+
∫
B1

(−ϕ) ddc(χT∞).

Because6 is smooth, we need only derive an upper bound on the second integral,
which by Stokes’s theorem reads

I = −
∫
B

χT∞ ∧ ddcϕ +
∫
B\B1

ϕ ddc(χT∞) = I ′ + I ′′.

Note that I ′ ≤ 0 because ϕ is plurisubharmonic, so we only need to obtain an upper
bound on I ′′. Observe that ddc(χT∞) = ddcχ ∧ T∞ + 2dχ ∧ dcT∞ + χddcT∞.
Since µf = 0 in B \ B1, it follows that χddcT∞ = −χ6 is smooth in B \ B1. It
is therefore sufficient to get control of

I1 =
∫
B\B1

ϕ dχ ∧ dcT∞ and I2 =
∫
B\B1

ϕ ddcχ ∧ T∞.

Since T∞ is positive, we have
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|I2| ≤ ‖χ‖C2

∫
B

(−ϕ)ω ∧ T∞ ≤ C1

∑
j≥0

∫
B

(−ϕ)ω ∧ 1

d
j
t

(f j )∗ω.

Because dt > λ1(f ), we have d lt > δ1(f
l) for l large enough. We assume for

simplicity that l = 1 and set d = δ1(f ) < dt(f ). Now (f j )∗ω = dj ddcG+j in
C

2, where G+j is locally uniformly bounded in C
2. It thus follows from Chern–

Levine–Nirenberg inequalities (see [Si]) that

|I2| ≤ C2‖ϕ‖L1(B2 )

∑
j≥0

(
d

dt

)j
< +∞,

where B2 is a slightly larger ball than B.
It remains to gain control of I1. We decompose T = ∑ Tij dzi ∧ dz̄j in C

2,
where the Tij are smooth functions. By the Cauchy–Schwarz inequality,∣∣∣∣

∫
B\B1

(−ϕ) dχ ∧ (f n)∗ dcT
∣∣∣∣

≤
∑
i,j

∣∣∣∣
∫
B\B1

(−ϕ) dχ ∧ (f n)∗(d cTij ∧ dzi ∧ dz̄j )
∣∣∣∣

≤
∑
i,j

∣∣∣∣
∫
B\B1

(−ϕ) dχ ∧ dcχ ∧ (f n)∗(dzi ∧ dz̄j )
∣∣∣∣
1/2

·
∣∣∣∣
∫
B\B1

(−ϕ)(f n)∗(dTij ∧ dcTij ∧ dzi ∧ dz̄j )
∣∣∣∣
1/2

≤ C3

[ ∫
B\B1

(−ϕ)ω ∧ (f n)∗ω
]1/2

·
[ ∫

B\B1

(−ϕ)(f n)∗ω2

]1/2

.

When infinity is f -attracting, we can assume that B \ B1 is a relatively com-
pact subset of the basin of attraction of infinity. Therefore 1

2 log[1+ ‖f n‖2] =
log‖f n‖ + un, where un is uniformly bounded on B \ B1. Thus (f n)∗(ω2) =
(ddcun)

2 + 2 ddc log‖f n‖ ∧ ddcun yields (again by Chern–Levine–Nirenberg
inequalities)

0 ≤
∫
B\B1

(−ϕ)(f n)∗ω2 ≤ C4d
n

for some constant C4 independent of n. On the other hand, (f n)∗ω = d n ddcG+n
with G+n uniformly bounded on B \ B1. This shows∣∣∣∣

∫
B\B1

(−ϕ) dχ ∧ (f n)∗(d cT )
∣∣∣∣ ≤ C5 d

n.

Therefore, |I1| ≤ C5
∑
j≥0(d/dt )

j < +∞.
When infinity is not f -attracting, we can still get an upper bound

0 ≤
∫
B\B1

(−ϕ)(f n)∗ω2 ≤ C4 d
2n,

so |I1| ≤ C5
∑
j≥0(d

3/2/dt )
j < +∞ if dt(f ) > λ1(f )

3/2.
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Remark 5.3. The main ergodic properties of µf are established in [Gu2]. It is
mixing with positive Lyapunov exponents; repelling periodic points are equidis-
tributed with respect to µf ; and µf is the unique measure of maximal entropy
hµf (f ) = htop(f ) = log dt(f ).

6. Algebraicity of Ef

Let f : C
2 → C

2 be a dominating polynomial mapping such that dt > λ1(f ).

Russakovskii and Shiffman [RSh] have demonstrated the existence of a pluripolar
set Ef ⊂ C

2 such that

1

d nt
(f n)∗εa → µf ∀a ∈C

2 \ Ef .
Here εa denotes the Dirac mass at point a. Following Briend and Duval [BrDu],
we show here that Ef is actually algebraic when f is quadratic.

We denote by degp f the local topological degree of f at p, that is, the number
of points in f −1(q) that are close to p when q is close to f(p). Hence degp f > 1
if and only if p belongs to the critical set Cf of f. For an irreducible algebraic
curve A of C

2, we set degA f = minp∈A degp f = degp f for a generic point
p ∈A. When A =⋃

Ai is not irreducible, we set degA f = maxi degAi f.

Lemma 6.1. Let f , g be two proper polynomial self-mappings of C
2. Then the

following statements hold.

(1) degp(f � g) = degp g · degg(p) f , hence degA(f � g) = degA g · degg(A) f.
(2) degCf �g(f � g) ≤ degCg g · degCf f.
(3) 1 ≤ degp f ≤ dt(f ).
(4) 1 ≤ degA f ≤ degCf f ≤ δ1(f ).

(5) Assume dt(f ) > δ1(f ); if degf j(p) f = dt(f ) for all j ≥ 0, then p is peri-
odic and the corresponding cycle is totally invariant.

Proof. Assertion (1) is a straightforward consequence of the definition. We refer
the interested reader to [GrH, Chs. 5.1 & 5.2] for further details on local topolog-
ical degree. The chain rule yields Cf �g = Cg ∪ g−1(Cf ). Therefore,

degCf �g(f � g) = max(degCg(f � g), degg−1(Cf )(f � g))
= max(degCg g · degg(Cg) f , degg−1(Cf ) g · degCf f )

≤ degCg g · degCf f.

Assertion (3) is clear and (4) follows easily from Bezout’s theorem (see [BrDu]).
It follows from (4) that the set E = {p ∈ C

2 | degp f = dt(f )} is finite when
dt(f ) > δ1(f ). So if degf j(p) f = dt(f ) for all j ≥ 0 then p is preperiodic to a
cycle in E. To simplify we assume f n(p) = q with q = f(q) ∈E. Now f −1(q)

contains q with multiplicity dt , so f ∗εq = dt εq and hence q is totally invariant.
This shows that p = q, so p is periodic and the corresponding cycle is totally
invariant.

Note in particular that degCf j f
j is submultiplicative. We can therefore define the

asymptotic critical degree T (f ) of f by
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T (f ) := lim
j→+∞(degCf j f

j )1/j.

Observe that T (f ) > 1 implies strong recurrence of the critical set, so T (f ) = 1
“generically”. This motivates the following proposition, which is a weak version
of a result in [BrDu] on holomorphic endomorphisms.

Proposition 6.2. Let f : C
2 → C

2 be a proper polynomial mapping, and as-
sume that λ1(f )T (f ) < dt(f ). Then the exceptional set Ef , if nonempty, is finite
and consists of totally invariant cycles.

Proof. Replacing f by f l if necessary, we can assume δ1(f ) degCf f < dt(f ).
Set E = {p ∈ C

2 | degp f = dt(f )}. It follows from Lemma 6.1(4) that E is a
finite set. Passing to an iterate if necessary, we can further assume E is totally in-
variant by using Lemma 6.1(5). We claim then Ef = E. It is sufficient to prove
µn,p(Cf )→ 0 for all p /∈E, where µn,p = d−nt (f n)∗εp.

Set F = {p ∈ C
2 | degp f > degCf f }. Then F \ E consists of finitely many

points with degree ≤ dt−1. Let ρ < 1 be close to 1 (to be chosen later) and fix p ∈
C

2 \E. Since E is totally invariant, f −n(p)∩E = ∅ for all n. Hence µn,p(F ) =
µn,p(F \ E) ≤ DF(dt − 1)n/d nt . Similarly,

µn,p(F ∪ f −1(F ) ∪ · · · ∪ f −nρ(F )) ≤
nρ∑
j=0

µn−j,p(F \ E) ≤ C
(
dt − 1

dt

)n(1−ρ)
.

Following [BrDu], we now count the number of points in f −n(p) ∩ Cf . It fol-
lows from Bezout’s theorem that there are no more than δ1(f

n) points (ignoring
multiplicities). Points in f −n(p) ∩ Cf \ F ∪ f −1(F ) ∪ · · · ∪ f −nρ(F ) have mul-
tiplicity bounded from above by (degCf f )

nρ(dt − 1)n(1−ρ). Therefore,

µn,p(Cf ) ≤ µn,p(F ∪ · · · ∪ f −nρ(F ))+ δ1(f
n)
(degCf f )

nρ(dt − 1)n(1−ρ)

d nt

≤ C
(
dt − 1

dt

)n(1−ρ)
+

(
δ1(f ) degCf

d
ρ
t

)n
.

Choosing ρ < 1 close enough to 1 yields µn,p(Cf )→ 0, so µn,p → µf .

We now check that the condition λ1(f )T (f ) < dt(f ) is satisfied for quadratic
families.

Lemma 6.3.

(1) Let f be a mapping from family 3.1. Then degCf 4 f
4 = 2.

(2) Let f be a mapping from family 3.2. Then degCf 5 f
5 = 2.

(3) Let f be a mapping from family 3.3. Then degCf 2 f
2 = 2.

(4) Let f be a mapping from family 3.4. Then degCf 2 f
2 = 2.

So in all cases, λ1(f )T (f ) < dt(f ).
Remark 6.4. Mappings from family 3.5 extend as holomorphic endomorphisms
of P

2. It follows from [BrDu] that Ef is algebraic in this case. The condition
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λ1(f )T (f ) < dt(f ) is not necessarily satisfied, and the set Ef may well be infi-
nite. In the latter case, f (or f 2) is conjugate to (z,w) �→ (zd,Q(z,w)) and so
(z = 0) ⊂ Ef .
Proof of Lemma 6.3. (1) Consider f(z,w) = (w, z2 + aw + c ′). Then Cf =
(z = 0) and degCf = 2 = δ1(f ). One easily checks that f(Cf ), f 2(Cf ), f 3(Cf )
and f −1(Cf ), f −2(Cf ), f −3(Cf ) are all different from Cf . Hence it follows from
Lemma 6.1 that degCf 4 f

4 = 2, while δ1(f
4) = 4 and dt(f 4) = 16.

Observe thatE = {p ∈C
2 | degp f 2 = 4 = dt(f 2)} is empty except when a =

0. If a = 0, then E = {(0, 0)} is totally invariant only when c ′ = 0. Thus Ef = ∅
except when a = c ′ = 0, in which case Ef = {(0, 0)}.

(2) Consider f(z,w) = (aw+ c, z[z−w]+ c ′) with a �= 0. The critical set is
Cf = {w = 2z}. By induction, we easily get that

f j(Cf ) = {(Aj(ζ),Bj(ζ))∈C
2 | ζ ∈C

2},
whereAj andBj are polynomials of degree degAj = dj−1 and degBj = dj (resp.)
with dj+2 = dj+1+ dj . This shows that f j(Cf ) �= Cf for all j ≥ 1. Similarly,

f −j(Cf ) = {wdj−1zdj(z− w)dj = Rj(z,w)},
whereRj is a polynomial of degree degRj < 2dj+dj−1.As a result, f −j(Cf ) �= Cf
for j ≥ 1. In particular we have δ1(f

5) · degCf 5 f
5 = 13 · 2 < 32 = dt(f 5).

(3) Consider f(z,w) = (az2 + bz + c + w, z[w + αz]+ c ′) with a �= 0. The
critical set Cf = {w = 2az2 + (b − 2α)z} is irreducible. We obtain f −1(Cf ) =
{w(1− z) = (α − a)z2 − bz+ c ′ − c} �= Cf and

f(Cf ) = {(3aζ2 + (2b − 2α)ζ, 2aζ 3 + (b − α)ζ2 + c ′)∈C
2 | ζ ∈C} �= Cf .

Therefore, degCf 2 f
2 = 2 and hence δ1(f

2) · degCf 2 f
2 = 8 < 9 = dt(f 2).

(4) Consider f(z,w) = (zw + c, z[z+ αw]+ bz+ c ′ + aw) with a �= 0. The
critical set Cf = {aw = 2z2 + bz} is irreducible, and straightforward computa-
tions yield f(Cf ) �= Cf �= f −1(Cf ), so degCf 2 f

2 = 2.

Remark 6.5. It is perhaps worth mentioning that pull-backs of Dirac masses
are not everywhere well-defined when f is not proper. Consider, for example,
f(z,w) = (P(z), zw2), where P is a polynomial of degree degP = d ≥ 3.
Then dt(f ) = 2d > d = λ1(f ). The line (z = 0) is contracted to the point
a = (P(0), 0), so pull-backs of Dirac masses at points f j(a) by f n are not well-
defined. This shows that the orbit of point a must be included in the exceptional
set Ef ; hence we cannot expect the latter to be algebraic in general.
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