On the Problem of Kähler Convexity in the Bergman Metric

Gregor Herbort

1. Introduction

Let $\left(M, d s^{2}\right)$ be a complete Kähler manifold of dimension n, and let $\mathcal{H}_{(2)}^{p, q}(M)$ be the space of square-integrable harmonic forms of bidegree (p, q). McNeal has studied the question: Under which reasonable conditions about the Kähler metric can one prove the vanishing of $\mathcal{H}_{(2)}^{p, q}(M)$ when $p+q \neq n$? As a sufficient condition he found that there should exist an exhausting function V for M that is at the same time a potential for $d s^{2}$ such that V dominates its gradient. We define this property as follows.

Definition. Assume that the Kähler metric $d s^{2}$ has a global potential $V \in$ $C^{2}(M)$ on M. Then we say that V dominates its gradient if there exist constants $A, B \geq 0$ such that

$$
\begin{equation*}
|\partial V|_{d s^{2}}^{2} \leq A+B V \tag{1.1}
\end{equation*}
$$

throughout M.
In [M2] such a Kähler manifold is called Kähler convex; if (1.1) holds with $B=$ 0 , it is called Kähler hyperbolic.

In complex analysis there is a case of special interest in which $M=D$ is a pseudoconvex bounded domain in \mathbb{C}^{n} that is endowed with the Bergman metric. Let $K_{D}(z)$ denote the Bergman kernel function on the diagonal of $D \times D$. Then $V_{D}=$ $\log K_{D}$ is a potential of the Bergman metric.

Donnelly and Fefferman [DoFe] proved the vanishing of $\mathcal{H}_{(2)}^{p, q}(D)$ when $p+$ $q \neq n$ and D is strongly pseudoconvex. Later, Donnelly [Do1; Do2] gave a simpler proof of this by a method that applies also to the case of finite-type pseudoconvex domains in \mathbb{C}^{2} and to certain classes of finite-type domains in \mathbb{C}^{n} with $n \geq 3$ (see e.g. [M1]). In these cases he showed using results of [C; M1] that even Kähler hyperbolicity holds. Also in [Do2] it was shown that the domain $D=\left\{z \in \mathbb{C}^{3} \mid\right.$ $\left.\left|z_{1}\right|^{2}+\left|z_{2}\right|^{10}+\left|z_{3}\right|^{10}+\left|z_{2}\right|^{2}\left|z_{3}\right|^{2}<1\right\}$ is not Kähler hyperbolic in the Bergman metric.

The purpose of this paper is to show (by means of an example) that, on a smooth bounded weakly pseudoconvex domain of finite type, the potential V_{D} in general will not dominate its gradient. We will do this using ideas from [Do2; M2]; the
key point is that the estimate (1.1) for $V=\log K_{D}$ can be reformulated in terms of domain functionals from Bergman theory.

2. Certain Domain Functionals

Let Ω be a bounded domain in \mathbb{C}^{n}. By $\|\cdot\|$ we denote the usual L^{2}-norm for functions that are square-integrable over Ω with respect to the Lebesgue measure. The subspace $H^{2}(\Omega)=\mathcal{O}(\Omega) \cap L^{2}(\Omega)$ is closed and induces a Hermitian kernel $K_{\Omega}(\cdot, \cdot)$, the Bergman kernel function of Ω. The function $V(z)=\log K_{\Omega}(z, z)$ is smooth and strictly plurisubharmonic; hence it is the potential of a Kähler metric, the Bergman metric B_{Ω}^{2} on Ω.

For $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{n}$ and a function $f \in C^{1}(\Omega)$, we denote by $X(f)$ the directional derivative

$$
\begin{equation*}
X(f)(z)=\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(z) X_{j} \tag{2.1}
\end{equation*}
$$

Besides the well-known representation of $K_{\Omega}(w, w)$,

$$
\begin{equation*}
K_{\Omega}(w, w)=\max \left\{|f(w)|^{2} \mid f \in H^{2}(\Omega),\|f\| \leq 1\right\} \tag{2.2}
\end{equation*}
$$

we also consider the following domain functional:

$$
E_{\Omega}(w ; X):=\max \left\{|f(w)|^{2} \mid f \in H^{2}(\Omega),\|f\| \leq 1, X(f)(w)=0\right\}
$$

By means of Bergman's method [B] we obtain

$$
\begin{equation*}
E_{\Omega}(w ; X)=\frac{K_{\Omega}(w, w)^{2} B_{\Omega}^{2}(w ; X)}{X \bar{X}\left(K_{\Omega}\right)(w, w)} \tag{2.3}
\end{equation*}
$$

This maximum is attained for the function

$$
\begin{align*}
f_{(w ; X)}(z):=\frac{\sqrt{E_{\Omega}(w ; X)}}{K_{\Omega}(w, w)^{2} B_{\Omega}^{2}(w ; X)} & \left(X \bar{X}\left(K_{\Omega}\right)(w, w) \cdot K_{\Omega}(z, w)\right. \\
& \left.-\left.X\left(K_{\Omega}(\cdot, w)\right)\right|_{w} \cdot \bar{X}\left(K_{\Omega}(z, w)\right)\right) . \tag{2.4}
\end{align*}
$$

Let

$$
F_{\Omega}(w ; X):=\frac{E_{\Omega}(w ; X)}{K_{\Omega}(w, w)}
$$

We denote by $Q_{\Omega}(w)$ the length of the gradient

$$
\left(\left.\frac{\partial \log K_{\Omega}(z, z)}{\partial z_{1}}\right|_{z=w}, \ldots,\left.\frac{\partial \log K_{\Omega}(z, z)}{\partial z_{n}}\right|_{z=w}\right)
$$

measured in the Bergman metric. Then, by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\frac{\left.\left|X\left(K_{\Omega}(\cdot, w)\right)\right|_{w}\right|^{2}}{K_{\Omega}(w, w)^{2}} \leq Q_{\Omega}(w) B_{\Omega}^{2}(w ; X) \tag{2.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
F_{\Omega}(w ; X)=\frac{B_{\Omega}^{2}(w ; X)}{B_{\Omega}^{2}(w ; X)+\frac{\mid X\left(\left.\left.K_{\Omega}(\cdot, w)\right|_{w}\right|^{2}\right.}{K_{\Omega}(w, w)^{2}}} \geq \frac{1}{1+Q_{\Omega}(w)} . \tag{2.6}
\end{equation*}
$$

This shows our first result, as follows.

Lemma 2.1. On the domain Ω, the potential $\log K_{\Omega}$ dominates its gradient in the Bergman metric if and only if there exist nonnegative constants A, B such that, for any $X \in \mathbb{C}^{n} \backslash\{0\}$,

$$
\begin{equation*}
F_{\Omega}(w ; X) \geq \frac{1}{A+B \cdot \log K_{\Omega}(w, w)} \tag{2.7}
\end{equation*}
$$

In [M2, Prop. 3.1] it is shown that this estimate is sufficient. Its necessity is a consequence of (2.5) and (2.6).

In the next section we study a class of bounded weakly pseudoconvex domains with real-analytic boundary yet in which (2.7) is violated.

3. A Series of Examples

Our examples are domains in \mathbb{C}^{3}. Let a, b, c, d, m be positive integers and let

$$
P\left(z_{2}, z_{3}\right):=\left|z_{2}\right|^{2 m}+\left|z_{3}\right|^{2 m}+\left|z_{2}\right|^{2 a}\left|z_{3}\right|^{2 b}+\left|z_{2}\right|^{2 c}\left|z_{3}\right|^{2 d} .
$$

We require that

$$
\begin{aligned}
& a>b, \quad a>c, \quad d>c, \quad d>b \\
& a d-b c<m \cdot \min \{a-c, d-b\}
\end{aligned}
$$

Let us furthermore put

$$
x_{2}=\frac{d-b}{2(a d-b c)} \quad \text { and } \quad x_{3}=\frac{a-c}{2(a d-b c)} .
$$

Then

$$
2 a x_{2}+2 b x_{3}=1, \quad 2 c x_{2}+2 d x_{3}=1
$$

and also

$$
x_{2}>\frac{1}{2 m}, \quad x_{3}>\frac{1}{2 m} .
$$

We shall prove the following theorem.
Theorem 3.1. Let

$$
r\left(z_{1}, z_{2}, z_{3}\right):=\operatorname{Re} z_{1}+\left|z_{1}\right|^{2}+P\left(z_{2}, z_{3}\right)
$$

and

$$
D=\{r<0\} .
$$

Assume that $a<2 b$. If

$$
0<\varepsilon<\frac{1}{2}\left(\frac{a}{b}-1\right)\left(x_{2}-\frac{1}{2 m}\right)
$$

then for sufficiently small $t>0$ we have

$$
F_{D}\left(w(t), e_{2}\right) \leq c_{0} t^{2 \varepsilon}
$$

with an unimportant constant c_{0}. Here $e_{2}=(0,1,0)$ and $w(t)=\left(-t, t^{(1 / 2 m)+\varepsilon}, 0\right)$.
Remarks. (i) Certainly $K_{D}(w(t), w(t)) \leq C t^{-4}$, hence $\log K_{D}(w(t), w(t)) \leq$ $4 \log (1 / t)+C$ (with some constant $C>0$). This proves that (2.7) cannot hold on D.
(ii) The theorem applies for example in the case $a=7, b=5, c=6, d=8$, and $m \geq 27$.

Proof of Theorem 3.1

We prove the theorem in three steps.

First Step: Model Domains

For $t>0$ let

$$
\Omega_{t}=\left\{\left(z_{2}, z_{3}\right) \in \mathbb{C}^{2} \left\lvert\, P\left(z_{2}, z_{3}\right)<\frac{t}{4}\right.\right\}
$$

and

$$
D_{t}=\Delta\left(-t, \frac{t}{2}\right) \times \Omega_{t}
$$

Then, for $t<1 / 16$ we have

$$
D_{t} \subset D
$$

because, for such t,

$$
r(z) \leq-\frac{t}{4}+4 t^{2}<0
$$

for $z=\left(z_{1}, z_{2}, z_{3}\right) \in D_{t}$.
We claim that, with $\tilde{w}(t)=\left(t^{(1 / 2 m)+\varepsilon}, 0\right)$ we have

$$
\begin{equation*}
E_{D}\left(w(t), e_{2}\right) \leq \frac{4}{\pi t^{2}} E_{\Omega_{t}}(\tilde{w}(t),(1,0)) \tag{3.8}
\end{equation*}
$$

For this we use

$$
E_{D}\left(w(t), e_{2}\right) \leq E_{D_{t}}\left(w(t), e_{2}\right)
$$

which is a well-known property of the domain functionals under consideration. Next we exploit the Cartesian product structure of D_{t} to derive

$$
\begin{aligned}
K_{D_{t}}(w(t), w(t)) & =\frac{4}{\pi t^{2}} K_{\Omega_{t}}(\tilde{w}(t), \tilde{w}(t)), \\
\frac{\partial^{2} K_{D_{t}}(w(t), w(t))}{\partial z_{2} \partial \bar{z}_{2}} & =\frac{4}{\pi t^{2}} \frac{\partial^{2} K_{\Omega_{t}}(\tilde{w}(t), \tilde{w}(t))}{\partial z_{2} \partial \bar{z}_{2}}, \\
B_{D_{t}}^{2}\left(w(t), e_{2}\right) & =B_{\Omega_{t}}^{2}(\tilde{w}(t) ;(1,0))
\end{aligned}
$$

Substituting into (2.3) yields

$$
E_{D_{t}}\left(w(t), e_{2}\right)=\frac{4}{\pi t^{2}} E_{\Omega_{t}}(\tilde{w}(t) ;(1,0))
$$

and hence (3.8).
Our next project is a good lower bound on the Bergman kernel of D at $w(t)$ by means of the Bergman kernel of a suitable model domain of dimension 2. We begin with a preparatory lemma.

Lemma 3.1. Let

$$
\Omega_{t}^{*}:=\left\{\left(z_{2}, z_{3}\right) \in \mathbb{C}^{2} \mid P\left(z_{2}, z_{3}\right)<t-t^{2}\right\}
$$

Then there exists a constant $C>0$ (independent of t) such that

$$
K_{D}(w(t), w(t)) \geq C t^{-2} K_{\Omega_{t}^{*}}(\tilde{w}(t), \tilde{w}(t))
$$

Proof. We will demonstrate the existence of a constant $C_{1}>0$ such that, given a function $f \in H^{2}\left(\Omega_{t}^{*}\right)$, one can find a function $f^{t} \in H^{2}(D)$ with the following properties:

$$
f^{t}\left(-t, w^{\prime}\right)=\frac{1}{t} f\left(w^{\prime}\right) \quad \text { for } w^{\prime} \in \Omega_{t}^{*}, \quad\left\|f^{t}\right\| \leq 2 C_{1}\|f\|_{L^{2}\left(\Omega_{t}^{*}\right)}
$$

By virtue of (2.2), this implies

$$
K_{D}\left(-t, w^{\prime}\right) \geq \frac{\left|f^{t}\left(-t, w^{\prime}\right)\right|^{2}}{\left\|f^{t}\right\|^{2}} \geq \frac{1}{4 C_{1}^{2} t^{2}} \frac{\left|f\left(w^{\prime}\right)\right|^{2}}{\|f\|^{2}}
$$

for any $f \in H^{2}\left(\Omega_{t}^{*}\right)$ and $w^{\prime} \in \Omega_{t}^{*}$. From this the lemma will follow easily.
Let $f \in H^{2}\left(\Omega_{t}^{*}\right)$. Then we can view f as a function that is holomorphic on $D \cap\left\{z_{1}=-t\right\}=\left\{\left(-t, z^{\prime}\right): z^{\prime} \in \Omega_{t}^{*}\right\}$. In order to find f^{t}, we use a result of Ohsawa [O]. Since $\operatorname{Re} z_{1}<0$ for $z \in D$, we have $\left|\frac{z_{1}+t}{z_{1}-t}\right|<1$ on D. Hence the function

$$
\psi(z):=-2 \log \left|z_{1}-t\right|
$$

satisfies

$$
C_{\psi}:=\sup \left\{\psi(z)+2 \log \left|z_{1}+t\right|, z \in D\right\} \leq 0
$$

and is a negligible weight (in the sense of [O]). Furthermore, the function $\frac{1}{t} f$ satisfies

$$
\int_{D \cap\left\{z_{1}=-t\right\}}\left|\frac{f\left(z^{\prime}\right)}{t}\right|^{2} e^{-\psi\left(-t, z^{\prime}\right)} d^{4} z^{\prime}=4\|f\|^{2}
$$

and, by Ohsawa's result, there exists a holomorphic extension f^{t} of $\frac{1}{t} f$ to D such that

$$
\left\|f^{t}\right\|^{2} \leq C_{1} e^{C_{\psi}} \int_{D \cap\left\{z_{1}=-t\right\}}\left|\frac{f\left(z^{\prime}\right)}{t}\right|^{2} e^{-\psi\left(z^{\prime}\right)} d^{4} z^{\prime} \leq 4 C_{1}\|f\|^{2}
$$

with some unimportant constant $C_{1}>0$.
Hence, so far we have obtained (with some constant $C_{*}>0$)

$$
\begin{equation*}
F_{D}\left(w(t), e_{2}\right) \leq C_{*} \frac{E_{\Omega_{t}}(\tilde{w}(t),(1,0))}{K_{\Omega_{t}^{*}}(\tilde{w}(t), \tilde{w}(t))}, \tag{3.9}
\end{equation*}
$$

and everything is reduced to the problem of giving a good upper bound for $E_{\Omega_{t}}(\tilde{w}(t),(1,0))$ and a suitable lower bound for $K_{\Omega_{t}^{*}}(\tilde{w}(t), \tilde{w}(t))$.

Second Step: Estimating the Domain Functionals of the Ω_{t} and Ω_{t}^{*}
We use the fact that Ω_{t} is a Reinhardt domain in \mathbb{C}^{2} with center at 0 . Therefore, its Bergman kernel can be represented as

$$
\begin{equation*}
K_{\Omega_{t}}\left(z^{\prime}, w^{\prime}\right)=\sum_{k, \ell=0}^{\infty} \frac{1}{a_{k \ell}}\left(z_{2} \bar{w}_{2}\right)^{k}\left(z_{3} \bar{w}_{3}\right)^{\ell}, \tag{3.10}
\end{equation*}
$$

where $z^{\prime}:=\left(z_{2}, z_{3}\right)$ and $a_{k \ell}$ denotes the normalizing factor,

$$
a_{k \ell}=\int_{\Omega_{t}}\left|\zeta_{2}^{k} \zeta_{3}^{\ell}\right|^{2} d^{2} \zeta_{2} d^{2} \zeta_{3}
$$

If now $w_{3}=0$ then the maximizing function $f_{\left(w_{2}, 0\right),(1,0)}$ defined in (2.4) takes the form

$$
\begin{aligned}
& f_{\left(w_{2}, 0\right),(1,0)}(z) \\
&:=\frac{\sqrt{E_{\Omega}(w ;(1,0))}}{K_{\Omega}(w, w)^{2} B_{\Omega}^{2}(w ; X)}\left(\frac{\partial^{2} K_{\Omega}}{\partial z_{2} \partial \bar{z}_{2}}\left(\left(w_{2}, 0\right),\left(w_{2}, 0\right)\right) \cdot K_{\Omega}\left(z^{\prime},\left(w_{2}, 0\right)\right)\right. \\
&\left.-\left.\frac{\partial K_{\Omega}}{\partial z_{2}}\left(\left(z_{2}, 0\right),\left(w_{2}, 0\right)\right)\right|_{z_{2}=w_{2}} \cdot \frac{K_{\Omega}}{\partial \bar{w}_{2}}\left(z^{\prime},\left(w_{2}, 0\right)\right)\right)
\end{aligned}
$$

By virtue of (3.10), only the terms with $\ell=0$ will contribute to the function and hence it is independent of the variable z_{3}.

We now choose $w^{\prime}=\tilde{w}(t)$ and write

$$
f_{\tilde{w}(t),(1,0)}(z)=\sum_{k=0}^{\infty} b_{k} \frac{z_{2}^{k}}{\sqrt{a_{k}}}
$$

where $a_{k}=a_{k 0}$ and where $b_{k}=b_{k}(t)$ denotes the inner product between $f_{\tilde{w}(t),(1,0)}$ and $\zeta_{2}^{k} / \sqrt{a_{k}}$. By the Cauchy-Schwarz inequality we have

$$
\left|b_{k}\right| \leq 1
$$

for all k. But the auxiliary condition $\frac{\partial f_{\tilde{w},(\mathrm{l}, 0)}}{\partial z_{2}}(\tilde{w}(t))=0$ requires

$$
\begin{equation*}
\frac{b_{1}}{\sqrt{a_{1}}}=-\sum_{k=2}^{\infty} k b_{k} \frac{(\tilde{w}(t))_{2}^{k-1}}{\sqrt{a_{k}}} \tag{3.11}
\end{equation*}
$$

which in turn implies that

$$
\begin{aligned}
f_{\tilde{w}(t),(1,0)}(\tilde{w}(t)) & =\frac{b_{0}}{\sqrt{a_{0}}}-\left(\tilde{w}(t)_{2}\right) \sum_{k=2}^{\infty} k b_{k} \frac{(\tilde{w}(t))_{2}^{k-1}}{\sqrt{a_{k}}}+\sum_{k=2}^{\infty} b_{k} \frac{(\tilde{w}(t))_{2}^{k}}{\sqrt{a_{k}}} \\
& =\frac{b_{0}}{\sqrt{a_{0}}}+\sum_{k=2}^{\infty}(1-k) b_{k} \frac{(\tilde{w}(t))_{2}^{k}}{\sqrt{a_{k}}}
\end{aligned}
$$

Taking absolute values, we find (since $\left|b_{k}\right| \leq 1$) that

$$
\sqrt{E_{\Omega_{t}}(\tilde{w}(t),(1,0))}=\left|f_{\tilde{w}(t),(1,0)}(\tilde{w}(t))\right| \leq \frac{1}{\sqrt{a_{0}}}+\sum_{k=2}^{\infty}(k+1) \frac{(\tilde{w}(t))_{2}^{k}}{\sqrt{a_{k}}} .
$$

In the same way, we treat the Bergman kernel of Ω_{t}^{*} at $\tilde{w}(t)$:

$$
K_{\Omega_{t}^{*}}(\tilde{w}(t), \tilde{w}(t))=\sum_{k=0}^{\infty} \frac{\tilde{w}(t)_{2}^{2 k}}{a_{k}^{*}} \geq \frac{\tilde{w}(t)_{2}^{2}}{a_{1}^{*}}
$$

where

$$
a_{k}^{*}=\int_{\Omega_{t}^{*}}\left|\zeta_{2}\right|^{2 k} d^{2} \zeta_{2} d^{2} \zeta_{3}
$$

for all $k \geq 0$.

Third Step: Bounds on the Coefficients a_{k} and a_{1}^{*}

In the following lemma we describe the lower bound for the a_{k} and the suitable upper bound on a_{1}^{*} that is needed.

Lemma 3.2. For $k \geq 1$,

$$
a_{k} \geq c_{*} \frac{1}{k+1} 36^{-2(k+1)} t^{(k+1) / m} t^{2 x_{3}+(2 a / b)\left(x_{2}-1 / 2 m\right)}
$$

Moreover,

$$
a_{0} \geq c_{*} t^{2 x_{2}+2 x_{3}} \quad \text { and } \quad a_{1}^{*} \leq \frac{1}{c_{*}} t^{2 x_{3}+(2 a / b)\left(x_{2}-1 / 2 m\right)+2 / m},
$$

where c_{*} denotes some unimportant constant.
Proof. (i) We first carry out the details for the coefficients a_{k} with $k \geq 1$. Let

$$
\phi(y):=\left[\left(\frac{1}{t}\right)^{1 / 2 m}+\left(\frac{y^{2 b}}{t}\right)^{1 / 2 a}+\left(\frac{y^{2 d}}{t}\right)^{1 / 2 c}\right]^{-1} .
$$

Then we have

$$
\left\{z^{\prime}| | z_{3}\left|<\frac{1}{2} t^{1 / 2 m},\left|z_{2}\right|<\frac{1}{12} \phi\left(\left|z_{3}\right|\right)\right\} \subset \Omega_{t} .\right.
$$

Using polar coordinates and then the scaled variable $\eta=t^{-x_{3}} y$, we obtain

$$
\begin{aligned}
a_{k} & \geq \int_{\left|z_{3}\right|<t^{1 / 2 m / 2}}\left(\int_{\left|z_{2}\right|<\phi\left(\left|z_{3}\right|\right) / 12}\left|z_{2}\right|^{2 k} d^{2} z_{2}\right) d^{2} z_{3} \\
& =4 \pi^{2} \int_{0}^{t^{1 / 2 m} / 2} y\left(\int_{0}^{\phi(y) / 12} x^{2 k+1} d x\right) d y \\
& =\frac{2 \pi^{2}}{k+1} 12^{-2(k+1)} \int_{0}^{t^{1 / 2 m} / 2} y \phi(y)^{2 k+2} d y \\
& =\frac{2 \pi^{2}}{k+1} 12^{-2(k+1)} t^{2 x_{3}} \int_{0}^{t^{-\left(x_{3}-1 / 2 m\right) / 2}} \eta\left(\phi\left(t^{x_{3}} \eta\right)\right)^{2 k+2} d \eta .
\end{aligned}
$$

But we observe that

$$
\phi\left(t^{x_{3}} \eta\right)=\left[\left(\frac{1}{t}\right)^{1 / 2 m}+\frac{\eta^{b / a}}{t^{x_{2}}}+\frac{\eta^{d / c}}{t^{x_{2}}}\right]^{-1}=t^{x_{2}} \psi(\eta)
$$

with

$$
\psi(\eta)=\frac{1}{t^{x_{2}-1 / 2 m}+\eta^{b / a}+\eta^{d / c}}
$$

This gives us

$$
\begin{aligned}
a_{k} & \geq \frac{2 \pi^{2}}{k+1} 12^{-2(k+1)} t^{2(k+1) x_{2}+2 x_{3}} \int_{0}^{t^{-\left(x_{3}-1 / 2 m\right)} / 2} \eta \psi(\eta)^{2 k+2} d \eta \\
& \geq \frac{2 \pi^{2}}{k+1} 12^{-2(k+1)} t^{2(k+1) x_{2}+2 x_{3}} \int_{0}^{1} \eta \psi(\eta)^{2 k+2} d \eta
\end{aligned}
$$

for small enough t. Here we use that $x_{3}>1 / 2 m$.
We split the interval $[0,1]$ into I_{1} and I_{2}, where

$$
I_{1}=\left[0, t^{(a / b)\left(x_{2}-1 / 2 m\right)}\right] \quad \text { and } \quad I_{2}=\left[t^{(a / b)\left(x_{2}-1 / 2 m\right)}, 1\right] .
$$

On I_{1} we have

$$
\psi(\eta) \geq \frac{1}{3} t^{-\left(x_{2}-1 / 2 m\right)}
$$

hence

$$
\begin{aligned}
\int_{I_{1}} \eta \psi(\eta)^{2 k+2} d \eta & \geq 3^{-2(k+1)} t^{-2(k+1)\left(x_{2}-1 / 2 m\right)} \int_{I_{1}} \eta d \eta \\
& =\frac{1}{2} \cdot 3^{-2(k+1)} t^{(2 a / b)\left(x_{2}-1 / 2 m\right)} \cdot t^{-2(k+1)\left(x_{2}-1 / 2 m\right)}
\end{aligned}
$$

Thus we obtain the estimate

$$
\begin{align*}
a_{k} & \geq \frac{\pi^{2}}{k+1} 12^{-2(k+1)} t^{2(k+1) x_{2}+2 x_{3}} 3^{-2(k+1)} t^{(2 a / b)\left(x_{2}-1 / 2 m\right)} \cdot t^{-2(k+1)\left(x_{2}-1 / 2 m\right)} \\
& =\frac{\pi^{2}}{k+1} 36^{-2(k+1)} t^{(k+1) / m} t^{2 x_{3}+(2 a / b)\left(x_{2}-1 / 2 m\right)} \tag{3.12}
\end{align*}
$$

(ii) For the case $k=0$, we also use the interval I_{2} :

$$
a_{0} \geq \frac{\pi^{2}}{72} t^{2 x_{2}+2 x_{3}} \int_{t^{(a / b)\left(x_{2}-1 / 2 m\right)}}^{1} \eta \psi(\eta)^{2} d \eta
$$

On this interval we have

$$
\psi(\eta) \geq \frac{1}{3} \eta^{-b / a}
$$

and

$$
\begin{aligned}
\int_{I_{2}} \eta \psi(\eta)^{2} d \eta & \geq \frac{1}{9} \int_{t^{(a / b)\left(x_{2}-1 / 2 m\right)}}^{1} \eta^{1-2 b / a} d \eta \\
& =\frac{1}{18(1-b / a)}\left(1-t^{2(1-b / a)(a / b)\left(x_{2}-1 / 2 m\right)}\right)
\end{aligned}
$$

For small enough t, this will give us

$$
a_{0} \geq c_{*} t^{2 x_{2}+2 x_{3}}
$$

(iii) We now estimate a_{1}^{*} from above in a similar way, starting with

$$
\begin{align*}
a_{1}^{*} & \leq \int_{\left|z_{3}\right|<t^{1 / 2 m}}\left(\int_{\left|z_{2}\right|<\phi\left(\left|z_{3}\right|\right)}\left|z_{2}\right|^{2} d^{2} z_{2}\right) d^{2} z_{3} \\
& =4 \pi^{2} \int_{0}^{t^{1 / 2 m}} y\left(\int_{0}^{\phi(y)} x^{3} d x\right) d y \\
& =\pi^{2} t^{2 x_{3}} \int_{0}^{t^{-\left(x_{3}-1 / 2 m\right)}} \eta\left(\phi\left(t^{x_{3}} \eta\right)\right)^{4} d \eta \\
& =\pi^{2} t^{4 x_{2}+2 x_{3}} \int_{0}^{t^{-\left(x_{3}-1 / 2 m\right)}} \eta \psi(\eta)^{4} d \eta \\
& =\pi^{2} t^{4 x_{2}+2 x_{3}}\left(\int_{I_{1}} \eta \psi(\eta)^{4} d \eta+\int_{I_{2}} \eta \psi(\eta)^{4} d \eta+\int_{I_{3}} \eta(\psi(\eta))^{4} d \eta\right) \tag{3.13}
\end{align*}
$$

where $I_{3}=\left[1, t^{-\left(x_{3}-1 / 2 m\right)}\right]$.

Now we estimate from above:

$$
\begin{aligned}
\int_{I_{1}} \eta \psi(\eta)^{4} d \eta & \leq t^{-4\left(x_{2}-1 / 2 m\right)} \int_{0}^{t^{(a / b)\left(x_{2}-1 / 2 m\right)}} \eta d \eta \\
& \leq t^{-4\left(x_{2}-1 / 2 m\right)+(2 a / b)\left(x_{2}-1 / 2 m\right)}=t^{(2 a / b-4)\left(x_{2}-1 / 2 m\right)} \\
& \int_{I_{2}} \eta \psi(\eta)^{4} d \eta \leq \int_{t^{(a / b)\left(x_{2}-1 / 2 m\right)}}^{1} \eta^{1-4 b / a} d \eta
\end{aligned}
$$

Because $2 b>a$, we have

$$
\int_{I_{2}} \eta \psi(\eta)^{4} d \eta \leq \frac{1}{2(2 b / a-1)} t^{(2 a / b-4)\left(x_{2}-1 / 2 m\right)}
$$

Finally,

$$
\int_{I_{3}} \eta \psi(\eta)^{4} d \eta \leq \int_{1}^{t^{-\left(x_{3}-1 / 2 m\right)}} \eta^{1-4 d / c} d \eta \leq \int_{1}^{\infty} \eta^{1-4 d / c} d \eta=\frac{1}{2(2 d / c-1)}
$$

In conjunction with (3.13), this yields

$$
a_{1}^{*} \leq c^{\prime} t^{4 x_{2}+2 x_{3}+(2 a / b-4)\left(x_{2}-1 / 2 m\right)}=c^{\prime} t^{2 x_{3}+(2 a / b)\left(x_{2}-1 / 2 m\right)+2 / m},
$$

which proves the lemma.
We now can finish our proof of Theorem 3.1:

$$
\begin{aligned}
& \sqrt{E_{\Omega_{t}}}(\tilde{w}(t),(1,0)) \\
& \quad \leq \frac{1}{\sqrt{a_{0}}}+\sum_{k=2}^{\infty}(k+1) \frac{t^{((1 / 2 m)+\varepsilon) k}}{\sqrt{a_{k}}} \\
& \quad \leq \frac{1}{t^{x_{2}+x_{3}}}+\frac{1}{t^{x_{3}+(a / b)\left(x_{2}-1 / 2 m\right)+1 / 2 m}} \sum_{k=2}^{\infty}(k+1)^{3 / 2}\left(36 t^{-1 / 2 m}\right)^{k} t^{((1 / 2 m)+\varepsilon) k} \\
& \quad=\frac{1}{t^{x_{2}+x_{3}}}+\frac{36^{2} t^{2 \varepsilon}}{t^{x_{3}+(a / b)\left(x_{2}-1 / 2 m\right)+1 / 2 m}} \sum_{k=2}^{\infty}(k+1)^{3 / 2}\left(36 t^{\varepsilon}\right)^{k-2} \\
& \quad \leq \frac{1}{t^{x_{2}+x_{3}}}+c^{\prime \prime} \frac{t^{2 \varepsilon}}{t^{x_{3}+(a / b)\left(x_{2}-1 / 2 m\right)+1 / 2 m}} \quad\left(\text { for } t<72^{-1 / \varepsilon}\right) \\
& \quad \leq c^{*} \frac{t^{2 \varepsilon}}{t^{x_{3}+(a / b)\left(x_{2}-1 / 2 m\right)+1 / 2 m}}
\end{aligned}
$$

with some constants $c^{\prime \prime}, c^{*}>0$ (independent of t). In the second inequality we have used (3.12); and in the next-to-last line, the second member dominates the first one. This follows from the choice of ε.

On the other hand,

$$
\sqrt{K_{\Omega_{t}^{*}}(\tilde{w}(t), \tilde{w}(t))} \geq \sqrt{c_{*}} \frac{t^{\varepsilon}}{t^{x_{3}+(a / b)\left(x_{2}-1 / 2 m\right)+1 / 2 m}} .
$$

Hence we obtain

$$
\frac{E_{\Omega_{t}}(\tilde{w}(t),(1,0))}{K_{\Omega_{t}^{*}}(\tilde{w}(t), \tilde{w}(t))} \leq \hat{c} t^{2 \varepsilon}
$$

together with (3.9), this proves the theorem.

References

[B] S. Bergman, The kernel function and conformal mapping, 2nd ed., Mathematical Surveys, 5, Amer. Math. Soc., Providence, RI, 1970.
[C] D. W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466.
[DFH] K. Diederich, J. E. Fornæss, and G. Herbort, Boundary behavior of the Bergman metric, Complex analysis of several variables (Madison, WI, 1982), Proc. Sympos. Pure Math., 41, pp. 59-67, Amer. Math. Soc., Providence, RI, 1984.
[Do1] H. Donnelly, L^{2}-cohomology of pseudoconvex domains with complete Kähler metric, Michigan Math. J. 41 (1994), 433-442.
[Do2] ——, L^{2}-cohomology of the Bergman metric for weakly pseudoconvex domains, Illinois J. Math. 41 (1997), 151-160.
[DoFe] H. Donnelly and Ch. Fefferman, L^{2}-cohomology and index theorem for the Bergman metric, Ann. of Math. (2) 118 (1983), 593-618.
[M1] J. D. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), 108-139.
[M2] ——, L^{2} harmonic forms of some complete Kähler manifolds, Math. Ann. 323 (2002), 319-349.
[O] T. Ohsawa, On the extension of L^{2} holomorphic functions III, Negligible weights, Math. Z. 219 (1995), 215-225.

Bergische Universität Wuppertal Fachbereich C
Mathematik und Naturwissenschaften
Gaußstraße 20
D-42097 Wuppertal
Germany
gregor@math.uni-wuppertal.de

