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0. Introduction

H. Freudenthal constructed, in a series of his papers (see [10] and its references),
the exceptional Lie algebras of type E8, E7, E6, and F4 by defining various pro-
jective varieties. The purpose of our work is to study projective geometry for his
varieties of certain type, which are called varieties of planes in the symplectic
geometry of Freudenthal (see [10, 4.11] and [23, 2.3]).

Let g be a graded, simple, finite-dimensional Lie algebra over the complex
number field C with grades between−2 and 2, dim g2 = 1, and g1 �= 0, namely, a
graded Lie algebra of contact type: g = g−2⊕g−1⊕g0⊕g1⊕g2 (see Section 1).
We set

V := {x ∈ g1\ {0} | (ad x)2g−2 = 0},
and define an algebraic set V in P(g1) to be the projectivization of V:

V := π(V ),
where π : g1 \ {0} → P(g1) is the natural projection. Then we call V ⊆ P(g1)

(with the reduced structure) the Freudenthal variety associated to the graded Lie
algebra g of contact type, which is a natural generalization of Freudenthal’s vari-
eties mentioned previously. Note thatV is not necessarily connected in this general
setting. Moreover, we here consider the projectivization of a closed set {x ∈ g1 |
(ad x)k+1g−2 = 0} and denote it by Vk; we have

∅ = V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ V4 = P,

where we set P := P(g1) for short. Clearly, V3 is a quartic hypersurface, V2 is
an intersection of cubics, and V1 = V is an intersection of quadrics (with a few
exceptions).

In the literature, several results have been known about the structure of g1 as a
g0-space—case by case for each exceptional Lie algebra of types E8, E7, E6, and
F4—from the viewpoint of the invariant theory of prehomogeneous vector spaces
(see [13; 15; 19; 22]). By virtue of those results, it can be shown, for example, that
the stratification of P given by the differences of the Vk exactly corresponds to the

Received August 7, 2002. Revision received May 15, 2004.
Both of the authors were supported in part by Grant-in-Aid for Scientific Research (C), no. 10640046,

Japan Society for the Promotion of Science. The first author was supported in part by Grant for
Special Research Projects, Individual Research, no. 99A-187, Waseda University.

515



516 Hajime Kaj i & Osami Yasukura

orbit decomposition of the g0-space g1 for those exceptional Lie algebras, and also
that Freudenthal varieties V associated to the algebras of type E8, E7, E6, and F4

are projectively equivalent to (respectively) the 27-dimensional E7-variety arising
from the 56-dimensional irreducible representation, the orthogonal Grassmann
variety of isotropic 6-planes in C

12 (namely, the 15-dimensional spinor variety),
the Grassmann variety of 3-planes in C

6, and the symplectic Grassmann variety of
isotropic 3-planes in C

6—with dim P = 55, 31, 19, and 13, respectively (see Ap-
pendix); for those homogeneous projective varieties, we refer to [12, Sec. 23.3].

In this article we study the Freudenthal varieties V with the filtration {Vk} of the
ambient space P from the viewpoint of projective geometry, not individually but
systematically in terms of abstract Lie algebras, without depending on the classi-
fication of simple Lie algebras or on the known results for each case of types E8,
E7, E6, and F4.

Before stating the main result, we note that the Lie bracket g1 × g1 → g2 �
C defines a nondegenerate skew-symmetric form on g1, so that this form allows
us to identify g1 with its dual space (and hence P with its dual space), and g1 is
even-dimensional. Moreover, the quartic form on g1 defining V3 has a differen-
tial that, via the symplectic form, defines a vector field on g1, and this vector field
defines a 1-dimensional distribution on P away from the singular locus of V3 (see
Proposition A1). We denote by LP the (closure of the) integral curve of this dis-
tribution passing through P ∈P \ SingV3. On the other hand, we have a rational
map γ : P ��� P defined by x �→ (ad x)3g−2 with base locus V2 , which turns
out to be a Cremona transformation of P. It is deduced that γ−1(V ) = V3 \V2 ,
γ−1(P \V3) = P \V3, γ 2 = 1 on P \V3, and γ is explicitly given by the partial
differentials of q (see Proposition A2). Note that our γ is a special case of the
Cremona transformations in [7, Thm. 2.8(ii)].

Our main results are summarized as follows (see Theorems A, B, C, D, and E
as well as Corollaries A2, B1, B3, and C).

Theorem. Assume that V is irreducible. Then the following statements hold.

(1) V is a Legendrian subvariety of P (i.e., the projectivization of a Lagrangian
subvariety of g1) with dimV = n − 1, spans P, and is an orbit of the group
of inner automorphisms of g with Lie algebra g0, and hence smooth, where
dim g1 = 2n. In particular, the projective dual V ∗ of V is equal to the union
of tangents to V via the symplectic form.

(2) V2 is the singular locus of V3; for any P ∈P \V2 , LP is the line in P joining
P and γ (P ).

(a) IfP ∈P\V3, thenLP is a unique secant line of V passing throughP, there
is no tangent line to V passing through P, LP ∩ V consists of harmonic
conjugates with respect to P and γ (P ), and LP \V ⊆ P \V3. Moreover,
γ preserves LP , and the automorphism of LP induced from γ leaves each
point in LP ∩V invariant and also permutes P and γ (P ).

(b) If P ∈ V3 \V2 , then there is no secant line of V passing through P, LP

is a unique tangent line to V passing through P, LP ∩ V = γ (P ), and
LP \V ⊆ V3 \V2. Moreover, LP is contracted by γ to the contact point
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γ (P ), and conversely the fibre of γ on Q ∈V consists of the points P ∈
V3 \V2 such that Q ∈LP , or (equivalently) P lies on some tangent to V
at Q.

In particular, V is a variety with one apparent double point, and V3 is the
union of tangents to V.

(3) For any P ∈ V2 \V, the family of secants of V passing through P is of di-
mension at least 1, and all of those secants are isotropic with respect to the
symplectic form. In particular, V2 \V is covered by isotropic secants of V.

(4) For any Q,R ∈ V, the secant line joining Q and R is isotropic if and only if
the tangents to V at Q and at R are disjoint.

(5) For any P ∈ V3 \V2 and Q ∈ V, if the secant line joining Q and the contact
point γ (P ) of LP is not isotropic, then there is a twisted cubic curve con-
tained in V to which LP and LR are tangent at γ (P ) and at Q (respectively),
where R is a point on some tangent to V at Q away from V2 , determined by
P and Q.

(6) If V2 �= V, then V is ruled—that is, covered by lines contained in V.

(7) For any P ∈V, the double projection from P gives a birational map from V

onto P
n−1, and by the inverse map V is written as the closure of the image of

a cubic Veronese embedding of a certain affine space A
n−1 under some pro-

jection to P.

We show also that the three conditions V = ∅, V3 = P, and V2 = P are equivalent
to each other (Corollary A1) and that, if V is neither empty nor irreducible, then g1

decomposes naturally into two irreducible g0-submodules of dimension n and V

is the (disjoint) union of the projectivizations of those summands (Corollary B2).
The contents of this paper are organized as follows. In Section 1 we give some

preliminaries on graded Lie algebras of contact type, and we define a certain sym-
metric product g1× g1 → g0 and a ternary product in g1 induced from it in order
to avoid a raging flood of Lie brackets. In the literature, several authors (see [8; 9;
20; 28]) have introduced various ternary products in g1 in the process of establish-
ing their theories of triple systems. However, those ternary products themselves
are essentially the same, as is easily seen. In this paper we use the one first in-
troduced by Yamaguti and Asano [27], since their product seems suitable for our
computation. In Section 2 we prove some basic results on g1 with those products
and the symplectic form.

In Section 3 we discuss the line field with the Cremona transformation, study
the relationship between V and the family of lines LP , and investigate the case
V = ∅. In Section 4 we establish the homogeneity of V and show that V is a La-
grangian subvariety of g1 with respect to the symplectic form; the homogeneity of
V is deduced from that of P \V3 (see Claim in the proof of Theorem B and Re-
mark B1). Using those results, we study the irreducibility and the ruledness of V.
In Sections 5 and 6 we discuss isotropic secants of V and double projections of V,
respectively. We also give a geometric meaning of the ternary product we use.

In Section 7, we study the intersection of V and a certain linear subspace of di-
mension 3, which turns out to be the twisted cubic curve already mentioned. In
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the study of the ruledness and isotropic secants of V (as well as the twisted cubic
curves in V ), a rational map �P : P ��� P defined by x �→ (ad x) � (ad a)2g−2

plays a key role, where P = π(a) is a point in V2 \V or in V3 \V2 (see (the proof
of ) Corollary B3 as well as Propositions C and E and Theorem E). For instance,
the point R in part (5) of the summary Theorem is written explicitly as �P (Q).

We give in the Appendix a classification of Freudenthal varieties for the conve-
nience of the reader: the classification follows from known results and some direct
computations.

Finally we should mention that S. Mukai announced a theorem [21, (5.8)] on
cubic Veronese varieties without proofs. Our work was originated by looking for
proofs of the corresponding statements for Freudenthal varieties (Corollaries A2,
B1, and C and Theorem D). In fact, we see from his list [21, (5.10)] of cubic
Veronese varieties (and the list in our Appendix) that the notion of our Freuden-
thal varieties coincides with that of his cubic Veronese varieties. Our result gives
a partial explanation for this coincidence (see Theorem D).

1. Preliminaries

For a finite-dimensional, simple Lie algebra g of rank ≥ 2, a graded decomposi-
tion of contact type is obtained as follows. Take a Cartan subalgebra h of g and a
basis � of the root system R with respect to h, and fix an order on R defined by
�. Denote by ρ the highest root of g, let E+ and E− be highest and lowest weight
vectors (respectively), and set H := [E+ ,E−]. By multiplying suitable scalars,
one may assume that (E+ ,H,E−) form an sl2-triple; that is, those vectors have
the following standard relations:

[H,E+] = 2E+ , [H,E−] = −2E−, [E+ ,E−] = H.

Then, the eigenspace decomposition of g with respect to adH gives g a graded
decomposition of contact type. In other words, if we set gλ := {x ∈ g | [H, x] =
λx} for λ ∈ C, then it follows that g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 , dim g2 = 1,
and g1 �= 0; in fact, g1 = 0 if and only if g = sl2. In terms of root spaces of g, we
have

g0 = h⊕
⊕

α∈R+\(Rρ∪{ρ})
(gα ⊕ g−α),

g±1 =
⊕
α∈Rρ

g±α , g±2 = g±ρ = CE±,

where R+ is the set of positive roots and Rρ := {α ∈R+ | ρ − α ∈R}. Indeed,
let sρ be the subalgebra of g spanned by E+ , H, and E− that is isomorphic to sl2.

Then the irreducible decomposition of g as an sl2-module gives the decomposition
just displayed (see [26] for full details). Conversely, for a graded decomposition
g = ∑

gi of contact type, taking suitable bases E+ for g2 and E− for g−2 with
H := [E+ ,E−], one may assume that (E+ ,H,E−) form an sl2-triple, as before.
Then, we see that E+ and E− are some highest and lowest weight vectors (re-
spectively) and that each gi is recovered as an (adH )-eigenspace. Therefore, the
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graded decompositions of contact type are unique up to automorphism of g, so
the Freudenthal variety V is essentially unique and determined by g itself (see
Appendix).

Now we define a symmetric product × : g1× g1 → g0 by the formula

−2a × b = [b, [a,E−]]+ [a, [b,E−]],

which induces a symmetric map L : g1× g1 → Hom(g1, g1) and a ternary product
[·, ·, ·] : g1× g1× g1 → g1 by

[a, b, c] = L(a, b)c = [a × b, c].

Note that the adjoint action of g0 on g1 is faithful because g is simple (see [26,
Lemma 3.2(1)]); we may assume g0 ⊆ Hom(g1, g1), so that we identify L(a, b)
with a × b. We think of g1 as an g0-module via the adjoint action. For example,
we often write Dx instead of (adD)x and [D, x] for D ∈ g0 and x ∈ g1. As the
skew-symmetric form 〈·, ·〉 : g1 × g1 → C and the quartic form on g1 defining V3

(mentioned in Introduction), we use the ones determined by

2〈a, b〉E+ = [a, b], 2q(x)E+ = (ad x)4E−.

Note that the skew-symmetric form 〈·, ·〉 is nondegenerate because g is simple (see
[26, Lemma 3.2(2)]).

With the notation used so far, it follows that

V = V1 = π({x ∈ g1\ {0} | x × x = 0}),
V2 = π({x ∈ g1\ {0} | [xxx] = 0}),
V3 = π({x ∈ g1\ {0} | 〈x, [xxx]〉 = 0}),

and q(x) = 〈x, [xxx]〉. Note that V0 = ∅ since [[x,E−]E+] = x for any x ∈ g1;
indeed, it follows from the Jacobi identity that [[x,E−]E+] = [[x,E+],E−] +
[x[E−,E+]] = [x,−H ] = x since [x,E+]∈ g3 = 0. On the other hand, it follows
from Lemma 1 that V �= P.

Lemma 1. Let g00 be the subalgebra of g0 defined by

g00 := Ker(adE+|g0) = Ker(adE−|g0).

Then we have g0 = g00 ⊕ CH, and g00 is linearly spanned by the elements in g0

of the form a × b with a, b ∈ g1. In particular, g00 �= 0, and x × x �= 0 for some
x ∈ g1.

Proof. First of all, we have DE− = 0 if and only if DE+ = 0 for any D ∈ g0.

Indeed, we haveDE± ∈ [g0, g±2 ] ⊆ g±2 = CE±, so thatDE± = λ±E± for some
λ± ∈C. Then

0 = DH = D[E+ ,E−] = [DE+ ,E−]+ [E+ ,DE−] = λ+H + λ−H,

so that λ+ + λ− = 0; hence the claim follows. The decomposition follows from
the short exact sequence
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0 −→ g00 −→ g0
adE+|g0−−−−−→ g2 −→ 0,

which splits by adE−|g2. We next have a × b ∈ g00 for any a, b ∈ g1. Indeed, it
follows from the Jacobi identity that

−2[a × b,E−] = [[b[a,E−]]E−]+ [[a[b,E−]]E−]

= ([[b,E−][a,E−]]+ [b[[a,E−]E−]])

+ ([[a,E−][b,E−]]+ [a[[b,E−]E−]])

= [b[[a,E−]E−]]+ [a[[b,E−]E−]],

which is equal to zero since we have [[a,E−]E−], [[b,E−]E−]∈ g−3 = 0.
Now, it follows from the definition of 〈·, ·〉 that 2〈a, b〉H = [[a, b]E−], so that

2(a × b + 〈a, b〉H ) = −[b[a,E−]]− [a[b,E−]]+ [[a, b]E−] = −2[b[a,E−]]

by the Jacobi identity; that is, we obtain

[[a,E−]b] = a × b + 〈a, b〉H. (1.1)

On the other hand, since g is simple (see [26, Lemma 3.1]), we have

[[g1,E−], g1] = g0 = g00 ⊕ CH.

Thus g00 is spanned by the products a × b.

Finally, if x × x = 0 for any x ∈ g, then 0 = (a + b) × (a + b) = 2a × b.

That is, a × b = 0 for any a, b ∈ g1, so that g00 = 0 by our previous reasoning.
If g00 = 0 then h = g0 = CH, hence rk g = 1. Therefore, it follows from our as-
sumption rk g ≥ 2 that g00 �= 0, and that x × x �= 0 for some x ∈ g1.

Lemma 2 (Asano [3]). For any a, b, c ∈ g1 and D ∈ g00, we have:

(1) 〈Da, b〉 + 〈a,Db〉 = 0;
(2) D(a × b) = Da × b + a ×Db;
(3) D[abc] = [(Da)bc]+ [a(Db)c]+ [ab(Dc)].

Proof. (1) From the definition of g00 and the Jacobi identity, we have

0 = 2〈a, b〉DE+ = D[a, b] = [Da, b]+ [a,Db].

(2) Similarly, we obtain

−2D(a × b) = D[b[a,E−]]+D[a[b,E−]]

= [Db, [a,E−]]+ [b,D[a,E−]]+ [Da, [b,E−]]+ [a,D[b,E−]]

= [Db, [a,E−]]+ [b[Da,E−]]+ [Da, [b,E−]]+ [a[Db,E−]]

= −2Da × b − 2a ×Db.

(3) It follows from (2) that

(D(a × b))c = [Da × b, c]+ [a ×Db, c] = [(Da)bc]+ [a(Db)c].

On the other hand, it follows from the Jacobi identity that

(D(a × b))c = [Dc, a × b]+D([a × b, c]) = −[ab(Dc)]+D[abc].

Combining these formulas, we obtain the result.
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We denote by G00 the group of inner automorphisms of g with Lie algebra g00.

Then Lemma 2 tells us that the symplectic form 〈·, ·〉, the symmetric product ×,
and the ternary product [·, ·, ·] are equivariant with respect to the action of G00, so
that each Vi is stable under the action of G00 (i.e., a union of some orbits of G00).

We should mention that the proofs here of (2) and (3) in Lemma 2 are due to the
referee and are much simpler than the proofs in [3].

Lemma 3 (Asano [3]). We have [abc]− [acb] = 〈a, c〉b−〈a, b〉c+ 2〈b, c〉a for
any a, b, c ∈ g1.

Proof. Using (1.1) and the Jacobi identity yields

([abc]+ 〈a, b〉c)− ([acb]+ 〈a, c〉b) = [[[a,E−]b]c]− [[[a,E−]c]b]

= [[a,E−][b, c]]

= 2〈b, c〉[[a,E−]E+] = 2〈b, c〉a.

2. Basic Results

Proposition 1. If x ∈ V, then the following statements hold.

(1) [axx] = 3〈a, x〉x for any a ∈ g1; in particular, if a × x = 0 then 〈a, x〉 = 0
(see [2]).

(2) Cx ⊆ g00x.

Proof. (1) Because x ∈ V, it follows from Lemma 3 that

[axx] = [xax] = [xxa]+ 〈x, x〉a − 〈x, a〉x + 2〈a, x〉x = 3〈a, x〉x.
(2) This follows from (1) since 〈·, ·〉 is not identically zero.

Proposition 2. We have 〈[abc], d〉 = 〈[cda], b〉 for any a, b, c, d ∈ g1.

Proof. It follows from Lemma 3 that

〈[abc], d〉 = 〈[acb], d〉 + 〈a, c〉〈b, d〉 − 〈a, b〉〈c, d〉 + 2〈b, c〉〈a, d〉,
〈[cda], b〉 = 〈[cad ], b〉 + 〈c, a〉〈d, b〉 − 〈c, d〉〈a, b〉 + 2〈d, a〉〈c, b〉,

so that 〈[abc], d〉 − 〈[cda], b〉 = 〈[acb], d〉 − 〈[acd ], b〉 = 0 by Lemma 2(1).

Proposition 3. If x ∈ V and D,E ∈ g00, then:

(1) Dx × x = 0 [2];
(2) 〈Dx, x〉 = 0;
(3) 〈Dx,Ex〉 = 0;
(4) [(Dx)(Ex)x] = 0.

Proof. (1) It follows from x ∈ V and Lemma 2(2) that

0 = D(x × x) = Dx × x + x ×Dx = 2Dx × x.
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(2) This follows from (1) and Proposition 1(1).
(3) It follows from Proposition 2 and (1) that 〈[abx], [cdx]〉 = 〈[x[cdx]a], b〉 =

0 for any a, b, c, d ∈ g1, so that 〈Dx,Ex〉 = 0 by Lemma 1.
(4) It follows from Lemma 3 that

[(Dx)(Ex)x] = [(Dx)x(Ex)]+ 〈Dx, x〉Ex − 〈Dx,Ex〉x + 2〈Ex, x〉Dx,

which is equal to zero. Indeed, we have Dx × x = 0 by (1), 〈Dx, x〉 = 〈Ex, x〉 =
0 by (2), and 〈Dx,Ex〉 = 0 by (3).

Proposition 4. For any a ∈ g1, we have:

(1) [aaa]× a = 0;
(2) [aa[aaa]] = 3q(a)a;
(3) [aaa]× [aaa] = −3q(a)a × a;
(4) [[aaa][aaa][aaa]] = −9q(a)2a;
(5) q([aaa]) = 9q(a)3.

Proof. (1) It follows from Lemma 2(2) that

0 = [a × a, a × a] = [aaa]× a + a × [aaa] = 2[aaa]× a.

(2) It follows from Lemma 3 and (1) that

[aa[aaa]] = [a[aaa]a]+ 3〈a, [aaa]〉a = 3q(a)a.

(3) It follows from Lemma 2(2) that

[a × a, [aaa]× a] = [aa[aaa]]× a + [aaa]× [aaa].

Using (1) and (2), we obtain 0 = 3q(a)a × a + [aaa]× [aaa].
(4) It follows from (3) and (2) that

[[aaa][aaa][aaa]] = −3q(a)[aa[aaa]] = −9q(a)2a.

(5) This follows from (4).

Proposition 5. If b = a + x with a ∈ g1 and x ∈ V, then:

(1) b × b = a × a + 2a × x;
(2) [bbb] = [aaa]+ 3[aax]+ 6〈x, a〉(a − x);
(3) q(b) = q(a)+ 4〈x, [aaa]〉 + 12〈x, a〉2.
Proof. (1) This is clear from x ∈ V.

(2) It follows from (1) that [bbb] = [aaa] + [aax] + 2[axa] + 2[axx]. Since
[axx] = 3〈a, x〉x by Proposition 1(1), by Lemma 3 we have

[bbb] = [aaa]+ [aax]+ 2([aax]+ 〈a, a〉x − 〈a, x〉a + 2〈x, a〉a)
+ 2(3〈a, x〉x)

= [aaa]+ 3[aax]+ 6〈x, a〉a + 6〈a, x〉x.
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(3) It follows from (2) that

q(b) = 〈a, [aaa]〉 + 〈x, [aaa]〉 + 3〈a, [aax]〉 + 3〈x, [aax]〉
+ 6〈x, a〉〈a + x, a − x〉

= q(a)+ 4〈x, [aaa]〉 + 12〈x, a〉2,
since we have 〈a, [aax]〉 = −〈[aaa], x〉 by Lemma 2(1) and 〈x, [aax]〉 = 0 by
Proposition 3(2).

Proposition 6. For any a ∈ g1, we have:

(1) 3[aa[aab]] = 8〈b, [aaa]〉a + 8〈a, b〉[aaa]+ 〈a, [aaa]〉b for any b ∈ g1;
(2) if q(a) �= 0, then the linear map L(a, a) has full rank.

Proof. (1) It follows from Lemma 3 that

[aa[aab]] = [aa[aba]]+ 3〈a, b〉[aaa]. (2.1)

It also follows from Lemma 3 that [aa[aba]] = [a[aba]a]+ 3〈a, [aba]〉a. Since
〈a, [aba]〉 = 〈b, [aaa]〉 by Proposition 2, we have

[aa[aba]] = [a[aba]a]+ 3〈b, [aaa]〉a. (2.2)

On the other hand, it follows from Lemma 2(3) that [ab[aaa]] = 2[a[aba]a] +
[aa[aba]], and by Lemma 3 and Proposition 4(1) we have

[ab[aaa]] = 〈a, [aaa]〉b − 〈a, b〉[aaa]+ 2〈b, [aaa]〉a.
Therefore,

2[a[aba]a]+ [aa[aba]] = 〈a, [aaa]〉b − 〈a, b〉[aaa]+ 2〈b, [aaa]〉a. (2.3)

Thus, it follows from (2.2) and (2.3) that

3[aa[aba]] = 〈a, [aaa]〉b − 〈a, b〉[aaa]+ 8〈b, [aaa]〉a.
Combining this formula with (2.1), we obtain the required result.

(2) (Asano [5]) Note that g1 = Ca ⊕C[aaa]⊕ (Ca ⊕C[aaa])⊥ if q(a) �= 0.
Indeed, it follows from 〈a, [aaa]〉 �= 0 that

Ca ∩ C[aaa] = (Ca + C[aaa]) ∩ (Ca + C[aaa])⊥ = {0}
and from the nondegeneracy of 〈·, ·〉 that

dim(Ca + C[aaa])+ dim(Ca + C[aaa])⊥ = dim g1.

Now, it is clear from (1) that

L(a, a)2|Ca+C[aaa] = 3q(a)1Ca+C[aaa],

L(a, a)2|(Ca+C[aaa])⊥ = q(a)

3
1(Ca+C[aaa])⊥ .

Therefore L(a, a)2 has full rank if q(a) �= 0, hence L(a, a) does also.
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Proposition 7. For any a ∈ g1 and x ∈ V, we have:

(1) [aaa]× x + 3[aax]× a + 6〈x, a〉a × a = 0;
(2) 3[aax] × [aax] + 8〈x, [aaa]〉a × x − 8〈x, a〉[aaa] × x = 0. In particu-

lar, if [aaa] = 0, then [aax] × [aax] = 0 and, moreover, Cx + C[aax] ⊆
V ∪ {0}.

Proof. (1) If b = a + x, then

0 = [bbb]× b (∵ Proposition 4(1))

= ([aaa]+ 3[aax]+ 6〈x, a〉(a − x))× (a + x) (∵ Proposition 5(2))

= [aaa]× x + 3[aax]× a + 6〈x, a〉a × a (∵ Propositions 4(1), 3(1)),

where in the last equality we have also used that x ∈ V.
(2) It follows from Proposition 3(1) and Lemma 2(2) that

[aa[aax]]× x + [aax]× [aax] = 0.

On the other hand, it follows from Proposition 6(1) that

3[aa[aax]]× x = 8〈x, [aaa]〉a × x − 8〈x, a〉[aaa]× x.

Thus we have the desired result. If [aaa] = 0 then [aax] × [aax] = 0, and it
follows from Proposition 3(1) that [aax] × x = 0, so the latter assertion follows
as well.

3. A Line Field and a Cremona Transformation

Proposition A1.

(1) The quartic form q on g1 has a differential at a ∈ g1 as follows:

dq(a) : tag1 → C; b �→ 4〈b, [aaa]〉,
where tag1 is the Zariski tangent space to g1 at a, which is naturally identified
with g1.

(2) In particular, the singular locus of V3 is equal to V2.

(3) The vector field on g1 corresponding to dq via the symplectic form 〈·, ·〉 in-
duces a 1-dimensional distribution D on P away from SingV3 = V2 that is
given by

D : π(a) �→ (Ca + C[aaa])/Ca,

where π(a)∈ P \V2 and we naturally identify the Zariski tangent space tπaP
with the quotient space g1/Ca.

Proof. (1) By Lemma 3,

[baa] = [aba] = [aab]− 3〈a, b〉a. (3.1)

Since 〈a, [aab]〉 = 〈b, [aaa]〉 by Lemma 2(1), it follows that

〈a, [baa]〉 = 〈a, [aba]〉 = 〈a, [aab]〉 = 〈b, [aaa]〉. (3.2)
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Therefore, for λ∈C and b ∈ g1,
1

λ
{q(a + λb)− q(a)} = 〈b, [aaa]〉 + 〈a, [baa]〉 + 〈a, [aba]〉 + 〈a, [aab]〉

+ λ(· · ·)
= 4〈b, [aaa]〉 + λ(· · ·)
→ 4〈b, [aaa]〉, λ→ 0.

(2) The hypersurface V3 defined by q = 0 is singular at π(a) if and only if
dq(a) = 0, which is equivalent to 〈b, [aaa]〉 = 0 for any b ∈ g1 by (1). That is,
[aaa] = 0 because 〈·, ·〉 is nondegenerate.

(3) This is an immediate consequence of (1); indeed, the differential dq corre-
sponds via 〈·, ·〉 to a vector field on g1 given by a �→ [aaa] up to scalar multiple.

Proposition A2. Let
γ : P ��� P

be a rational map induced from the cubic, a �→ [aaa]. Then:

(1) γ−1(V ) = V3 \V2;
(2) γ−1(P \V3) = P \V3;
(3) γ 2 = 1 on P \V3, hence γ gives an automorphism of P \V3;
(4) γ is explicitly given by the partial differentials of q.

In particular, γ is a Cremona transformation of P(g1) with order 2 if V2 �= P.

Proof. The assertions (1), (2), and (3) follow (respectively) from part (3), (5), and
(4) of Proposition 4. Assertion (4) follows from Proposition A(1).

A secant line of V is by definition a line in P that passes through at least two dis-
tinct points of V yet is not contained in V. We note that, for a line L in P, if the
scheme-theoretic intersection L ∩V has length more than 2 then L ⊆ V ; indeed,
V is an intersection of quadric hypersurfaces.

TheoremA. LetLP be the closure of the integral curve of D throughP ∈P \V2 ,
where D is the 1-dimensional distribution on P \V2 induced from the quartic form
q. Then the following statements hold.

(1) For any P ∈P \V2 , LP is the line in P joining P and γ (P ).

(2) If P ∈P \V3, then:
(a) LP is a secant line of V, and LP ∩V consists of harmonic conjugates with

respect to P and γ (P );
(b) LP \V ⊆ P \V3;
(c) LP is a unique secant line of V passing through P ;
(d) there is no tangent line to V passing through P ;
(e) γ (LP \V ) = LP \V, and the automorphism of LP induced from γ leaves

each point in LP ∩V invariant and also permutes P and γ (P ).

(3) If P ∈V3 \V2 , then:
(a) LP is a tangent line to V, and LP ∩V = {γ (P )};
(b) LP \V ⊆ V3 \V2;
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(c) there is no secant line of V passing through P ;
(d) LP is a unique tangent line to V passing through P ;
(e) γ (LP \V ) = γ (P ), and γ−1(Q) = {P ∈V3 \V2 | Q ∈ LP } = TQV \V2

for any Q∈V, where TQV is the embedded tangent space to V at Q.

Proof. (1) If b = λa + µ[aaa] with a ∈ g1 and λ,µ ∈ C, then it follows from
part (1) and (3) of Proposition 4 that

b × b = (λ2 − 3µ2q(a))a × a, (3.3)

and, moreover, from Proposition 4(2) that

[bbb] = (λ2 − 3µ2q(a))(3µq(a)a + λ[aaa]). (3.4)

Therefore, if b ∈Ca + C[aaa] then [bbb]∈Ca + C[aaa]. On the other hand, if
[aaa] �= 0 then dim(Ca + C[aaa]) = 2. Indeed, if [aaa] = λa for some λ ∈C,
then (λa) × a = [aaa] × a = 0 by Proposition 4(1), so that λ = 0 or a × a =
0; in any case, [aaa] = 0. Thus, if P = π(a) ∈ P \V2 , then for any π(b) ∈
P(Ca + C[aaa]) \V2 we have

Ca + C[aaa] = Cb + C[bbb]

(which is of dimension 2) and also

tπ(b)P(Ca + C[aaa]) = (Ca + C[aaa])/Cb

= (Cb + C[bbb])/Cb = D(π(b))

in tπ(b)P = g1/Cb. Therefore, LP = P(Ca + C[aaa]) � P
1.

(2a & 3a) We see from (1) that if P = π(a) ∈ P \V2 then one may take
(λ : µ) as homogeneous coordinates of π(b) in Lπ(a). It follows from (3.3) that
the scheme-theoretic intersection LP ∩V is a closed subscheme of LP defined by
λ2 − 3µ2q(a) = 0, so that LP ∩V = {(±√

3q(a) : 1
)}
. The results follow from

this observation. In fact, P /∈ V3 if and only if LP ∩ V consists of two distinct
points (i.e., iff LP is a secant line of V ); otherwise, LP ∩V has intersection mul-
tiplicity 2 at γ (P ), so that LP is tangent to V at γ (P ). For P /∈V3, with respect to
the homogeneous coordinates given by (λ′ : µ′) := (

λ :
√

3q(a)µ
)

we have P =
(1 : 0), γ (P ) = (0 : 1), and LP ∩V = {(1 : ±1)}, so that the cross-ratio of those
points is −1.

(2b & 3b) Assume that Q = π(b) ∈ LP \V with P = π(a) /∈ V2; as a result,
λ2 − 3µ2q(a) �= 0 by (3.3), where b = λa + µ[aaa]. Since

q(b) = (λ2 − 3µ2q(a))2q(a)

by (3.4), we see that P /∈V3 if and only if Q /∈V3, so that (2b) follows. Moreover,
if P ∈V3 \V2 then Q∈V3 \V2 by (3.4), so (3b) follows.

(2c & 3c) For P = π(a) ∈ P \V2 , if a = x + y for some x, y ∈ V, then it
follows from Proposition 5(2) that 0 �= [aaa] = −6〈x, y〉(x−y) and from Propo-
sition 5(3) that q(a) = 12〈x, y〉2 �= 0. In particular, P /∈V3, and this proves (3c).
Combining these formulas, we obtain
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x − y = ± 1√
3q(a)

[aaa].

Therefore, {x, y} is uniquely determined by a, and so a secant line of V passing
through P = π(a)∈P \V3 is unique.

(2d & 3d) It suffices to show that, ifL is a tangent line to V atQ passing through
P ∈ P \V2 , then L = LP . Indeed, this implies P ∈V3 by the preceding proof of
(2a & 3a).

Here we note that, for Q = π(x)∈V,

TQV = P(txV ),
where TQV is the embedded tangent space to V at Q, txV is the Zariski tangent
space to V at x, and we identify txg1 with g1. Indeed, TQV is equal to the projec-
tivization of TxV and TxV is the translation x + txV of txV by adding x, which is
equal to txV since V ∪ {0} is a cone with vertex the origin of g1 (here TxV is the
embedded tangent space to V at x).

Since P = π(a) ∈ L ⊆ TQV, it follows that a ∈ txV; hence there is a curve
ξ : �→ V such that ξ(0) = x and

lim
λ→0

1

λ
{ξ(λ)− ξ(0)} = a,

where � := {λ∈C | |λ| < ε} with a sufficiently small ε > 0. For λ∈�\ {0}, set

P(λ) := π(ξ(λ)− ξ(0)), Q(λ) := π(ξ(λ)), L(λ) := P(Cξ(λ)+ Cξ(0)).

Then limλ→0 P(λ) = P, limλ→0 Q(λ) = Q, and limλ→0 L(λ) = L. Since P /∈
V2 , we may assume (taking ε smaller if necessary) that P(λ) /∈ V2 for any λ ∈
� \ {0}. Moreover, since P(λ) lies on a secant line L(λ) of V, by (3c) we have
P(λ) /∈V3. It then follows from (2c) that L(λ) = LP(λ) for any λ∈�\ {0}, so we
obtain L = LP by taking λ→ 0.

(2e) By part (1) and (3) of Proposition 4 together with (3.4),

[bbb]× [bbb] = −3q(a)(λ2 − 3µ2q(a))3a × a

for b = λa + µ[aaa]; therefore, γ (LP \V ) ⊆ LP \V. On the other hand, it fol-
lows from (2b) that LP \V = LP \V3. Thus we have LP \V = γ 2(LP \V ) ⊆
γ (LP \V ) ⊆ LP \V by Proposition A2(3), so that γ (LP \V ) = LP \V. Further-
more, with respect to the homogeneous coordinates (λ′ : µ′) in the proof of (2a &
3a), it follows from (3.4) that the automorphism of LP induced from γ is given by
(λ′ : µ′) �→ (µ′ : λ′). Hence the result follows.

(3e) We already know that γ−1(V ) = V3 \V2 by Proposition A2(1), and it fol-
lows from (3.4) that γ (LP \V ) = γ (P ), where we note that LP \V = LP \V2.

Now, if P ∈ γ−1(Q) then, according to (3a), LP is tangent to V at γ (P ) = Q and
so P ∈ LP ⊆ TQV. Conversely, if P ∈ TQV \V2 then, by the uniqueness (3d), Q
coincides with the contact point of the unique tangent LP , which by (3a) is γ (P );
if Q ∈LP with P ∈V3 \V2 , then Q ∈LP ∩V = {γ (P )}, again by (3a). In either
case, it follows that Q = γ (P ).
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Corollary A1. The three conditions V = ∅, V3 = P, and V2 = P are equiv-
alent.

Proof. It follows from part (2a) of Theorem A that if V = ∅ then P \V3 = ∅,
that is, V3 = P. It suffices to show that V3 = P implies V2 = P and that V2 = P

implies V = ∅. The following argument is due to Asano [4].
Assume that V3 = P, that is, q ≡ 0. Then, for any a, b ∈ g1 and λ,µ∈C,

0 = q(λa + µb)

= λ4q(a)+ λ3µ(〈b, [aaa]〉 + 〈a, [baa]〉 + 〈a, [aba]〉 + 〈a, [aab]〉)
+ λ2µ2(· · ·)+ · · · + µ4q(b).

Since this holds for arbitrary λ,µ∈C, it follows that

〈b, [aaa]〉 + 〈a, [baa]〉 + 〈a, [aba]〉 + 〈a, [aab]〉 = 0.

Then, by (3.2), 4〈b, [aaa]〉 = 0 for any a, b ∈ g1, so that [aaa] = 0 for any a ∈ g1

since 〈·, ·〉 is nondegenerate; that is, V2 = P.

Next assume that V2 = P. A similar argument to the foregoing shows that
[baa]+ [aba]+ [aab] = 0. Using (3.1), we have

3[aab] = 6〈a, b〉a.
Therefore, if a × a = 0 then 〈a, b〉a = 0 for any b ∈ g1, so a = 0 since 〈·, ·〉 is
nondegenerate. Thus, we have V = ∅, that is, V = ∅. This completes the proof
of the equivalence.

Remark A. It can be shown that V = ∅ if and only if the Lie algebra g is of
type C (see Appendix). In fact, using a theorem of Asano [29, Thm. 1.6; 4], one
can show that if q ≡ 0 then g � sp2n+2 , where dim g1 = 2n. The converse is
checked by an explicit computation.

Recall that a projective variety V ⊆ P is called a variety with one apparent double
point if, for a general point P ∈ P, there exists a unique secant line of V passing
through P (see [24, IX]).

Corollary A2. If V �= ∅, then V is a variety with one apparent double point.
In particular, V is nondegenerate in P.

Proof. Set U := P \V3. It follows from Corollary A1 that, if V �= ∅, then U �= ∅
and hence U is dense in P. According to Theorem A(2), U is covered by unique
secants LP (P ∈U) of V. This completes the proof.

4. The Homogeneity

Theorem B. Let G00 be the group of inner automorphisms of g with Lie algebra
g00, where g00 is the subalgebra of g0 defined by g00 := Ker(adE±|g0). Then:
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(1) G00 acts transitively on each irreducible component of V. In particular, we
have txV = g00x for any x ∈ V, where txV is the Zariski tangent space to V
at x.

(2) g00x = (g00x)
⊥ with 2 dim g00x = dim g1 for any x ∈ V, and g1 = g00x ⊕

g00y for any x, y ∈ V with 〈x, y〉 �= 0.

Proof. (1) Let G0 be the group of inner automorphisms of g with Lie algebra g0,
and set U := {s ∈ g1 | q(s) �= 0}. We first prove the following claim.

Claim. G0 acts transitively on U .
Proof. We may assume that U �= ∅. Since U is irreducible and stable under the
action of G0, it suffices to show that

g0 s = g1

for any s ∈ U . Take an arbitrary a ∈ g1. By Proposition 6(2), there exists a
b ∈ g1 such that a = L(s, s)b. On the other hand, it follows from Lemma 3 that
L(s, s)b = [sbs]+3〈s, b〉s = (s×b+3〈s, b〉H )s ∈ g0 s. Thus, we have a ∈ g0 s.

Now, it follows from g0 = g00 ⊕CH (Lemma 1) that G0 = G00 ·C×. Taking ac-
count of Proposition 1(2), we see that it suffices to show that G0 acts transitively
on each of the irreducible components of V.

Take an arbitrary x ∈ V. There exists a y ∈ V such that 〈x, y〉 �= 0, since V is
nondegenerate (Corollary A2). It suffices to show that there exists a g ∈G0 such
that gx = x ′ for any x ′ in a Zariski open neighborhood V \ y⊥ of x in V; indeed,
this implies the required transitivity because any two nonempty, Zariski open sub-
sets of an irreducible space have a nonempty intersection. Since x + y ∈ U and
x ′ + y ∈ U by Proposition 5(3), it follows from our Claim that there exists a g ∈
G0 such that x ′ + y = g(x + y) = gx + gy. Here we have gx, gy ∈ V, since V is
G0-stable. It thus follows from Theorem A(2) that

{gx, gy} = {x ′, y}.
If gx = x ′, then there is nothing to prove; otherwise, we have gx = y and gy =
x ′, so that g2x = x ′. This completes the proof of part (1).

(2) We note that
dim g00x ≤ 1

2 dim g1 (4.1)

holds for any x ∈ V. Indeed, it follows from Proposition 3(3) that g00x ⊆ (g00x)
⊥

and from the nondegeneracy of 〈·, ·〉 that dim(g00x)
⊥ = dim g1− dim g00x.

Now, we show that
g1 = g00x + g00y (4.2)

for any x, y ∈ V with 〈x, y〉 �= 0. Take an arbitrary a ∈ g1. We set s := x + y; it
follows from Proposition 5(3) that s ∈U , as before. According to Proposition 6(2),
there exists a b ∈ g1 such that a = L(s, s)b. On the other hand, since x, y ∈ V, it
follows from Lemma 3 that
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L(s, s)b = [xyb]+ [yxb]

= [xby]+ 〈x, b〉y − 〈x, y〉b + 2〈y, b〉x
+ [ybx]+ 〈y, b〉x − 〈y, x〉b + 2〈x, b〉y

= ([byx]+ 3〈y, b〉x)+ ([bxy]+ 3〈x, b〉y),
which is contained in g00x + g00y by Proposition 1(2). Thus we have

a ∈ g00x + g00y.

Combining (4.1) and (4.2), we obtain that g00x ∩ g00y = 0 for any y ∈ V with
〈x, y〉 �= 0. We note that, for any x ∈ V, there exists y ∈ V such that 〈x, y〉 �= 0
since V is nondegenerate (Corollary A2). Hence the equality holds in (4.1), and
the required results follow.

Remark B1. Since we have G0 = G00 · C×, it follows from the Claim that G00

acts transitively on P \V3 = π(U ). More precisely, we have g00 s = [sss]⊥ for
any s ∈ U . Indeed, for any s ∈ g1, it follows from Lemma 1, Proposition 2, and
Proposition 4(1) that g00 s ⊆ [sss]⊥ by 〈[abs], [sss]〉 = 〈[s[sss]a], b〉 = 0, and
g00 s + Cs = g0 s. If q(s) �= 0, then g0 s = g1 by the Claim and [sss]⊥ has codi-
mension 1 in g1; hence the assertion follows.

Remark B2. One can deduce Theorem B(1) from the linear section theorem
[17, Thm. B] by using a generalization of a theorem of Richardson [27, Lemma,
p. 469], as well as from Theorem B(2) by using the finiteness theorem for the num-
ber of nilpotent orbits [27, Prop. 2, p. 469]. Note that both of those proofs depend
essentially on the argument in [27, Lemma, p. 469]. On the other hand, by using
Theorem A(2), one can deduce (2) from (1) in Theorem B as follows.

Proof of (1) ⇒ (2) in Theorem B. Similarly to the foregoing proof of part (2), it
suffices to show (4.2) for any x, y ∈ V with 〈x, y〉 �= 0. Take an arbitrary a ∈ g1,
and consider a line in g1 such that

σ : C → g1; λ �→ (x + y)+ λa.

Since σ(0) = x + y ∈ U by Proposition 5(3), for a sufficiently small ε > 0 we
have σ(λ)∈U for any λ∈�, where � := {λ∈C | |λ| < ε}. Then it follows from
Theorem A(2) that there exist (analytic) curves ξ, η : �→ V such that ξ(0) = x,
η(0) = y, and

σ(λ) = ξ(λ)+ η(λ)

for any λ∈�. Then

a = d

dλ

∣∣∣∣
λ=0

σ(λ) = d

dλ

∣∣∣∣
λ=0

ξ(λ)+ d

dλ

∣∣∣∣
λ=0

η(λ)∈ txV + tyV.

According to (1) we have txV = g00x and tyV = g00y, so a ∈ g00x + g00y.

Recall that the tangent variety of V, denoted by TanV, is the union of embedded
tangent spaces to V, and that the projective dual of V, denoted by V ∗, is the set of
hyperplanes tangent to V (see e.g. [11, Sec. 3]).
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Corollary B1. Assume that V �= ∅. Then:

(1) G00 acts transitively on each irreducible component of V ; and V is smooth
and equidimensional of dimension n− 1, where dim g1 = 2n.

(2) Denote by L∗ the set of hyperplanes containing a linear subspace L ⊆ P.

Then (TQV )∗ = TQV for any Q∈V and so

TanV = V ∗,

where we identify P with its dual space P
∨ := P(g∗1 ) via the symplectic form

〈·, ·〉.
Proof. (1) This is an immediate consequence of Theorem B. Note that dimV =
n − 1 does not follow directly from Corollary A2, since V is not necessarily
irreducible.

(2) We have V ∗ = ⋃
P∈V (TPV )∗, and it follows from Theorem B that

TQV = P(txV ) = P(g00x) = P((g00x)
⊥) = P(Ker(g∗1 � (g00x)

∗)) = (TQV )∗

for any Q = π(x)∈V, so that V ∗ = TanV.

Corollary B2. If V is neither empty nor irreducible, then there exist irreduc-
ible g00-modules s1 and s2 of dimension n such that g1 = s1⊕ s2 , and we have

V = P(s1) ! P(s2),

where dim g1 = 2n.

Proof. Let {Zi}1≤i≤k be the set of irreducible components of V with k ≥ 2, and let
si be the linear subspace of g1 spanned by π−1Zi. It follows from Corollary B1(1)
that eachZi is an orbit ofG00, so that si isG00-stable. Moreover, by virtue of an ar-
gument in Zak [30, pp. 49–50], we see that si is an irreducible G00-module. Since
P(si ) has a unique closed orbit of G00 (see e.g. [26, Ch. 1, Sec. 4.6.1, Lemma]),
we see that si ∩ sj = 0 if i �= j. Taking into account the nondegeneracy of V
(Corollary A2), we obtain

g1 = s1⊕ · · · ⊕ sk.

On the other hand, we have dim si ≥ dimπ−1Zi = n by Theorem B(2). Hence it
follows that g1 = s1⊕ s2 with k = 2 and Zi = P(si ).

Remark B3. It is known that V is irreducible unless g is of type A or C (see Ap-
pendix). In fact, if g = som then V is a Segre embedding of P

1 × Q in P
2m−9,

where Q is a quadric hypersurface in P
m−5; if g is of type G2 , then V is a cubic

Veronese embedding of P
1 in P

3 (for other exceptional Lie algebras g, see the In-
troduction). Conversely, it follows from a direct computation that we are in the
case just described if g = sln+2 with n ≥ 1.

Corollary B3. If V �= ∅ and V2 �= V, then V is ruled—that is, covered by lines
contained in V.
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Proof. We may assume that V is irreducible, for otherwise the claim is obvious
from Corollary B2. For P = π(u)∈P, let

�P : P ��� P

be a rational map induced from L(u, u) and set BP := P(KerL(u, u)), the base
locus of �P . It suffices to show that

V �⊆ BP ∪�P (V \ BP )

for any P = π(u) ∈ V2 \V. Indeed, if Q ∈ V \ (BP ∪ �P (V \ BP )) then Q �=
�P (Q), and it follows from Proposition 7(2) that the line joining Q and �P (Q)

is contained in V. Taking account of the homogeneity of V (Corollary B1(1)), we
see that this holds for any Q∈V.

Now, since 〈[uua], u〉 = −〈a, [uuu]〉 = 0 for any a ∈ g1 by Lemma 2(1), if we
set P ⊥ := P(u⊥) then

�P (V \ BP ) ⊆ P(L(u, u)g1) ⊆ P ⊥,

so that BP ∪�P (V \BP ) ⊆ BP ∪P ⊥. On the other hand, we have V �⊆ BP ∪P ⊥
since V is irreducible and nondegenerate (Corollary A2). Thus the claim follows.

Remark B4. It can be shown that V = V2 if and only if g is of type G2.

5. Isotropic Secants

Proposition C. For P = π(u)∈P, let �P : P ��� P be a rational map induced
from L(u, u) with base locus BP = P(KerL(u, u)). If V is irreducible and P ∈
V2 \V, then dim�P (V \BP ) ≥ 1; hence dim�P (P \BP ) ≥ 1 and codimBP ≥ 2.

Proof. We have BP �= P since P /∈V. Suppose dim�(V \ BP ) = 0, and set

Q := �P (V \ BP )∈P.

Since �P (R) = Q for any R ∈ V \ BP , by Proposition 7(2) V contains the line
joining Q and R for any R ∈V \BP with Q �= R. Since V is irreducible, V must
be a cone with vertex Q. Since V is smooth by Corollary B1(1), it follows that
V is a linear variety, so that V = P by its nondegeneracy (Corollary A2). Yet by
Lemma 1 V �= P, a contradiction, so dim�P (V \ BP ) > 0.

Remark C1. The irreducibility condition for V is essential in Proposition C. In
fact, there is an example of u satisfying this assumption such that rkL(u, u) = 1
when g = slm, where V is not irreducible (see Remark B3).

Remark C2. It follows easily from Proposition 6 that dim�P (P \ BP ) ≥ 1 if
P /∈V2 and codim�P (P \ BP ) ≥ 1 if P ∈V3, though we do not use these facts in
this paper.

Recall that the secant locus 3P as well as the tangent locus 4P of V with respect
to a given point P ∈P are defined by
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3◦
P := {Q∈V | ∃R ∈V \ {Q}, P ∈Q ∗ R}, 3P := 3◦

P ,

4P := {Q∈V | P ∈ TQV },
where we denote byQ∗R the line in P joiningQ andR and by TQV the embedded
tangent space to V at Q in P (see e.g. [11]).

Theorem C. Assume that V is irreducible. Then:

(1) For any x, y ∈ V, 〈x, y〉 = 0 if and only if g00x ∩ g00y �= 0. In particular, a
secant line joining Q,R ∈V is isotropic with respect to the symplectic form if
and only if TQV ∩ TRV �= ∅.

(2) V2 \V is covered by isotropic secants of V. More precisely, for any u∈ g1, we
have that [uuu] = 0 and u× u �= 0 if and only if u = x + y for some x, y ∈
V such that 〈x, y〉 = 0 and x × y �= 0.

(3) If P ∈V2 \V, then

�P (V \ BP ) ⊆ 3P , �P (V ∩ P ⊥ \ BP ) ⊆ 4P ,

where �P : P ��� P is the rational map induced from L(u, u) with base locus
BP = P(KerL(u, u)) and P ⊥ = P(u⊥) with P = π(u).

(4) We have dim3P ≥ 1 for any P ∈V2 \V.
Proof. (1) We show that if 〈x, y〉 = 0 for some x, y ∈ V, then g00x ∩ g00y �= 0;
the converse has already been proved in Theorem B(2).

We set u := x + y, P := π(u), and L := P(Cx + Cy), the line joining π(x)

and π(y). If P ∈V then x × y = 0, so that L ⊆ V. Therefore, L ⊆ TQV ∩ TRV

with Q = π(x) and R = π(y); that is, 0 �= Cx+Cy ⊆ g00x ∩g00y, as required.
Thus we may assume that P /∈V and x × y �= 0.

Now assume 〈x, y〉 = 0. It follows from Proposition 5(2) that P ∈V2 and from
Lemma 3 and Proposition 1(2) that

g00y $ [axy]+ 〈a, x〉y = [ayx]+ 〈a, y〉x ∈ g00x

for any a ∈ g1. Suppose that g00x ∩ g00y = 0. It follows that [axy] + 〈a, x〉y =
[ayx]+ 〈a, y〉x = 0. Therefore, by Lemma 3,

L(u, u)a = 2[xya] = 2([axy]+ 〈x, a〉y − 〈x, y〉a + 2〈y, a〉x)
= 4〈x, a〉y + 4〈y, a〉x ∈Cx + Cy,

so thatL(u, u)(g1) ⊆ Cx+Cy, hence�P (V \BP ) ⊆ �P (P\BP ) ⊆ L. Moreover,
�P (V \BP ) is dense inL; indeed, we have dim�P (V \BP ) ≥ 1 by Proposition C,
where we note that P ∈V2 \V. On the other hand, it follows from Proposition 7(2)
that �P (V \ BP ) ⊆ V. Hence P ∈ L ⊆ V, and this is a contradiction. Thus we
have g00x ∩ g00y �= 0.

(2) The “if” part follows from part (1) and (2) of Proposition 5. For the “only
if”, let u ∈ g1 satisfy [uuu] = 0 and u × u �= 0. There exists a v ∈ V such that
〈u, v〉 �= 0, since V is nondegenerate (Corollary A2). If z = λu + µ[uuv] with
λ,µ∈C, then it follows from Proposition 7 that
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z× z = λ2u× u+ 2λµ[uuv]× u+ µ2[uuv]× [uuv]

= λ(λ+ 4µ〈u, v〉)u× u.

Since λ(λ+ 4µ〈u, v〉) = 0 for (λ,µ) = (1,−1/4〈u, v〉), (0,1/4〈u, v〉), if we set

{x, y} :=
{
u− 1

4〈u, v〉 [uuv],
1

4〈u, v〉 [uuv]

}

then x, y ∈ V with u = x + y. Note that, by Proposition 7(1), [uuv] �= 0 because
u× u �= 0 and 〈u, v〉 �= 0.

(3) We see from the proof of part (2) that �P is defined on V \ P ⊥ and that

�P (V \ P ⊥) ⊆ 3◦
P

for any P = π(u) ∈V2 \V. Since V is irreducible, we obtain �P (V \ BP ) ⊆ 3P

as required.
Next, for the tangent locus it suffices to show that, for any v ∈ V, if 〈u, v〉 =

0 and [uuv] �= 0 then u ∈ g00[uuv]. For any a, b ∈ g1 and v ∈ V, it follows from
Proposition 2 and Proposition 7(1) that

〈[ab[uuv]], u〉 = 〈[[uuv]ua], b〉 = 2〈u, v〉〈[uua], b〉 = 0.

Therefore, 〈g00[uuv], u〉 = 0 by Lemma 1 and hence u ∈ g00[uuv] by Theo-
rem B(2).

(4) The assertion follows directly from Proposition C and (3).

Remark C3. The irreducibility condition forV is essential in the proof of part (1);
in fact, it is easily seen that the conclusion does not hold when g = slm.

Corollary C. If V is irreducible, then V3 = TanV.

Proof. It follows from Theorem A(2d) that V3 ⊇ TanV and from Theorem A(3a)
and Theorem C(3) that V3 ⊆ TanV.

6. Double Projections

Proposition D. For any x, y ∈ V, let 7xy : g1 → g1 be a linear map defined by

7xy(a) := [axy]+ 〈a, x〉y.
(1) If 〈x, y〉 �= 0, then Ker7xy = g00x and 7xy(g1) = g00y. In particular, a ra-

tional map 7PQ : P ��� P induced from 7xy is a double projection from P

with image TQV (i.e., a projection with center TPV onto TQV ) and so defines
a morphism

7PQ : P \ TPV → TQV,

where TPV is the embedded tangent space to V at P with P = π(x) and
Q = π(y).

(2) Moreover, for anyR ∈V, the four pointsR, [PQR],7PR(Q), and 7QR(P ) are
collinear, and [PQR] is the harmonic conjugate of R with respect to 7PR(Q)
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and 7QR(P ), where we set [PQR] := π([xyz]) with R = π(z). In particu-
lar, this holds for general P,Q,R ∈V and yields a geometric interpretation
of our ternary product.

Proof. (1) It follows from part (1) and (2) of Proposition 3 that Ker7xy ⊇ g00x

and from Proposition 1(2) that 7xy(g1) ⊆ g00y. On the other hand, we have the
formula

7xy −7yx = 2〈x, y〉1g1,

which is nothing but Lemma 3. If 〈x, y〉 �= 0 then we have the direct sum decom-
position g1 = g00y ⊕ g00x (Theorem B(2)). We thus see that 7xy and 7yx are
surjective onto g00y and onto g00x (respectively) and hence the assertion follows.

(2) We note that [xyz] �= 0. Indeed, since q(x + y) = 12〈x, y〉2 �= 0 by Propo-
sition 5(3), it follows from Proposition 6(2) that 2L(x, y) = L(x + y, x + y) is
injective. Now the assertion follows directly from the definition of the maps 7PQ.

In fact, we have

7xz(y) = [yxz]+ 〈y, x〉z = [xyz]− 〈x, y〉z,

7yz(x) = [xyz]+ 〈x, y〉z,

so that 7PR(Q) and 7QR(P ) lie on the line joining R and [PQR], and those four
points form a harmonic quadruple.

Remark D1. In terms of the Lie bracket, by (1.1)we have7ab(c)= [b[a[c,E−]]].

Theorem D. For any P,Q∈V, if the secant line joining P andQ is not isotropic
(i.e., if TPV ∩ TQV = ∅) then the following statements hold.

(1) V \ P ⊥ = (7PQ|V \TPV )−1(TQV \ P ⊥).
(2) The double projection 7PQ gives an isomorphism V \ P ⊥ → TQV \ P ⊥. In

fact, a rational map 8QP : TQV ��� V induced from a map 8yx : g00y →
V ∪ {0} defined by

8yx(t) := 〈x, [t t t]〉x + 3〈x, t〉[t tx]+ 12〈x, t〉2 t
gives the inverse of 7PQ|V \P ⊥ , where P = π(x) and Q = π(y).

(3) The base locus of 8QP is TQV ∩ P ⊥ ∩V2.

In particular : if V is irreducible, then 7PQ gives a birational map from V to TQV,
and V is the closure of the image of a composition of a cubic Veronese embedding
of the affine space TQV \ P ⊥ with some projection to P.

Proof. (1) By Proposition 2 and Proposition 1(1), for any x, y ∈ V with 〈x, y〉 �= 0
we have 〈7xy(a), x〉 = 2〈a, x〉〈x, y〉, so that a ∈ x⊥ if and only if 7xy(a) ∈ x⊥.
Therefore,

7−1
xy (g00y \ x⊥) = g1\ x⊥;

hence 7−1
PQ(TQV \ P ⊥) = P \ P ⊥. Observe here that TPV ⊆ P ⊥ by Proposi-

tion 3(2) and that, by Theorem C(1), 〈x, y〉 �= 0 if and only if TPV ∩TQV = ∅with
P = π(x) and Q = π(y). Restricting 7PQ to V \ TPV, we obtain the result.
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(2) We first show that7PQ is unramified onV \P ⊥. For any z∈ V with 〈x, z〉 �= 0
we have g00x ∩ g00 z = 0, so it follows from Proposition D(1) that 7xy induces an
isomorphism g00 z→ g00y. Thus 7PQ is unramified at π(z).

We next show that 7PQ|V \P ⊥ is injective. Assume that 7xy(a) = 7xy(b) with
a, b ∈ V \ x⊥; it then follows from Proposition D(1) that

a − b ∈Ker7xy = g00x.

Therefore, by (1), (2), and (4) of Proposition 3, 〈a − b, x〉 = 0, (a − b)× x = 0,
and

[(a − b)(a − b)x] = 0.

In particular, we see that L(a − b, a − b) is not injective (since x �= 0) and so
q(a − b) = 0 by Proposition 6(2); hence 〈a, b〉 = 0 by Proposition 5(3). On the
other hand, since a, b ∈ V we have [(a − b)(a − b)x] = −2[abx], and

[abx] = [axb]+ 〈a, x〉b − 〈a, b〉x + 2〈b, x〉a (∵ Lemma 3)

= [bxb]+ 〈a, x〉b + 2〈b, x〉a (∵ a × x = b × x, 〈a, b〉 = 0)

= 3〈x, b〉b + 〈a, x〉b + 2〈b, x〉a (∵ Proposition 1(1))

= 2〈a, x〉(a − b) (∵ 〈a, x〉 = 〈b, x〉).
Therefore, since 〈a, x〉 �= 0 we have a = b as required.

We next show that 8yx(t) ∈ V ∪ {0} for any t ∈ g00y. It follows from Proposi-
tion 3(1) that

8yx(t)× 8yx(t) = 24〈x, t〉2〈x, [t t t]〉x × t + 9〈x, t〉2[t tx]× [t tx]

+ 72〈x, t〉3t × [t tx]+ 144〈x, t〉4t × t

= 3〈x, t〉2(3[t tx]× [t tx]+ 8〈x, [t t t]〉x × t)

+ 24〈x, t〉3(3t × [t tx]+ 6〈x, t〉t × t),

which is equal to zero by Proposition 7. Thus we have 8yx(t)× 8yx(t) = 0.
Since 〈x, [t t t]〉x + 3〈x, t〉[t tx] ∈ g00x = Ker7xy and since, by Proposition

D(1), 12〈x, t〉2 t ∈ g00y = Ker7yx , it follows from Lemma 3 that

7xy � 8yx(t) = (7yx + 2〈x, y〉1g1)(12〈x, t〉2 t) = 24〈x, y〉〈x, t〉2 t
for any t ∈ g00y, so that

7PQ � 8QP = 1TQV \P ⊥ .

Therefore, 7PQ|V \P ⊥ is surjective onto TQV \P ⊥ and hence an isomorphism, and
8QP on TQV \ P ⊥ gives the inverse of 7PQ.

(3) If 8yx(t) = 0 with t ∈ g00y \ {0}, then

〈x, [t t t]〉x + 3〈x, t〉[t tx] = 12〈x, t〉2 t = 0

by the direct sum decomposition g1 = g00x ⊕ g00x, so that 〈x, t〉 = 0 because
t �= 0 and 〈x, [t t t]〉 = 0 because x �= 0. If [t t t] �= 0 then π([t t t]) = π(y) by The-
orem A(3), so 〈x, [t t t]〉 would not be zero (by our assumption 〈x, y〉 �= 0), and
this is a contradiction. Thus we have [t t t] = 0.
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Remark D2. The morphism 7PQ : V \ TPV → TQV is not necessarily surjec-
tive. In fact, for any P ∈V, if g is of type G2 then: P ⊥ is the osculating plane to
the twisted cubic V ⊆ P

3 at P ; V ∩P ⊥ = {P }; and 7PQ(V \ TPV ) = TQV \P ⊥
for any Q∈V with P �= Q.

Remark D3. We have proved in the foregoing that 7xy : V \ x⊥ → g00y \ x⊥ is
an isomorphism.

Added in proof. We give here another expression of the inverse map of the dou-
ble projection 7PQ in Section 6 (see Theorem D). We first note that there is an
isomorphism of affine spaces,

ι : g00y ∩ x⊥ → TQV \ P⊥

defined by ι(a) := π(a + y). Indeed, the inverse is given by

ι−1(π(t)) := 〈x, y〉
〈x, t〉 t − y

for π(t) ∈ TQV \ P⊥, where TQV = P(g00y) and P⊥ = P(x⊥). Now let
ρ : g00y ∩ x⊥ → V be the composition of ι with the rational map 8QP : TQV ���
V in Theorem D(2). Then ρ is the inverse of 7PQ via ι, and it follows from part (1)
and (4) of Proposition 3 that

ρ(a) = π

( 〈x, [aaa]〉
12〈x, y〉2 x + 1

4〈x, y〉 [aax]+ a + y

)
.

In particular, the Freudenthal variety V is equal to the closure of the image of the
affine space g00y ∩ x⊥ under the cubic Veronese embedding ρ.

7. Twisted Cubic Curves

Proposition E. For any P ∈V3 \V2 and Q∈V, if the secant line joining Q and
the contact point γ (P ) of LP is not isotropic, then:

(1) Q∈L�P (Q) and �3
P (Q) = γ (P )∈LP = L�2

P
(Q) with both �P (Q),�2

P (Q)∈
V3 \V2; and

(2) LP ∩ L�P (Q) = ∅, so Q, �P (Q), �2
P (Q), and �3

P (Q) are linearly indepen-
dent in P.

Proof. (1) Take t ∈ g1 and x ∈ V such that π(t) = P and π(x) = Q, and set D :=
L(t, t) ∈ g00; we have �k

P (Q) = π(Dkx), and 〈x, [t t t]〉 �= 0 by our assumption
that the secant line joining γ (P ) = π([t t t]) and Q is not isotropic. According to
Theorem A(3), the unique tangent line LP to V passing through P has a unique
contact point γ (P ). On the other hand, since q(t) = 0, it follows from Proposi-
tion 6(1) and Proposition 4(2) that

3D2x = −8〈x, t〉[t t t]+ 8〈x, [t t t]〉t,
3D3x = 8〈x, [t t t]〉[t t t],
D4x = 0.
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Therefore, �3
P (Q) = π([t t t]) = γ (P ) and �2

P (Q) ∈ LP , so �2
P (Q) ∈ Tγ (P )V.

Here we note that D3x �= 0, since 3〈x,D3x〉 = 8〈x, [t t t]〉2 �= 0.
Now, similarly to the proof of Proposition 3(1), it follows from Lemma 2(2) that

0 = D(Dx × x) = D2x × x +Dx ×Dx,

so that [(Dx)(Dx)(Dx)] = −[x(D2x)(Dx)]. By Lemma 3, part (1) and (2) of
Proposition 3, and Lemma 2(1),

[x(D2x)(Dx)] = −〈x,D2x〉Dx + 2〈D2x,Dx〉x
= 〈Dx,Dx〉Dx − 2〈D3x, x〉x = −2〈D3x, x〉x �= 0.

Hence [(Dx)(Dx)(Dx)] �= 0 and �P (Q)∈ TQV \V2. It then follows from Theo-
rem A(3) that Q∈L�P (Q). Moreover, it follows that

9D2x ×D2x = 64〈x, [t t t]〉2 t × t �= 0,

so �2
P (Q) /∈V. Thus, by Theorem A(3) we have �2

P (Q) ∈ LP \V ⊆ Tγ (P )V \V2

and hence γ (P )∈L�2
P
(Q) = LP .

(2) Since LP ⊆ Tγ (P )V, L�P (Q) ⊆ TQV, and Tγ (P )V ∩ TQV = ∅ (because
〈x, [t t t]〉 �= 0), it follows that LP ∩ L�P (Q) = ∅. The linear independence of the
four points is thus a consequence of part (1).

Theorem E. For any P ∈ V3 \V2 and Q ∈ V such that the secant line joining
Q and the contact point γ (P ) of LP is not isotropic (i.e., TQV ∩ Tγ (P )V = ∅), let
PPQ be the linear subspace of dimension 3 in P spanned by Q, �P (Q), �2

P (Q)

(or, equivalently, P), and �3
P (Q) = γ (P )—that is, spanned by LP and L�P (Q),

the unique tangent lines to V passing through P and �P (Q).

(1) The intersection V ∩PPQ is a twisted cubic curve in PPQ � P
3 given explicitly

by the image of LP under the cubic map 8γ(P )Q:

V ∩ PPQ = 8γ(P )Q(LP ).

(2) The twisted cubic curve in this PPQ has the following properties:
(a) LP and L�P (Q) are the tangent lines at γ (P ) and Q (respectively); and
(b) γ (P )⊥ ∩ PPQ and Q⊥ ∩ PPQ are (respectively) the osculating planes at

γ (P ) and Q, which are spanned by LP and �P (Q) and by L�P (Q) and
�2
P (Q), respectively.

Proof. Take t ∈ g1 and x ∈ V such that π(t) = P and π(x) = Q, and set D :=
L(t, t) ∈ g00 as before. Since D4x = 0 (see the proof of Proposition E), using
Lemma 2(2) repeatedly yields from Dk(x × x) = 0 that

D3x × x + 3D2x ×Dx = 0,

4D3x ×Dx + 3D2x ×D2x = 0,

D3x ×D2x = 0,

D3x ×D3x = 0.
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If z = λ0x + λ1Dx + λ2D
2x + λ3D

3x with λi ∈ C, then it follows from the
foregoing equalities that

z× z = (λ2
1 − 2λ0λ2)Dx ×Dx

+ 2(λ1λ2 − 3λ0λ3)Dx ×D2x

+ 1
2 (2λ

2
2 − 3λ1λ3)D

2x ×D2x.

Here Dx × Dx, Dx × D2x, and D2x × D2x are linearly independent. Indeed,
let λDx ×Dx + µDx ×D2x + νD2x ×D2x = 0 for some λ,µ, ν ∈ C. Then,
applying D2 to this formula, we obtain λ = 0 because (a) it follows from our as-
sumption 〈x, [t t t]〉 �= 0 that

D2(Dx ×Dx) = 2D(Dx ×D2x) = 1
2D

2x ×D2x �= 0

and (b) other terms are killed by D2. Therefore, µDx ×D2x + νD2x ×D2x =
0. Again applying D to this formula, we similarly obtain µ = 0 and hence ν = 0.
Thus, it follows that the intersection V ∩ PPQ has defining equations

λ2
1 − 2λ0λ2 = λ1λ2 − 3λ0λ3 = 2λ2

2 − 3λ1λ3 = 0,

which is a twisted cubic curve in PPQ with the required properties, as is easily
shown.

We next demonstrate that V ∩ PPQ = 8γ(P )Q(LP ). If u = λD2x + µD3x with
λ,µ∈C, then

8(D3x)x(u) = 4
3〈x,D3x〉2(2λ3x + 6λ2µDx + 9λµ2D2x + 9µ3D3x)

with π(D3x) = �3
P (Q) = γ (P ). Indeed, it follows that 〈x, u〉 = µ〈x,D3x〉 and

u× u = λ2D2x ×D2x = 64

9
〈x, [t t t]〉2 t × t = 8

3
λ2〈x,D3x〉D,

so 3[uux] = 8λ2〈x,D3x〉Dx, 3[uuu] = 8λ3〈x,D3x〉D3x, and 3〈x, [uuu]〉 =
8λ3〈x,D3x〉2. Since 8γ(P )Q(R) ∈ V for any R = π(u) ∈ P(CD2x + CD3x) =
LP by Theorem D, we have

8γ(P )Q(LP ) ⊆ V ∩ PPQ,

where PPQ = P(Cx + CDx + CD2x + CD3x). Since both 8γ(P )Q(LP ) and
V ∩ PPQ are irreducible and closed subsets of P and of the same dimension, it
follows that 8γ(P )Q(LP ) = V ∩ PPQ.

Remark E1. The morphism 8γ(P )Q : LP → PPQ is given by

(λ : µ) �→ (2λ3 : 6λ2µ : 9λµ2 : 9µ3)

in terms of homogeneous coordinates with respect to the basis {D2x,D3x} for LP

and {x,Dx,D2x,D3x} for PPQ.

Remark E2. Set E := L(Dx,Dx) and F := [D,E ] with D := L(t, t) as be-
fore, and denote by g00PQ the subalgebra of g00 generated by D, E, and F. Then
it follows that
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Table A1 Adjoint Varieties and Freudenthal Varieties

g X ⊆ P(g) g00 V ⊆ P(g1)

slm (Pm−1 × P
m−1) ∩ (1) ⊆ P

m2−2 gl1 ⊕ slm−2 P
m−3 ! P

m−3 ⊆ P
2m−5

som Gorthog.(2,m) ⊆ P

(
m

2

)
−1

sl2 ⊕ som−4 P
1 ×Qm−6 ⊆ P

2m−9

sp2m v2P
2m−1 ⊆ P

(
2m+ 1

2

)
−1 sp2m−2 ∅ ⊆ P

2m−3

e6 E6(ω2 )
21 ⊆ P

77 sl6 G(3, 6) ⊆ P
19

e7 E7(ω1)
33 ⊆ P

132 so12 S5 = Gorthog.(6,12) ⊆ P
25−1

e8 E8(ω8)
57 ⊆ P

247 e7 E7(ω6) ⊆ P
55

f4 F4(ω1)
15 ⊆ P

51 sp6 Gsympl.(3, 6) ⊆ P
13

g2 G2(ω2 )
5 ⊆ P

13 sl2 v3P
1 ⊆ P

3

Notation: We denote by “∩ (1)” the cutting by a general hyperplane and by vd the
Veronese embedding of degree d. We denote by G(r,m) a Grassmann variety of r-
planes in C

m, and by Gorthog.(r,m) and Gsymp.(r,m) an orthogonal and a symplectic
(respectively) Grassmann variety of isotropic r-planes in C

m. A simple exceptional
Lie algebra of Dynkin typeG is denoted by g (as in [12]); a simple algebraic group of
type G is denoted simply by G; and for a dominant integral weight ω of G, the mini-
mal closed orbit ofG in P(Vω) is denoted byG(ω), where Vω is the irreducible repre-
sentation space of G with highest weight ω. For example, g2 in the list is the simple
Lie algebra of typeG2, andG2(ω2 ) is the minimal closed orbit of an algebraic group
of type G2 in P(Vω2 ), where ω2 is the second fundamental dominant weight in the
standard notation of Bourbaki [6, Ch. 4–6].

[F,D] = 4
3〈D3x, x〉D, [F,E ] = − 4

3〈D3x, x〉E,

so that g00PQ is isomorphic to the Lie algebra sl2. Denoting by g1PQ the sub-
space of g1 spanned by x, Dx, D2x, and D3x, we see that g1PQ is an irreducible
g00PQ-module of dimension 4 with

F(Dkx) = (2k − 3) 2
3〈D3x, x〉Dkx,

and the twisted cubic curve V ∩ PPQ = 8γ(P )Q(LP ) is a unique closed orbit in
PPQ = P(g1PQ) under the natural action of the group of inner automorphisms of
g00 with Lie algebra g00PQ.

Thus, for any P ∈ V3 \V2 and Q ∈ V with Tγ (P )V ∩ TQV = ∅, a subalgebra
g00PQ of g00 isomorphic to sl2 and an irreducible g00PQ-submodule g1PQ of g1

with dimension 4 are associated to P and Q. If g is of type G2 , then g00PQ and
g1PQ are (respectively) equal to g00 and g1 themselves.

Appendix: A Classification of Freudenthal Varieties

In Table A1 we give a classification of Freudenthal varieties V in terms of the
root data of g. It would be interesting to compare V with the adjoint variety as-
sociated to g, since those varieties are closely related to each other. In fact, for a
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simple graded Lie algebra g = ∑
gi of contact type, denote by V the Freudenthal

variety associated to g (as before) and denote by X the orbit of the inner automor-
phism group of g through π(E+) in P(g), which is the minimal closed orbit in
P(g), called the adjoint variety associated to g (see [16]). Then, according to [17,
Thm. B], we have V = X ∩ P(g1).
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