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1. Introduction and the Main Theorem

A classical theorem of Seifert asserts that every smooth, closed, codimension-
1 submanifold of Euclidean n-space can be smoothly isotoped to a nonsingular
real algebraic set [S, Satz 4]. We consider the noncompact analogue of Seifert’s
theorem.

The main result (Theorem 1) is a necessary and sufficient topological condition
forXn a smooth compact manifold with boundary to have a codimension-1, real al-
gebraic interior. In particular, for such anXn, there is a smooth proper embedding
Xn ↪→Dn+1 if and only if the interior ofXn is diffeomorphic to a nonsingular real
algebraic subset of R

n+1. Moreover, if such an embedding exists, then int(Xn) is
isotopic to a nonsingular real algebraic subset of int(Dn+1) ≈ R

n+1.

Using Theorem 1 we show (Corollary 1) that the noncompact analogue of
Seifert’s theorem is intimately related to completions of a pair. This observa-
tion yields a complete answer to the noncompact Seifert problem in ambient
dimension < 4 and also in the high-dimensional simply connected case (Corol-
lary 2). As a final application of Theorem 1, we show that a real algebraic problem
of V. I. Arnoľd concerning exotic R

4s being real algebraic in R
5 is in fact equiva-

lent to an open topological problem.
A guiding problem here is the noncompact analogue of Seifert’s classical theo-

rem [S, Satz 4].

Problem 1. Which smooth, proper, codimension-1 submanifolds Mn (not nec-
essarily compact) of R

n+1 are isotopic to nonsingular real algebraic sets?

The method of proof employed by Seifert in the compact case does not readily ex-
tend to the noncompact case. The main difference is the amount of control needed
near infinity. In the compact case, one approximates a suitable smooth function by
a polynomial over a large compact set and then, following Seifert, adds an alge-
braic correction term to keep the polynomial from picking up more zeros outside
of the compact set. The only control needed near infinity is that the polynomial
should always be greater than (or always less than) zero. Clearly much more con-
trol is needed in the proper noncompact case, since the set of zeros extends all
the way to infinity. The noncompact case does eventually involve approximating
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suitable smooth functions; however, the approximations are much more delicate.
The bulk of the work presented here is devoted to proving the following, which is
our main theorem.

Theorem 1. Let Xn be a smooth compact manifold. Then int(Xn) is diffeomor-
phic to a nonsingular real algebraic subset of R

n+1 if and only if Xn admitsXn ↪→
Dn+1 as a smooth proper embedding. If such an embedding exists, then int(Xn) is
isotopic to a nonsingular real algebraic subset W of int(Dn+1) ≈ R

n+1. In fact,
for all balls Bn+1

R of sufficiently large radius R, the pair (Bn+1
R ,Bn+1

R ∩W) is dif-
feomorphic to (Dn+1,Xn).

Remark 1. A map is proper if it maps boundary points to boundary points and is
transverse at boundaries and if the inverse image of every compact set is compact.
All isotopies will be smooth, proper, and ambient.

The remainder of this paper is organized as follows. Section 2 presents some ap-
plications of Theorem 1 to the study of Problem 1. Secton 3 is a brief discussion
of algebraic regular neighborhoods. Section 4 constructs the ends of the algebraic
setW in Theorem 1, and Section 5 completes the proof of Theorem 1.

2. Applications of the Main Theorem

We first recall the notion of a completion, which we will need only for manifolds
without boundary. Let (A,B) be a smooth manifold pair with B a proper subman-
ifold (B may be empty). Assume further that ∂B and ∂A are empty. A comple-
tion of the pair (A,B) is a smooth compact manifold pair (Ā, B̄) and a smooth
embedding i : (A,B) ↪→ (Ā, B̄) satisfying the following conditions: i(A,B) =
(int(Ā), int(B̄)), B̄ intersects ∂Ā in ∂B̄, and this intersection is transverse.

Our first corollary to Theorem 1 is a topological condition characterizing those
manifolds that answer Problem 1 in the affirmative.

Corollary 1. LetMn ⊂ R
n+1 be any smooth proper submanifold. ThenMn is

isotopic to a nonsingular real algebraic subset of R
n+1 if and only if the pair

(Rn+1,Mn) admits a completion
(
Rn+1,Mn

)
such that Rn+1 is diffeomorphic

to Dn+1.

Proof. First, assume M is isotopic to p−1(0), a nonsingular real algebraic subset
of R

n+1. The idea is that ∞ is an isolated singularity (or perhaps a nonsingular
point) of p−1(0) controlling the topology near ∞. Specifically, let θ : R

n+1 −0 →
R
n+1 − 0 be inversion through the unit sphere—namely, θ(x) = x/|x|2. Let d =

degp and define q : R
n+1 → R to be the polynomial given by |x|2dp � θ with de-

nominators cleared (cf. [AK3, Lemma 2.1.5]). Notice that q vanishes on θ(M)∪ 0
and that 0 is either a nonsingular point or an isolated singularity of q−1(0). In either
case, [M3, pp. 16–18] implies that (εDn+1, εDn+1 ∩ q−1(0)) is homeomorphic (in
fact, diffeomorphic except possibly at 0) to the cone

(
c(εS n), c(εS n ∩ q−1(0))

)
for sufficiently small ε > 0, where εS n∩q−1(0) is a smooth closed manifold. The



Noncompact Codimension-1 Real Algebraic Manifolds 363

result follows by reinverting through the unit sphere and reparameterizing collars
at infinity.

Next, assume (Rn+1,M) admits a completion
(
Rn+1,M

)
such that Rn+1 is dif-

feomorphic to Dn. Recall that, by definition, M intersects ∂Rn+1 in ∂M and this
intersection is transverse [Si, p. 109] (transverse data imply transverse results).
The result then follows immediately from Theorem 1.

Remark 2. At least for n 
= 3, 4, the hypothesis that Rn+1 is diffeomorphic to
Dn+1 is superfluous. Forn = 2, use the smooth form of theAlexander–Schoenflies
theorem (i.e., any smooth S2 ↪→ R

3 bounds a smooth 3-disk); for n ≥ 5, use the
h-cobordism theorem.

Remark 3. In the compact case, the isotopy in Seifert’s theorem can be chosen
ε-small. This is not possible in the noncompact case, as the following example
shows. We can, however, choose our isotopy to be ε-small over any prescribed
compact subset of R

n+1, as the proof of Theorem 1 shows.

Example 1. LetMn ⊂ R
n+1 be any noncompact, smooth, proper, real algebraic

submanifold. We will give an isotopy ofMn to a submanifold that cannot be iso-
toped to a real algebraic set by any bounded isotopy. By the assumptions onMn,
there is a smooth proper ray [0, ∞) in Mn; let pk (k ∈ Z

+) be the integer points
of this ray. At each pk send a hair (literally, a closed interval) out of Mn so that
the end of the hair is at least k units farther from the origin of R

n+1 than the point
pk and the hairs are disjoint. This can be arranged, say, by sending the hairs out
following the ray. For each pk , choose a very small closed n-disk neighborhood
Dk of pk inMn. Using the hairs as guides, isotope theDk while fixing the bound-
aries ∂Dk , so that the points pk coincide with the far endpoints of the hairs; we
denote the isotopedDk byD ′

k , the isotoped pk by p ′
k , and the isotopedMn byM ′.

Now, any isotopy of M ′ bounded by N > 0 leaves the boundary of D ′
k closer to

the origin than p ′
k for k > 2N. Hence, the squared norm function on R

n+1 will
have infinitely many critical points on the image ofM ′ under any bounded isotopy.
Consequently, the image ofM ′ could not be algebraic.

Next, we obtain basic necessary conditions for a manifold to answer Problem 1 in
the affirmative. Assume Mn ⊂ R

n+1 is a smooth proper submanifold that is iso-
topic to a nonsingular real algebraic set. The implicit function theorem implies
that the boundary of Mn is empty (even real algebraic manifolds whose defining
polynomials have singularities in their zero sets cannot have boundary points by
[Su, Cor. 2]). Corollary 1 implies thatMn is smoothly collared byNn−1, a smooth
closed manifold. In particular, Nn−1 is the disjoint union of at most finitely many
connected, smooth closed manifolds, and Mn has finitely many components and
ends. We tacitly assume a smooth proper embedding Nn−1 × [0,1) ↪→ Mn ⊂
R
n+1 that collarsMn has been fixed, and we regardNn−1 × [0,1) as a submanifold

ofMn.

These necessary conditions provide immediate counterexamples to Problem 1.
The pair (R × R

n, Z × R
n) gives an example in every dimension of a very nice
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(smooth, proper, tame, etc.) submanifold that cannot be real algebraic. However,
these counterexamples are not fatal and the necessary conditions given here are,
in fact, nearly sufficient. Before we make this precise, we describe two additional
hypothesis one may impose on Mn. First, the “Ray hypothesis” will mean that
there is an isotopy of Mn simultaneously taking one smooth proper ray in each
end ofMn to a straight ray in the Euclidean sense. Second, the “End hypothesis”
will mean that each end of R

n+1 − T(Mn) has finitely presented and stable fun-
damental group. Here T(Mn) denotes a closed tubular neighborhood of Mn. We
refer the reader to [CKS] for a discussion of ends in this context.

Corollary 2. LetMn ⊂ R
n+1 satisfy the necessary conditions just listed. Then

Mn is isotopic to a nonsingular real algebraic subset of R
n+1, provided that

(a) n = 1 or (b) n = 2 and either the Ray or End hypothesis is satisfied or
(c) n≥ 5 and each component of the collaring manifold N is simply connected.

Proof. By [CKS] there is a completion of the pair (Rn+1,Mn). The result follows
by Corollary 1.

Remark 4. Examples in [Si, p. 110] show that a pair (Rn+1,Mn), n ≥ 2, need
not have a completion if the components of Nn−1 are not assumed to be simply
connected. (In these examples, Nn−1 = S1 × S n−2.) Thus, the non–simply con-
nected case carries deeper subtleties, as do ambient dimensions 3 and 4.

We close this section with a very special case of Problem 1 that is related to that
in [A].

Problem 2 (Arnoľd). Does there exist an exotic R
4 that is diffeomorphic to a

nonsingular real algebraic subset of R
5?

Remark 5. By “exotic” we mean a smooth manifold that is homeomorphic but
not diffeomorphic to the standard one. An n-dimensional pseudodisk is a smooth,
compact, contractible n-manifold with boundary.

In [MV] it was shown that any exotic R
4, say R , answeringArnoľd’s problem in the

affirmative is necessarily collared by a smooth homotopy 3-sphere that smoothly
embeds in S 4 (this also follows from Corollary 1 and topological invertible cobor-
disms). Thus, if such an R exists, then there is a pseudodisk with interior R and
one of the remaining Poincaré conjectures is false. In fact, the existence of such a
pseudodisk is equivalent to Arnoľd’s problem. To show this, we will need a lemma
that appears to be new.

Lemma 1. Let X 4 be a pseudodisk with simply connected boundary. Then X 4

admits X 4 ↪→ D5 as a smooth proper embedding if and only if ∂X 4 smoothly
embeds in S 4.

Proof. One direction is obvious, so assume there exists a smooth embedding
∂X 4 ↪→ S 4. Let Y 5 be the smooth manifold with boundary obtained from
S 4 × [0,1] by gluing on X 4 × [−1,1] along a product neighborhood, N =
∂X 4 ×[−1,1] ⊂ S 4 ×0, of ∂X 4 in the canonical way and smoothing corners. Then
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∂Y 5 consists of three connected components, say S 4 × 1, �4
A, and �4

B. Recalling
that ∂X 4 is simply connected, standard theorems imply that the �4

A,B are simply
connected Z-homology 4-spheres and hence (by Freedman’s theorem [F]) topo-
logical 4-spheres. The fourth homotopy sphere cobordism group is trivial; that is,
 4 = 0 [KM]. Thus, there existW 5

A,B smooth null h-cobordisms of �4
A,B , respec-

tively (sew a standard 5-disk onto a smooth h-cobordism between �4
A,B and S 4).

Let Z5 be the smooth manifold with boundary obtained from Y 5 by sewing on
W 5
A,B along�4

A,B in the canonical way. Again, standard theorems imply that Z5 is
simply connected and has the integral homology of a point. As ∂Z5 = S 4, we may
conclude that Z5 is diffeomorphic to D5 [M2, p. 110]. The result follows.

Corollary 3. There exists an exotic R
4 diffeomorphic to a nonsingular real al-

gebraic subset of R
5 if and only if there exists an exotic R

4 diffeomorphic to the
interior of a compact manifold.

Proof. First, suppose R is an exotic R
4 that is a nonsingular real algebraic subset

of R
5. By [MV], there exist a homotopy 3-sphere �3 and a neighborhood of in-

finity in R that is diffeomorphic to �3 × [0,1). Let X 4 be the compact manifold
obtained from R by removing�3 × (0,1), so int(X 4) is diffeomorphic to R. The
result follows.

For the other direction, suppose that X 4 is a smooth compact manifold with
boundary and that int(X 4) is diffeomorphic to R , an exotic R

4. Reparameterizing
collars, we see that X 4 is homotopy equivalent to R and so X 4 is contractible.
Also, ∂X 4 is a homotopy 3-sphere [GS, pp. 366, 519]. Therefore, X 4 is a pseudo-
disk with simply connected boundary. There are two cases.

Case 1: ∂X 4 smoothly embeds in S 4. Then, Lemma 1 and Theorem 1 imply
that R is diffeomorphic to a real algebraic subset of R

5.

Case 2: ∂X 4 does not smoothly embed in S 4. The punctured double, 2X 4 −pt,
is a smooth manifold homeomorphic to R

4 because 2X 4, the double of X 4, is ho-
meomorphic to S 4 by [F]. However, 2X 4 − pt is not diffeomorphic to R

4 since
otherwise we have a smooth embedding of ∂X 4 in S 4. Thus, 2X 4 −pt is an exotic
R

4 collared at infinity by S3. Lemma 1 and Theorem 1 then imply that 2X 4 − pt
is diffeomorphic to a real algebraic subset of R

5.

Thus, Arnoľd’s real algebraic problem is equivalent to a topological one. We re-
mind the reader that all exotic R

4s R are smooth proper submanifolds of R
5, since

R × R ≈ R
5 by engulfing or by the smooth proper h-cobordism theorem. More-

over, these smooth embeddings may be chosen to be real analytic. Still, there are
only countably many smooth compact manifolds (with or without boundary) yet
uncountably many pairwise nondiffeomorphic exotic R

4s [GS, p. 370], so most
exotic R

4s are neither real algebraic in R
5 nor the interior of a smooth compact

manifold. Exotic R
4s are problematic at infinity: all known handle decompositions

of exotic R
4s are infinite [GS, p. 366]; all known exotic R

4s contain a compact
subset that cannot be contained in the bounded region formed by any smoothly
embedded S3 (“Property �” in [MV]); and every exotic R

4 contains a compact
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subset that cannot be contained in any smoothly embedded D4 (a “weak Prop-
erty �” [M1, p. 168; GS, p. 366]). It is unknown whether every exotic R

4 pos-
sesses Property �.

3. Algebraic Regular Neighborhoods

Definition 1. Suppose X ⊂ Y are real algebraic sets with X compact. An al-
gebraic regular neighborhood of X in Y is obtained as follows. Pick any proper
rational function p : Y → R with X = p−1(0); then, for small enough ε > 0, the
set p−1([−ε, ε]) is an algebraic regular neighborhood of X in Y.

Algebraic regular neighborhoods are explored in [D]. They are unique up to iso-
topy and are mapping cylinder neighborhoods. In our context,X will always con-
tain the singular points of Y, so Y −X is a smooth manifold. Then ε small enough
just means that p has no critical values in [−ε, 0) ∪ (0, ε], which easily implies
independence of ε up to isotopy.

A related notion is an algebraic regular neighborhood of infinity for a real alge-
braic set Y. This is p−1((−∞, −R] ∪ [R, ∞)) for a proper rational function p and
large enough R. Algebraic regular neighborhoods of infinity are unique and col-
lar the ends of Y, since they are algebraic regular neighborhoods of points added
when compactifying Y. An example of such a neighborhood is the intersection of
Y with the complement of a sufficiently large open ball.

4. Constructing the Ends of W

Notation 1. Let x, (x, t), and (x, t, s) denote typical elements of R
n, R

n+1 =
R
n× R, and R

n+2 = R
n× R × R, respectively. Let Bmr (x) denote the closed ball

of radius r centered at x in R
m, and let Bmr denote Bmr (0). We let S n−1

r denote the
sphere of radius r about the origin in R

n.

Definition 2. Let h : R
n → R be a polynomial. The homogenization of h is the

polynomial h∗ : R
n × R → R given by h∗(x, t) = t deg(h)h(x/t). The polynomial

h is said to be overt if h∗(x, 0) 
= 0 for x 
= 0.

Essential to the proof of Theorem 1 is the following lemma, whose proof will take
up the rest of this section. One way of looking at it is that the pair (Rn+1,Z) has
its algebraic regular neighborhood of infinity diffeomorphic to (S n,�)× [R, ∞).
Lemma 2. Let �n−1 be a closed, smooth, codimension-1 submanifold of S n.
If n = 1, assume also that �n−1 is an even number of points. Then there is
an algebraic subset Z ⊂ R

n+1 such that, for all sufficiently large R, the pair
(S nR , S nR ∩Z) is diffeomorphic to (S n,�n−1). In fact, there is a proper embedding
h : S n × [R, ∞) → R

n+1 such that h−1(Z) = �n−1 × [R, ∞) and |h(x, t)| = t

for all (x, t).

Remark 6. The orientable codimension-2 version of Lemma 2 already follows
from known results: For an orientable “knot”Mn ↪→ S n+2, a generalized Seifert
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surface (i.e. a compact, connected, smooth manifold Nn+1 ↪→ S n+2 with trivial
normal bundle such that ∂Nn+1 = Mn) always exists (see e.g. the Introduction
and Section 27 of [R]); coupling this with [AK1, Thm. 0.2] and inversion through
the sphere, the result follows. In codimension ≥ 3, the problem is open (the inter-
ested reader may refer to [AK2], for example).

Proof of Lemma 2. The proof may be outlined as follows. First, by deleting a
point from S n we will think of �n−1 as being a submanifold of R

n. The major ef-
fort is then to construct a real algebraic set V ⊂ R

n × [0, ∞) such that, for t > 0
small enough, V ∩ R

n × t is isotopic to �n−1 × t. Now put V in projective space
RP

n+1 and delete the subspace t = 0 to obtain an affine algebraic set Z. Now
Z ∩ R

n × t is isotopic to �n−1 × t for all sufficiently large t > 0. By unique-
ness of algebraic regular neighborhoods at infinity, we then see that (S nR ,Z ∩ S nR)
is diffeomorphic to (S n,�n−1) for large enough radii R. Now for the details.

Let Yn ⊂ R
n be the compact codimension-0 submanifold such that ∂Y n =

�n−1. Following Lemma 3.2 of [AK1] (and its proof ), there is a finite collection
of smoothly embedded disks Dnα , α ∈A, in int(Y n) such that:

(i) the boundaries S n−1
α = ∂Dnα (α ∈A) are in general position; and

(ii) Yn minus some other finite disjoint collection of disks is a smooth regular
neighborhood of

⋃
α S

n−1
α in Yn.

Essentially, the disks Dnα (α ∈A) are obtained from a smooth triangulation of Yn

by choosing one disk Dnα to engulf each simplex not touching �n−1 = ∂Y n.
We now define a finite abstract graph G. The vertices vj (j ∈B ⊂ Z

+) of G are
the connected components of Yn − ⋃

α S
n
α . We order them so that (a) for j ≤ m,

vj is a connected component of Yn − ⋃
α D

n
α and (b) for j > m, vj is a connected

component of
⋃
α D

n
α − ⋃

α S
n
α . We put an edge between two vertices vi and vj

if and only if the intersection of the closures of their corresponding components
contains an n−1 dimensional subset (i.e., iff their corresponding components are
nontrivially adjacent). The crucial property here is that we could actually realize
the graph as a subset of Yn, with the vertices as points in their component and with
the edges as smooth curves between these points, which are transverse to

⋃
α S

n
α

and intersect it in a single point. We can take a subgraph F ⊂ G, the disjoint union
of m trees Fi such that vi ∈ Fi for i ≤ m, so that F contains all the vertices of G.
Deleting a smooth regular neighborhood of F from Y gives us a manifold isotopic
to Y as long as we chose vi ∈ ∂Y n for i ≤ m. See Figure 1.

Figure 1 Y n with F and with a regular neighborhood of F deleted
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Assertion 1. After a small isotopy, we can assume
⋃
α S

n−1
α = p−1(0), where

p : R
n → R is an overt polynomial.

Proof. By [AK3, Thm. 2.8.2] we may suppose that each S n−1
α is a nonsingular,

real algebraic set and hence that each is p−1
α (0) for some polynomial pα : R

n →
R such that ∇pα 
= 0 on S n−1

α . We may suppose that pα > 0 outside some com-
pactum. If this polynomialpα is not overt then we may replace it bypα(x)+ε|x|2k
(for small ε > 0 and 2k > degree of pα) and it will become overt. Now just let p
be the product of all the pα.

Let E be the set of edges of F and |E | the number of edges in E . If degp ≤ |E |,
replace p(x) with (1 + |x|2)kp(x) for a large enough k so that degp > |E |. For
each edge e ∈ E , let xe be the point of intersection of the edge with

⋃
α S

n
α . Let

r : R
n → R be the polynomial of degree 2|E | given by

r(x) =
∏
e∈E

|x − xe|2.

Assertion 2. We may choose analytic coordinates in a neighborhoodUe of each
xe such that, in these coordinates, r(x) = |x|2 and p(x) = αe(xn) for some dif-
feomorphism αe : (R, 0)→ (R, 0).

Proof. By induction there exist a k ≤ n and analytic coordinates such that r(x) =∑k−1
i=1 x

2
i + h(xk , . . . , xn), r(0) = 0, and p(x) = xn. Since the Hessian of r is

positive definite, we have ∂ 2h/∂x 2
k 
= 0 and so, by the implicit function theorem,

there is a smooth function β(xk+1, . . . , xn) such that

∂h/∂xk(β(xk+1, . . . , xn), xk+1, . . . , xn) = 0.

We replace the coordinate xk by the new coordinate u = xk − β. Then ∂h/∂u =
∂h/∂xk vanishes on u = 0, so h = u2h1(u, xk+1, . . . , xn) + h2(xk+1, . . . , xn) by
Taylor’s theorem. Now replace the coordinate u with the coordinate v = u

√
h1,

and the induction step is complete. Note that the coordinate xn remains unchanged
until the very last induction step. In this step u = xn and we let the germ of αe be
the inverse of the map xn �→ xn

√
h1(xn).

Assertion 3. Let g(x, t) = p2(x) + bt 2 − 2ctr(x) with positive constants b
and c to be determined. Let V = g−1(0). Then:

(i) V ∩ R
n × (0,1] ⊂ NonsingV ;

(ii) the pair (Rn× (0,1],V ∩ R
n× (0,1]) is diffeomorphic to (Rn,�n−1)× (0,1];

(iii) V ⊂ R
n × [0, ∞).

Proof. Before giving a careful (but boring and opaque) proof, we’ll give a rough
idea why this works. For each t, let Vt = V ∩ R

n × t and let Nt be the set of x so
that g(x, t) ≤ 0; then Nt is compact and Vt = ∂Nt . Now Nt satisfies the equation
p2(x) ≤ β(x), where β(x) = 2ctr(x)−bt 2. The constants b and c will be small,
so β is small. If we are in a region where β > 0, then locally Nt is given roughly
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by −d ≤ p(x) ≤ d for some small d; hence Nt looks like the regular neighbor-
hood p−1([−d, d ]) of p−1(0). But β ≤ 0 only where r is small. There we may
use the local coordinates given in Assertion 2. In these coordinates, Vt is roughly
a hyperboloid

∑n−1
i=1 x

2
i − ax 2

n = a ′. This has the effect of boring a hole through a
regular neighborhood of p−1(0)—in other words, deleting a regular neighborhood
of an arc going from one edge of the regular neighborhood to the other. Thus,
in the end, Nt is obtained from a regular neighborhood of p−1(0) by deleting a
regular neighborhood of each edge in E . But a regular neighborhood of p−1(0) is
obtained from Yn by deleting a disc around each vertex vi with i > m. Thus Nt is
obtained from Yn by deleting a regular neighborhood of F, and so Nt is isotopic
to Yn. Consequently, Vt is isotopic to �n−1 = ∂Y n. See Figure 2.

Figure 2 A regular neighborhood of p−1(0) and Nt

Now for the details. Pick ε > 0 so that r−1([0, 2ε]) ⊂ ⋃
e∈E Ue, where Ue is

as in Assertion 2. Since p is overt, we know it is proper. Let R be the maxi-
mum of |∇r| on the compact set p−1([−1,1]). Note that |∇p(x)|/|p(x)| → ∞
as p(x) → 0. This is because, near a point of p−1(0), there are local coordinates
such that p(x) = ∏n

i=k xi and in these coordinates we have |∇p(x)|/|p(x)| =√∑n
i=k 1/x 2

i . Consequently we may choose a δ ∈ (0,1) such that |∇p(x)|/
|p(x)| > R/ε whenever |p(x)| ≤ δ.

Now, since p and r are overt and 2 degp > deg r , we know that p2(x)/r(x)→
∞ as x → ∞. Consequently we may choose c ∈ (0,1) so that 2c < p2(x)/r(x)

whenever |p(x)| ≥ δ.We also require that c < δ2/ε and
√

2c < γe(t) for all e ∈ E
if t 2 ≤ ε, where γe(t) = αe(t)/t. Now let b = cε.

The first step is to show that V ∩ R
n × (0,1] ⊂ NonsingV and that the coordi-

nate t as a function onV ∩ R
n×(0,1] has no critical points. The result is an isotopy

ht : R
n → R

n, t ∈ (0,1], with compact support such that h1 is the identity and
ht(V1) = Vt . (You can get ht by integrating a vector field (v, −1) on R

n × (0,1],
which is tangent to V.) It suffices to show that, whenever g(x, t) = 0 and 0 < t ≤
1, we have ∇xg(x, t) 
= 0. Here ∇x denotes the gradient in the x variables. Note
that g(x, t) = 0 implies p2(x)/r(x) < 2ct, so p2(x) < δ2 by our choice of c.
Hence we suppose ∇xg(x, t) = 0. Then

0 = ∇xg(x, t) = 2p∇p − 2ct∇r;
therefore,

R/ε < |∇p|/|p| = ct |∇r|/p2 ≤ ctR/p2(x)

and so we have p2(x) < ctε. But then
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r(x) = (p2(x)+ bt 2)/(2ct) < ε/2 + bt/(2c) = ε(1 + t)/2 ≤ ε.
Hence x must be in some Ue. In local coordinates we then have

0 = ∇xg(x, t) = (−4ctx1, . . . , −4ctxn−1, −4ctxn + 2αe(xn)α
′
e(xn)),

from which we see that xi = 0 for i < n. On the other hand,

0 = g(x, t) = αe(xn)2 + bt 2 − 2ctx 2
n.

So 2ct ≥ γ 2
e , contradicting our choice of c. Thus ∇xg 
= 0 on V ∩ R

n × (0,1] as
required.

Now, it remains only to show that V1 is isotopic to �n−1. Let p−2(b) denote
p−1

({−√
b,

√
b
})
, and let V +

1 = V1 ∩ {x | p2(x) ≥ b}. We will show that V +
1

is diffeomorphic to p−2(b) with two discs removed for every e ∈ E; moreover, V1

is obtained from V +
1 by gluing a 1-handle between each pair of these discs. But

p−2(b) is the boundary of a regular neighborhood of p−1(0), which is � disjoint
union a collection of spheres. Just as in [AK3], the 1-handles have the effect of
connected summing these boundary components, and we end up with V1 being a
manifold isotopic to �.

For each e ∈ E and k = ±1, let Dke = Ue ∩ p−1
(
k
√
b
) ∩ r−1([0, ε]), which in

the local coordinates around xe is

Dke =
{
x

∣∣∣ xn = bk and
n−1∑
i=1

x 2
i ≤ ε − b2

k

}
,

where bk = α−1
e

(
k
√
b
)
. Note that αe

(±√
ε
)2 = εγe

(±√
ε
)2
> 2cε = 2b, so

|bk| < √
ε and hence each Dke is an n − 1 disc. Now let Ee = Ue ∩ V1 ∩

p−1
([−√

b,
√
b
])

, which in the local coordinates around xe is

Ee =
{
x

∣∣∣ b−1 ≤ xn ≤ b1 and
n−1∑
i=1

x 2
i = ε

2
+ x 2

n

(
γ 2
e (xn)

2c
− 1

)}
.

Recall that γ 2
e > 2c, so each Ee is a 1-handle [−1,1] × S n−2 that is attached to

∂D1e ∪ ∂D−1e. We claim that V +
1 is isotopic to p−2(b)∩ r−1([ε, ∞)) rel p−2(b)∩

r−1(ε) = ⋃
e∈E ∂D1e ∪ ∂D−1e. Once we show this, we will know that V1 is iso-

topic to p−2(b) with a 1-handle attached near each xe. But this is isotopic to �.
The isotopy from V +

1 to p−2(b) ∩ r−1([ε, ∞)) is obtained by integrating the
vector field −p∇p, which points into the region {x | p2(x) ≥ b and g(x,1) ≤ 0}
on V +

1 and out on p−2(b)∩ r−1([ε, ∞)). To see it points in on V +
1 , recall that we

saw before that |p(x)| < δ if g(x,1) = 0. But this means |∇p(x)|/|p(x)| > R/ε
by our choice of δ, so

−p∇p · ∇xg = −2p2|∇p|2 + 2cp∇r · ∇p
≤ −2cr|∇p|2 + 2c|p||∇r||∇p| ≤ −2c|p∇p|(ε|∇p|/|p| − R)
< 0.
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There are a number of routes to obtaining the desired Z from V. One route is to
use [AK3, Prop. 2.6.1] to algebraically crush V0 to a point, then invert through the
sphere to send this point to infinity. This would correspond to the transformation
(x, t) �→ (x,1)/(t + t |x|2). We’ll take another route, corresponding to the trans-
formation θ(x, t) = (x/t,1/t).

Let g∗(x, t, s) be the homogenization of g. LetG(x, t) = g∗(x,1, t) and letZ =
G−1(0). Note that Z − R

n × 0 = θ(V − V0).

We want to show, for large enough radii R, that (S nR , S nR ∩ Z) is diffeomorphic
to (S n,�n−1). But this follows from uniqueness of algebraic regular neighbor-
hoods of infinity. Since [D] does not explicitly deal with regular neighborhoods
of pairs, we will outline an argument that is similar to arguments in [D]. Consider
D = {(x, t) | 1 ≤ t and |x|2 + t 2 ≤ R2}. The boundary of D is D+ ∪D−, where
D− is the disc {(x,1) | R2 − 1 ≥ |x|2} and D+ is the spherical cap {(x, t) ∈ S nR |
1 ≤ t}. For large enough R, there is a vector field (w,1) on D that is tangent to Z
and points outward on D+ and inward on D−. Integrating this vector field gives
a diffeomorphism between the pairs (D−,D− ∩Z) and (D+,D+ ∩Z). Note that
D− ∩ Z = V1 ≈ � and D+ ∩ Z = S nR ∩ Z and, as a result, (S nR , S nR ∩ Z) is dif-
feomorphic to (S n,�n−1).

This completes the proof of Lemma 2.

5. Proof of Theorem 1

First, suppose int(Xn) is diffeomorphic to a nonsingular real algebraic subset of
R
n+1. Then, for large r , ∂Bn+1

r � int(Xn) in a smooth manifold �n−1 that collars
int(Xn) at infinity (see [M3, Sec. 2] and use stereographic projection to com-
pactify R

n). Let Xn0 = Bn+1
r ∩ int(Xn). Now ∂Xn and ∂Xn0 are not necessarily

diffeomorphic; however, it is not difficult to see that they are invertibly cobordant
(see [St]), say by (W ; ∂Xn, ∂Xn0 ). By definition, (W ; ∂Xn, ∂Xn0 ) embeds smoothly
in ∂Xn0 × [0,1]. Using this and the fact that there is a smooth proper embedding
Xn0 ↪→ Bn+1

r ≈ Dn+1, it follows that there exists a smooth proper embedding
Xn ↪→ Dn+1 as desired.

The other direction follows from Lemma 2 and the following.

Lemma 3. Let V ⊂ R
n be a codimension-1 real algebraic set with SingV com-

pact. LetM ⊂ R
n be a proper, smooth, codimension-1 submanifold such that, for

some R, M − BnR = V − BnR. Then there exists a nonsingular real algebraic set
W ⊂ R

n that is properly isotopic toM. In fact, we may suppose there is a smooth
isotopy ht : R

n → R
n and a radius R ′ such that h0 is the identity, h1(M) = W,

and |ht(x)| = |x| whenever |x| ≥ R ′.

Proof. Pick a polynomial p : R
n → R generating the ideal of polynomials van-

ishing on V. Hence p−1(0) = V, and the only solutions to p = 0 and ∇p = 0 are
SingV. Let r(x) = |x|2, and let q(x) = p2(x) + |∇p|2|x|2 − (∇p · x)2. Then
q−1(0) is the set of points in V where ∇p and x are linearly dependent, so it
is the union of SingV and the critical points of r|NonsingV . Thus q−1(0) is com-
pact, which means (by [AK3, Lemma 2.1.5]) that, for some radius R ′′ and integer
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m ≥ 0, q(x) ≥ 3|x|−2m whenever |x| ≥ R ′′. Since M separates R
n, we may

find a smooth function f : R
n → R and a radius R ′ > R ′′ such that 0 is a regu-

lar value of f , f −1(0) = M, and f(x) = p(x) if |x| ≥ R ′. Pick an integer k >
1+m+deg(p), and choose ε > 0 so |∇f(x)| > ε whenever |f(x)| < ε and |x| ≤
R ′. Also make sure that |∇p(x)| < |x|2k−2m−2/ε whenever |x| ≥ R ′ and that
ε < (R ′)2k−m. By [AK3, Lemma 2.8.1] applied to f − p, there is an entire ratio-
nal function u : R

n → R approximating f and so |f(x)− u(x)| < ε(1 + |x|2)−k
and |∇f(x)− ∇u(x)| < ε(1 + |x|2)−k for all x ∈ R

n. LetW = u−1(0).
Let F(x, t) = tu(x)+ (1 − t)f(x). We claim there is a vector field (v(x, t),1)

on R
n × [0,1] that is tangent to F −1(0), so that v(x, t) · x = 0 if |x| ≥ R ′. Then,

integrating this vector field gives the isotopy ht .
It suffices to construct v locally, where we may take v = 0 ifF 
= 0. IfF(x, t) =

0 and |x| < R ′ then we will locally take v(x, t) = α(x, t)∇f for an appropriate
α; in particular,

α(x, t) = (f(x)− u(x))/(|∇f |2 − t∇f · (∇f − ∇u)).
If F(x, t) = 0 and |x| ≥ R ′ then we will locally take v(x, t) = α(x, t)v ′(x, t),
where v ′(x, t) = |x|2∇f − (∇f · x)x for an appropriate α; in particular,

α(x, t) = (f(x)− u(x))/v ′(x, t) · ((1 − t)∇f + t∇u).
Note that p2(x) = f 2(x) = t 2(f(x) − u(x))2 ≤ ε2|x|−4k < |x|−2m, so the de-
nominator is nonzero since

v ′(x, t) · ((1 − t)∇f + t∇u) = q(x)− p2(x)− tv ′(x, t) · (∇f − ∇u)
> 3|x|−2m − |x|−2m − 2|x|2|∇p||∇f − ∇u|
> 2|x|−2m − 2ε|x|2−2k|∇p| > 0.
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