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Edited 4�-Embeddings of Jacobians

Greg W. Anderson

1. Introduction

The point of departure for this paper is the elementary algebraic construction of
Jacobians given in [A]. We begin by reviewing that construction. For brevity’s
sake we reformulate the construction in terms of line bundles rather than divisors.
Let X be a nonsingular projective algebraic curve of genus g > 0. Although the
main work of this paper takes place over the complex numbers, for the moment
we take as ground field any algebraically closed field. Fix an integer n ≥ g + 2.
For i = 0, . . . , n + 1, let f �→ f (i) denote the operation of pull-back via the ith
projection X{0, ...,n+1} →X. Fix a line bundle E on X of degree n+ g − 1. Given
any line bundle T on X of degree 0, let u (resp. v) be a row vector of length n

with entries forming a basis of H 0(X, T −1 ⊗ E ) (resp. H 0(X, T ⊗ E )) over the
ground field, and let abel(T ) be the n× n matrix with entries

abel(T )ij :=

∣∣∣∣∣∣∣∣∣∣∣

v̂(0)

...

v̂(i)

...

∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣

...

û(i)

...

û(n+1)

∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣

...

v̂(j)

...

v̂(n+1)

∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣

û(0)

...

û(j)

...

∣∣∣∣∣∣∣∣∣∣∣
,

where the leftmost determinant is that obtained by (i) stacking the row vectors v(i)

to form an (n+2)×nmatrix with rows numbered from 0 to n+1, then (ii) striking
row 0 and row i to obtain a square matrix, and (iii) finally taking the determinant;
the other determinants are analogously formed. Up to a nonzero scalar multiple,
the matrix abel(T ) is independent of the choice of bases u and v and moreover
depends only on the isomorphism class of the line bundle T . It is easy to see that
abel(T ) does not vanish identically. The construction T �→ abel(T ) maps the
set of isomorphism classes of degree-0 line bundles on X to the projective space
of lines in the space of n×n matrices with entry in ith row and j th column drawn
from the space

H 0

(
X{0, ...,n+1},

⊗n+1
�=0(E (�))⊗4

(E (0))⊗2 ⊗ (E (i))⊗2 ⊗ (E (j))⊗2 ⊗ (E (n+1))⊗2

)
.
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In [A]:

• the map T �→ abel(T ) is shown to be injective;
• an explicit set of homogeneous equations cutting out the image of the map T �→

abel(T ) is exhibited; and
• the image of the map T �→ abel(T ) is explicitly equipped with an algebraic

group law commuting with the tensor product of degree-0 line bundles.

Thus the Jacobian of X is constructed in elementary algebraic fashion.
The question motivating this paper is the following: What linear system of effec-

tive divisors of the Jacobian arises from the projective embedding T �→ abel(T )?
We attack this question by the methods of complex algebraic geometry and are
able to obtain a complete answer in that setting. The question remains open in
positive characteristic.

The answer we finally obtain is surprisingly simple. In the classical-style lan-
guage of [F; M1; M2], the answer takes the following form. The curve X is now a
compact Riemann surface. Let τ be the period matrix of X, and let M be the set of
column vectors of length 2g with entries in the set {0,1/2}. We write such column
vectors in block form

[ a
b

]
, where a and b are both of length g. Let M≤1 be the sub-

set of M consisting of those
[ a
b

]
such that the corresponding half-characteristic

classical theta function

θ

[
a

b

]
(w, τ) :=

∑
�∈Zg

exp(πi(�+ a)Tτ (�+ a)+ 2πi(�+ a)T(w + b))

vanishes at w = 0 to order not exceeding 1, that is, to order not greater than that
dictated by parity considerations. Then—independent of the choice of n and the
line bundle E—it turns out that the linear system we are looking for is the edited
4� linear system {

θ

[
a

b

]
(2w, τ)

∣∣∣∣ [ ab
]
∈M≤1

}
.

(Here and throughout the paper we abuse language by identifying linear systems
of effective divisors with linearly independent sets of sections of line bundles in
the obvious way.) Of course, for this answer to make sense, the edited 4� linear
system must embed the Jacobian into projective space; that is, the “edited version”
of the Lefschetz embedding theorem has to hold. The latter we prove in this paper
(see Theorem 3.1.3) by complex analytic methods that are independent of—but
largely parallel to—the methods of [A]. The theorem has some content because,
for example, M≤1 �= M for all hyperelliptic curves of large genus. We conclude
the paper by explaining in detail how to factor the map T �→ abel(T ) through
the edited 4�-embedding, thus fully answering the motivating question over the
complex numbers.

The main technical problem faced in this paper is that of aptly expressing and
combining the quartic and determinantal identities satisfied by the Riemann theta
function. To handle the problem we take the somewhat nonstandard tack of work-
ing in the framework of Weil’s old book [W] on Kähler varieties. This is advanta-
geous because Weil’s austere conceptual approach to theta functions obviates quite
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a lot of bookkeeping. For example, there is no need to choose A- and B-cycles
and hence there is a generally lower risk of making a sign error; cf. [M2, p. 3.81].
In Section 2 we explain our Weil-style point of view on classical theta identities.
In Section 3 we fit the quartic and determinantal theta identities together within
the Weil framework, thereby obtaining our main results.

2. A Theta Function Toolkit

We review what we need from the general theory of theta functions, following
[W]. Then we work through a series of examples in order to bring notions treated
in [F; GH; M1; M2; M3] into the Weil picture.

2.1. A General Theta Formalism

2.1.1. The Setting. Fix a compact complex manifold V of Kähler type. (In ap-
plications, V will be an abelian variety or a compact Riemann surface or a product
of such.) Fix a universal covering map Ṽ → V (we do not bother to give the map
a name) and denote its automorphism group by G. The group law in G is by defi-
nition composition of functions and hence G acts naturally on the left of Ṽ. Given
ṽ ∈ Ṽ and its image v ∈V under the covering map Ṽ → V, we call ṽ a lifting of v.
Analogously we speak of liftings of paths. Given a differential form ω on V and
its pull-back ω̃ via the covering map Ṽ → V, we call ω̃ the lifting of ω. Given a
closed 1-form ζ on V and a function z on Ṽ such that dz is the lifting of ζ, we call
z a primitive of ζ.

2.1.2. Systems of Multipliers. We call a family {Fσ} of nowhere-vanishing
holomorphic functions on Ṽ indexed by σ ∈G a system of multipliers under the
following conditions:

• Fστ = τ ∗Fσ · Fτ for all σ, τ ∈G;
• d logFσ is the lifting of a holomorphic 1-form on V for all σ ∈G.

When the roles of Ṽ and G require emphasis, we say that {Fσ} is a system on
multipliers on Ṽ relative to G. If all the functions Fσ are constants, we say that
{Fσ} is a system of constant multipliers. A system of constant multipliers is sim-
ply a homomorphism from G to the group of nonzero complex numbers. If all the
functions |Fσ| are identically equal to 1 then we say that {Fσ} is unitary. By the
maximum principle, a unitary system of multipliers is a system of constant multi-
pliers. We say that systems of multipliers {Fσ} and {F ′σ } are equivalent if, for some
nowhere-vanishing holomorphic function u on Ṽ, we have F ′σ/Fσ = σ ∗u/u for all
σ ∈ G. By Hodge theory, every system of constant multipliers is equivalent to a
unitary system of multipliers. Moreover, distinct unitary systems of multipliers
are inequivalent.

2.1.3. Theta Functions. A not-identically-vanishing meromorphic function ϑ

on Ṽ transforming for some system of multipliers {Fσ} by the rule σ ∗ϑ = Fσ · ϑ
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for all σ ∈G is called a theta function. When the roles of Ṽ and G require empha-
sis, we say that ϑ is a theta function on Ṽ relative to G. Given a theta function ϑ

transforming according to a system of multipliers {Fσ}, we say that ϑ determines
the system of multipliers {Fσ}; clearly {Fσ} is uniquely determined by ϑ. The di-
visor of a theta function ϑ is G-invariant and hence descends to a divisor of V, say
D; in this situation we say that ϑ represents D, that ϑ is effective if D is effec-
tive, and that ϑ is trivial if D = 0. We say that theta functions are equivalent if
they represent the same divisor of V. Equivalent theta functions determine equiv-
alent multiplier systems. By the maximum principle, an effective theta function
with G-invariant absolute value is constant.

2.1.4. The First Chern Class of a Divisor. Fix a divisor D of V. For the pur-
pose of checking signs and factors of 2 and π, we briefly recall the method used in
[W, Chap. 5] for obtaining the first Chern class c1(D) in the de Rham cohomology
of V. Fix an open covering {Ui} of V by nonempty open sets such that D restricted
to Ui is the divisor of a meromorphic function fi on Ui. For indices i and j such
that Ui ∩ Uj �= ∅, let Fij be the unique, nowhere-vanishing holomorphic function
on Ui ∩ Uj such that

fj |Ui∩Uj = Fij · fi |Ui∩Uj .

The family {Fij} thus defined is called the system of transition functions associ-
ated to {Ui} and {fi}. By a method to be recalled in the course of the proof of
Proposition 2.1.6, it is possible to construct for each i a smooth (1, 0)-form ηi on
Ui such that

1

2πi
d logFij = ηj |Ui∩Uj − ηi |Ui∩Uj

whenever Ui ∩Uj �= ∅; any such family {ηi} will be called a connection for {Fij}.
Given any connection {ηi} for {Fij}, there exists a unique smooth, closed 2-form
α on V described locally by the conditions

α|Ui
= dηi.

The closed 2-form α is called the curvature of the connection {ηi}. The de Rham
cohomology class of the 2-form α depends only on D, not on the intervening
choices, and this class is none other than c1(D).

Lemma 2.1.5. Let φ be a smooth, compactly supported function on Cn. Let β be
a smooth, closed (2n − 2)-form defined on an open set U ⊂ Cn containing the
support of φ. Then the integral

∫
U\{z1=0} dφ ∧ d log z1 ∧ β is absolutely conver-

gent and equals −2πi
∫
U∩{z1=0} φβ.

Proof. Sophomore calculus.

Proposition 2.1.6. Let n be the complex dimension of V, and let D be a complex
submanifold of V of codimension 1. A closed 2-form α on V belongs to the coho-
mology class c1(D) if and only if

∫
V
α ∧ β = ∫

D
β for all closed (2n− 2)-forms

β on V.
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Proof. By Poincaré duality it suffices merely to exhibit a closed 2-form α belong-
ing to the class c1(D) such that

∫
V
α ∧ β = ∫

D
β for all closed (2n− 2)-forms β

on V, and it is well known in principle how to do this. We take care over the de-
tails just for the purpose of checking signs and factors of 2 and π. By hypothesis
we can choose a finite open covering {Ui} of V by coordinate patches; for each i,
we also can choose a holomorphic function fi on Ui belonging to some coordinate
system on Ui such that D ∩ Ui = {fi = 0}. Let {Fij} be the system of transition
functions associated to {Ui} and {fi}. Fix a partition of unity {φi} subordinate to
{Ui}. For all indices i and � there exists a unique smooth (1, 0)-form ηi� on Ui such
that

2πi · ηi�|Ui∩U�
= φ�|Ui∩U�

· d logF�i if Ui ∩ U� �= ∅,
ηi�|Ui\suppφ� = 0.

For all indices �, there exists a unique smooth (1, 0)-form ζ� on V \ suppD such
that

ζ�|U�\suppD = φ�|U�\suppD · d log f�|U�\suppD ,

ζ�|V \(suppD∪suppφ�) = 0.

The family
{∑

� ηi�
}

is then a connection for {Fij} with curvature α satisfying the
relation

−2πi · α|V \D =
∑
�

dζ�.

The closed 2-form α has the desired property by Lemma 2.1.5.

2.1.7. Weil Gauges. We say that a real-valued function + on Ṽ is a Weil gauge
if it is of the form + = ∑N

i=1 ci |zi |2, where the zi are primitives of holomorphic
1-forms on V and the ci are real constants. The notion of Weil gauge plays a key
(albeit implicit) role in [W].

Theorem 2.1.8. Fix a divisor D of V and a Weil gauge + on Ṽ. Then the follow-
ing conditions are equivalent.

(1) i
2∂∂̄+ is the lifting of a closed real (1,1)-form on V belonging to the first
Chern class c1(D).

(2) There exists a theta function ϑ , unique up to a nonzero constant factor, such
that ϑ represents D and e−π+|ϑ |2 is G-invariant.

(If the first condition holds we say that + is a gauge for D; Proposition 2.1.6
is sometimes convenient for checking this. Under the condition that e−π+|ϑ |2 is
G-invariant we say that ϑ is +-normalized. The ratio of any two +-normalized
theta functions necessarily transforms according to a unitary character of G.)

2.1.9. Partial Sketch of Proof. The maximum principle proves uniqueness.
The proofs of the implications (1)⇒ (2) and (2)⇒ (1) are more-or-less evident
modifications of the proofs of [W, Chap. V, Thm. 2] and [W, Chap. V, Prop. 3],
respectively. Hence we need not provide a detailed proof of the equivalence
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(1)⇔ (2). Still, since we have superficially modified Weil’s theory by stress-
ing the notion of Weil gauge, we are under some obligation at least to check signs
and factors of 2 and π. We therefore compromise by rapidly sketching a proof of
the implication (2)⇒ (1), omitting further details.

Let {Fσ} be the system of multipliers determined by ϑ. By hypothesis we have

|Fσ|2 = eπ(σ
∗+−+)

and hence
d logFσ = π∂(σ ∗+−+)

for all σ ∈G. Let {Ui} be a finite covering of V by geodesically convex nonempty
open sets. For each i, fix a section si : Ui → Ṽ of the covering map. Let {Fij} be
the system of transition functions associated to {Ui} and {s∗i ϑ}—meaning that if
Ui ∩ Uj �= ∅ then we have

s∗j ϑ |Ui∩Uj = Fij · s∗i ϑ |Ui∩Uj .

Whenever Ui ∩ Uj �= ∅, choose σij ∈G to satisfy the condition

sj |Ui∩Uj = σij � si |Ui∩Uj .

Such a choice exists and is unique because Ui ∩ Uj is geodesically convex and
a fortiori connected. Then, whenever Ui ∩ Uj �= ∅, we have

1

2πi
d logFij = 1

2πi
s∗i d logFσij |Ui∩Uj

= 1

2i
s∗i ∂(σ

∗
ij+−+)|Ui∩Uj

= 1

2i
s∗j ∂+|Ui∩Uj −

1

2i
s∗i ∂+|Ui∩Uj ;

that is,
{

1
2i s
∗
i ∂+

}
is a connection for {Fij}. Therefore, the real closed (1,1)-form

α defined locally by the conditions

α|Ui
= i

2
s∗i ∂∂̄+

belongs to the class c1(D).

2.1.10. Complement. With an emphasis on line bundles rather than on divisors,
Theorem 2.1.8 takes the following form. Let E be a line bundle onV with pull-back
Ẽ to Ṽ. Let + be a Weil gauge on Ṽ. Then the following conditions are equivalent.

(1) − i
2∂∂̄+ is the lifting of a closed real (1,1)-form on V belonging to the first

Chern class of the line bundle E .
(2) There exists a multiplier system {Fσ} such that, for some global trivialization

ẽ of Ẽ , we have

σ ∗ẽ = Fσ · ẽ, |Fσ|2 = eπ(σ
∗+−+)

for all σ ∈G; moreover, the multiplier system {Fσ} thus attached to E and +

is unique.
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With E , +, and {Fσ} as before, we also have: if E = OV (−D) for some divi-
sor D, then + is a gauge for D and {Fσ} is the multiplier system determined by
any +-normalized theta function representing D.

2.2. Example: Principally Polarized Complex Tori

2.2.1. Definition. Following [W, Chap. VI], we define a principally polarized
complex torus of complex dimension g to be a triple (W,H,1) consisting of

• a g-dimensional complex vector space W,
• a positive definite Hermitian form

H : W ×W → C

that is antilinear on the left, and
• a cocompact discrete subgroup 1 ⊂ W

such that

• the relations

�H(Ai,Bj) = δij , �H(Ai,Aj) = 0 = �H(Bi,Bj)

hold for at least one Z-basis {Ai,Bi}gi=1 of 1.

Any Z-basis for 1 with the special property just described we call symplectic. The
Hermitian form H naturally gives rise to an invariant Kähler metric on the com-
plex Lie group W/1.

2.2.2. Specialization of the Setting. Fix a principally polarized complex
torus (W,H,1) of complex dimension g. We now specialize the setting of §2.1.1
as follows:

V = W/1, Ṽ = W ; G = {w �→ λ+ w | λ∈1}.
Also, we put

+(w) := H(w,w)

for all w ∈W, thereby defining a Weil gauge. In the next several paragraphs we
recall how to classify and to construct explicitly all +-normalized effective theta
functions. We also recall the Riemann quartic theta identity in a convenient form.

2.2.3. Semicharacters. A function ψ on 1 taking values in the group of com-
plex numbers of absolute value 1 is called a semicharacter of 1 with respect to
H if

ψ(λ+ µ) = ψ(λ)ψ(µ) exp(πi�H(λ,µ))

for all λ,µ∈1. The square of a semicharacter is a unitary character, whence the
terminology; also, the ratio of any two semicharacters is a unitary character. Real
semicharacters play an especially important role in the sequel, and these have the
following explicit description. Fix a symplectic Z-basis {Ai,Bi}gi=1 for 1 arbitrar-
ily. Let A (resp. B) be the vector of length g with entries Ai (resp. Bi). Every real
semicharacter ψ of 1 with respect to H takes the form
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ψ(m · A+ n · B) = (−1)m·n+a·m+b·n (m, n∈Zg)

for some a, b ∈ Zg that are uniquely determined modulo 2. It can be shown (for
an indication of proof see the end of §2.2.6) that the parity of the inner product
a · b depends only on the real semicharacter ψ , not on the choice of symplectic
Z-basis {Ai,Bi}. We define the parity of ψ to be that of a · b.
2.2.4. Classification of +-Normalized Effective Theta Functions. Ac-
cording to [W, Chap. 6], for each semicharacter ψ of 1 with respect to H there
exists a not-identically-vanishing entire function ϑ on W, unique up to a nonzero
constant factor, such that

ϑ(w + λ) = ψ(λ) exp
(
πH(λ,w)+ π

2 H(λ, λ)
)
ϑ(w)

for all w ∈W and λ ∈ 1. (We briefly sketch in §2.2.6 the calculation by which
existence and uniqueness are proved.) We call any such function ϑ a theta func-
tion of type (W,H,1,ψ). Clearly a theta function of type (W,H,1,ψ) is a +-
normalized effective theta function in the sense of Theorem 2.1.8. Conversely,
every +-normalized effective theta function ϑ in the sense of Theorem 2.1.8 is a
theta function of type (W,H,1,ψ) for a uniquely determined semicharacter ψ.

2.2.5. Natural Operations on Theta Functions. Let a theta function ϑ(w)

of type (W,H,1,ψ) be given. Then ϑ(−w) is a theta function of type (W,H,
1, ψ̄). In particular, if ψ̄ = ψ then ϑ(±w) = ±ϑ(w). In other words, if ψ is real
then ϑ has a well-defined parity. Given t ∈W and another semicharacter ψ ′ of 1
with respect to H such that

ψ ′(λ) = ψ(λ) exp(2πi�H(λ, t))

for all λ∈1, it follows that

exp(−πH(t,w))ϑ(w + t)

is a theta function of type (W,H,1,ψ ′). In other words, roughly speaking, any
given +-normalized theta function gives rise to all others by translation and ad-
justment by elementary nowhere-vanishing factors.

2.2.6. Explicit Construction of Theta Functions. Now fix a symplectic
Z-basis {Ai,Bi}gi=1 for 1 and a semicharacter ψ of 1 with respect to H. For sim-
plicity we assume that:

• W = Cg, the latter viewed for computational purposes as the space of column
vectors of length g with complex entries; and

• Ai is the ith column of the g × g identity matrix.

Let τ be the g × g matrix defined by the following condition:

• Bi is the ith column of τ.

In this situation we necessarily have that
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• τ is symmetric with positive definite imaginary part and
• v̄T(�τ)−1w = H(v,w) for all v,w ∈Cg.

Moreover, there exist column vectors a, b ∈ Rg, unique modulo Zg, with the fol-
lowing property:

• ψ(m+ τn) = exp(πimTn+ 2πi(mTa − nTb)) for all m, n∈Zg.

As usual (cf. [F, p. 1] or [M1, p. 123]), put

θ

[
a

b

]
(w, τ) :=

∑
�∈Zg

exp(πi(�+ a)Tτ (�+ a)+ 2πi(�+ a)T(w + b)),

thereby defining a holomorphic function of w ∈ Cg that does not vanish identi-
cally. To abbreviate we now drop reference to a, b, τ (since these are being held
fixed) and simply write θ(w). Thus,

θ(w +m+ τn) = exp(2πi(aTm− bTn)− πinTτn− 2πinTw)θ(w)

for all m, n∈Zg and w ∈Cg. It is easy to show, by the method of “undetermined
Fourier coefficients”, that this system of functional equations characterizes θ(w)

uniquely up to a nonzero constant factor. By a straightforward calculation it can
be verified that the function

exp
(
π
2 w

T(�τ)−1w
)
θ(w)

is a theta function of type (W,H,1,ψ) and, moreover, is the only such up to a
nonzero constant factor. From the explicit presentation of theta functions of type
(W,H,1,ψ) just recalled, it follows in particular that if ψ is real then the parity of
ψ (as defined at the end of §2.2.3) coincides with the parity of any theta function
of type (W,H,1,ψ).

Proposition 2.2.7. Fix a semicharacter ψ on 1 with respect to H and a theta
function ϑ of type (W,H,1,ψ). Let 1′ ⊂ W be a cocompact discrete subgroup of
W such that (W,H,1′) is also a principally polarized abelian variety. Assume fur-
ther that #

(
1+1′
1∩1′

)
<∞. Fix a semicharacter ψ ′ of 1′ with respect to H agreeing

with ψ on 1 ∩1′ and a theta function ϑ ′ of type (W,H,1′,ψ ′). Fix a (necessar-
ily finite) set of representatives L ⊂ 1 for the quotient 1/(1 ∩ 1′). Then there
exists a unique family {Cλ}λ∈L of complex constants such that

ϑ(w) =
∑
λ∈L

Cλ exp(−πH(λ,w))ϑ ′(λ+ w)

for all w ∈W. Morever, none of the constants Cλ vanish.

Proof. We bring in a powerful idea developed at length in [M3]. Put

H := {[λ, s] | λ∈W, s ∈C, |s| = 1}
and equip H with a group law by the rule

[λ, s][µ, t] := [λ+ µ, st exp(πi�H(λ,µ))],
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thereby constructing the Heisenberg group naturally associated to the pair (W,H ).

The group H acts naturally on the space of entire functions defined on W by the
rule

([λ, s]f )(w) := s exp
(−πH(λ,w)− π

2 H(λ, λ)
)
f(w + λ).

By definition of a semicharacter, the map

(λ �→ [λ,ψ(λ)]) : 1→ H
is an injective group homomorphism. We denote the image of this map by H(1,ψ).

For any unitary character χ of 1, a theta function of type (W,H,1,ψχ) is the
same thing as a not-identically-vanishing holomorphic function ϕ on W tranform-
ing under the action of H(1,ψ) by the rule

[λ,ψ(λ)]ϕ = χ(λ)ϕ.

Let � be the space of holomorphic functions on W fixed under the action of the
group

H(1,ψ) ∩H(1′,ψ ′) = {[λ,ψ(λ)] | λ∈1 ∩1′ } ⊂ H.

Then, so we claim, � is a regular complex representation of the finite abelian
group

H(1′,ψ ′)/(H(1,ψ) ∩H(1′,ψ ′)),

whose isotypical components are permuted simply transitively by the finite abelian
group

H(1,ψ)/(H(1,ψ) ∩H(1′,ψ ′)).

Since the proof of the claim is merely a recapitulation of themes from the proof of
the Stone–von Neumann theorem (see [M3, Thm. 1.2, p. 3]), we omit the details.
The claim granted, the result immediately follows.

Corollary 2.2.8. Fix a real semicharacter ψ0 of 1 with respect to H. Fix a
theta function ϑ0 of type (W,H,1,ψ0), and fix a set of representatives 0 ∈M ⊂
1
21 for the quotient 1

21/1. Put

ϑµ(w) := exp(−πH(µ,w))ϑ0(w + µ)

for all µ∈M and w ∈W. Set

T := 1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

.
Then there exists a unique family {Cµ}µ∈M of complex constants such that

4∏
i=1

ϑ0(wi) =
∑
µ∈M

Cµ

4∏
i=1

ϑµ

( 4∑
j=1

Tijwj

)
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for all w1,w2,w3,w4 ∈W. Moreover, none of the constants Cµ vanish. (This re-
sult is a translation into Weil-style language of Riemann’s quartic theta identity;
for a classical-style presentation of the latter, see [M1, p. 212].)

Proof. It is a tedious but not especially difficult job to verify that Proposition 2.2.7
applies with 

W

W

W

W

,


H

H

H

H

, T


1

1

1

1

,


1

1

1

1


in place of W, H, 1, and 1′ (respectively), the semicharacters

λ1

λ2

λ3

λ4

 �→ 4∏
i=1

ψ0

( 4∑
j=1

Tijλj

)
and


λ1

λ2

λ3

λ4

 �→ 4∏
i=1

ψ0(λi)

in place of ψ and ψ ′ (respectively), the theta functions
w1

w2

w3

w4

 �→ 4∏
i=1

ϑ0

( 4∑
j=1

Tijwj

)
and


w1

w2

w3

w4

 �→ 4∏
i=1

ϑ0(wi)

in place of ϑ and ϑ ′ (respectively), and the set


µ

µ

µ

µ


∣∣∣∣∣∣∣∣ µ∈M


in place of L. Accordingly, there exists a unique family {Cµ}µ∈M of complex con-
stants such that

4∏
i=1

ϑ0

( 4∑
j=1

Tijwj

)
=
∑
µ∈M

Cµ

4∏
i=1

ϑµ(wi)

for all w1,w2,w3,w4 ∈ W ; moreover, none of the constants Cµ vanish. Since
T 2 = 1, this last identity is equivalent to the desired one.

2.3. Example: Compact Riemann Surfaces

2.3.1. Specialization of the Setting. Let X be a compact Riemann surface
of genus g > 0, let X̃→X be a universal covering map, and put = := Aut(X̃/X).

We now specialize the setting of §2.1.1 to the case

V = X, Ṽ = X̃, G = =.
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It is convenient to fix a basepoint∞∈X and a lifting ∞̃ ∈ X̃ thereof. In the next
several paragraphs we work out a Weil-style analytic description of the Jacobian
of X and then study the multiplier systems associated to theta functions on X̃ rel-
ative to =, representing divisors on X of degree 0 and of degree g.

2.3.2. Basic Topological Notation. Given points P̃, Q̃ ∈ X̃, we denote by
[P̃ → Q̃] a choice of path in X admitting a lifting to a path issuing from P̃ and
terminating at Q̃. Given 1-cycles c1 and c2 on X in general position, let #(c1∩ c2)

denote the signed number of intersections of c1 with c2, where (as usual) we count
+1 where c2 crosses c1 from right to left and−1 at the other crossings. Whenever
we speak of paths, loops, cycles, chains, and so forth, it is understood that all such
are sufficiently differentiable to integrate over.

Proposition 2.3.3. Let W be the C-linear dual of the space of differentials of
the first kind on X. Let 1 be the subgroup of W consisting of C-linear function-
als of the form

(
ω �→ ∫

c
ω
)

for some 1-cycle c on X. Then there exists a unique
Hermitian form

H : W ×W → C,

antilinear on the left, such that for all 1-cycles c1 and c2 on X in general position
we have

�H
((

ω �→
∫
c1

ω

)
,

(
ω �→

∫
c2

ω

))
= #(c1 ∩ c2).

The triple (W,H,1) is a principally polarized abelian variety. (The triple
(W,H,1) is the Jacobian of X described in Weil-style language; in the sequel
we work exclusively with this version of the Jacobian.)

Proof. By Hodge theory, the subgroup 1 is cocompact and discrete. Uniqueness
of H is clear. The intersection pairing on the 1-dimensional homology of X is
well known to be alternating and to have unit Pfaffian. We need only prove that H
with the desired property exists and is positive definite. We construct a candidate
H0 for H as follows. To each w ∈W we associate a holomorphic 1-form ζw by
the rule w = (ω �→ 1

2

∫
ω ∧ ζ̄w

)
. The map w �→ ζw identifies W in C-antilinear

fashion with the space of holomorphic 1-forms on X. Put

H0(v,w) = i

2

∫
ζv ∧ ζ̄w

for all v,w ∈W, thereby defining a positive definite Hermitian form H0 on W an-
tilinear on the left. For each 1-cycle c on X, there exists (by Poincaré duality and
Hodge theory) a unique holomorphic 1-form ζc on X such that∫

c

α =
∫

α ∧ !ζc = 1

2

∫
α ∧ ζ̄c

for all smooth closed 1-forms α on X. It follows that, for all 1-cycles c1 and c2 on
X in general position, we have
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�H0

((
ω �→

∫
c1

ω

)
,

(
ω �→

∫
c2

ω

))
= �

(
i

2

∫
ζc1 ∧ ζ̄c2

)
=
∫
!ζc1 ∧ !ζc2 = #(c1 ∩ c2).

Thus our candidate H0 has all the desired properties; that is, H = H0.

2.3.4. Convenient Abuses of Notation. Hereafter we often treat 1-chains as
though they were points ofW. More precisely, given a1-chain c, we often just write
c where more properly we should write, say,

(
ω �→ ∫

c
ω
)
. Further in this line, we

also often treat elements of = as if they were points of W. More precisely, given
σ ∈ =, we often just write σ where more properly we should write, say,

(
ω �→∫

[∞̃→σ∞̃] ω
)
. This saves a lot of writing and should not cause any confusion.

Proposition 2.3.5. Let a differential ω of the first kind on X and w ∈ W be
given. If

∫
c
ω = H(c,w) for all 1-cycles on X, then ω = 0 and w = 0.

Proof. We continue in the setting of the proof of Proposition 2.3.3. We have∫
c

ω̄ = H(w, c) = i

2

∫
ζw ∧ ζ̄c = i

∫
ζw ∧ !ζc =

∫
c

iζw;
hence the 1-forms ω̄ and iζw have the same periods and thus they are equal. But
the latter 1-form is holomorphic and the former antiholomorphic, so both must
vanish.

Proposition 2.3.6. Let D be a divisor of X of degree 0.

(1) There exists a theta function ϑ on X̃ relative to =, unique up to a nonzero con-
stant factor, such that ϑ represents D and tranforms under the action of = by
a unitary character.

(2) With ϑ as in (1), we have

σ ∗ϑ = exp(2πi�H(∂−1D, σ))ϑ

for all σ ∈= and all 1-chains ∂−1D on X with boundary D.

(3) Every unitary character of = thus appears in association with some divisor
of X of degree 0.

(The proposition is a restatement of the theorems of Abel and Jacobi in Weil-style
language.)

Proof. Statement (1) is equivalent to the classical fact that there exists a unique
differential ξ of the third kind on X with residual divisor D and pure imaginary
periods. (Of course, (1) is also a very special case of Theorem 2.1.8.) Statements
(1) and (2) granted, (3) is then proved by a well-known argument we need not re-
peat. It remains only to prove statement (2), and this is just a matter of translating
from classical-style language to Weil-style language. We take care with the details
in order to check signs and factors of 2 and π.
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Clearly d logϑ is the lifting of ξ and we have

σ ∗ϑ = exp

(∫
[∞̃→σ∞̃]

ξ

)
ϑ

for all σ ∈ =, where the loop [∞̃ → σ∞̃] is chosen to avoid the support of D.

Now arbitrarily fix a 1-chain cD with boundary D. In order to prove (2), it suffices
to verify that ∫

c

ξ ≡ 2πi�H(cD , c)mod 2πiZ

for all loops c on X avoiding the support of D.

In the usual way, cut X open to form a 4g-sided polygon and construct a homol-
ogy basis {Ai,Bi}gi=1 in the standard configuration—meaning, in particular, that

#(Ai ∩ Aj) = 0 = #(Bi ∩ Bj) = 0, #(Ai ∩ Bj) = δij

for i, j = 1, . . . , g. We may assume without loss of generality that cD is contained
in the interior of the polygon and that c is one of the As and Bs. According to the
classical reciprocity law for differentials of first and third kinds (see [GH, p. 230]),
we have

g∑
i=1

((∫
Ai

ω

)(∫
Bi

ξ

)
−
(∫

Bi

ω

)(∫
Ai

ξ

))
= 2πi

∫
cD

ω

for all differentials ω of the first kind on X. In other words, we have an identity

g∑
i=1

((
1

2πi

∫
Bi

ξ

)
Ai −

(
1

2πi

∫
Ai

ξ

)
Bi

)
= cD

holding in W. This last equation is enough to finish the proof.

2.3.7. The Abel Map and Associated Weil Gauge. Put

z(P̃ ) :=
(
ω �→

∫
[∞̃→P̃ ]

ω

)
∈W

for all P̃ ∈ X̃, thereby defining the Abel map

z : X̃→W

based at ∞̃. In the calculations that follow we repeatedly exploit the relation

σ ∗z = z+ σ

for all σ ∈=; of course, by abuse of notation, σ on the right stands in for the linear
functional (

ω �→
∫

[∞̃→σ∞̃]
ω

)
∈W.

Now let
+(w) := H(w,w)
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be the Weil gauge with which the Jacobian (W,H,1) is canonically equipped.
Clearly the pull-back z∗+ is a Weil gauge on X̃. Another more direct description
of z∗+ can be given as follows. Let ζ1, . . . , ζg be any C-basis for the space of dif-
ferentials of the first kind on X, orthonormalized by the condition

i

2

∫
ζi ∧ ζ̄j = δij .

Then we have

(z∗+)(P̃ ) =
g∑
i=1

∣∣∣∣∫
[∞̃→P̃ ]

ζi

∣∣∣∣2
for all P̃ ∈ X̃. From the latter description of + it follows directly that i

2∂∂̄z
∗+ is

the lifting of the closed real positive (1,1)-form

i

2

g∑
i=1

ζi ∧ ζ̄i .

In turn it follows by Proposition 2.1.6 that the function z∗+ is a gauge for any di-
visor of degree g.

2.3.8. Association of a Semicharacter to Each Divisor of Degree g − 1.
Fix a divisor D of X of degree g−1. By Theorem 2.1.8, the divisor D+∞ is rep-
resented by a z∗+-normalized theta function on X̃ relative to =, say ϑ , unique up
to a nonzero constant factor. It is easy to see that the multiplier system determined
by ϑ must be the pull-back via the Abel map z of the multiplier system determined
by some +-normalized theta function on W relative to 1. The upshot is that there
exists a unique semicharacter ψD of 1 with respect to H such that

σ ∗ϑ = ψD(σ) · exp
(
πH(σ, z)+ π

2 H(σ, σ)
)
ϑ

for all σ ∈=.
Proposition 2.3.9. With notation as in the preceding paragraph, the following
statements hold.

(1) The semicharacter ψD is independent of the choice of the basepoint ∞ and
the lifting ∞̃ thereof.

(2) The construction D �→ ψD puts the classes of divisors of X of degree g − 1
in bijective correspondence with the semicharacters of 1 with respect to H.

(The proposition is a Weil-style description of the correspondence between theta
functions with characteristics and divisors of degree g − 1; see [M1, Chap. II,
Sec. 3] for a classical-style treatment of this correspondence.)

Proof. Statement (1) granted, statement (2) follows immediately from Proposi-
tion 2.3.6. We turn now to the proof of statement (1). Fix P ∈X and a lifting P̃ ∈
X̃ arbitrarily. By a repetition of the arguments made before, there exists a theta
function ϑ1 (unique up to a nonzero constant multiple) and a unique semicharacter
ψ1 of 1 with respect to H such that ϑ1 represents the divisor D + P and trans-
forms according to the rule
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σ ∗ϑ1 = ψ1(σ) exp
(
πH(σ, z− z(P̃ ))+ π

2 H(σ, σ)
)
ϑ1

for all σ ∈=. Then the theta function

ϑ2 = ϑ1

ϑ
exp
(
πH([∞̃ → P̃ ], z− z(P̃ ))

)
represents the divisor P −∞ of degree 0 and transforms according to the unitary
rule

σ ∗ϑ2 = ψ1

ψD

(σ) exp(2πi�H([∞̃ → P̃ ], σ))ϑ2

for all σ ∈=. By Proposition 2.3.6 it then follows that ψ1 = ψD.

2.4. Example: The Prime Form

2.4.1. Specialization of the Setting. Fix a compact Riemann surface X of
genus g > 0 and a universal covering map X̃→X. Fix a basepoint∞∈X and a
lifting ∞̃ ∈ X̃ thereof. Put = := Aut(X̃/X). We specialize the setting of §2.1.1 to
the case

V = X ×X, Ṽ = X̃ × X̃, G = = × =.

Let B ⊂ X ×X be the diagonally embedded copy of X, and consider the divisor

B′ = −X ×∞−∞×X +B.

We shall find a natural choice of gauge for B′ and then calculate the multiplier
system of the correspondingly normalized theta function representing B′.

2.4.2. A Gauge for B′. Let (W,H,1) be the Jacobian of X, and let

+(w) := H(w,w)

be the Weil gauge naturally associated to the Jacobian. Let z denote the Abel map
X̃ →W based at ∞̃. For i = 1, 2, let z(i) denote the ith projection X̃ × X̃ → X̃

followed by the Abel map z. Put

C := +(z(1) − z(2))−+(z(1))−+(−z(2)),
thereby defining a Weil gauge C on X̃× X̃. We claim that C is a gauge for B′. Let

p1,p2 : X ×X→X

be the two projections and let ζ1, . . . , ζg be a basis for the holomorphic 1-forms on
X orthonormalized by the condition

i

2

∫
ζi ∧ ζ̄j = δij .

Then i
2∂∂̄C is the lifting of the real closed (1,1)-form

α = i

2

g∑
i=1

(
(p∗1ζi − p∗2ζi) ∧ (p∗1 ζ̄i − p∗2ζ̄i )− p∗1(ζi ∧ ζ̄i )− p∗2((−ζi) ∧ (−ζ̄i ))

)
= i

2

g∑
i=1

(−p∗1ζi ∧ p∗2ζ̄i + p∗1 ζ̄i ∧ p∗2ζi)
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on X. By Proposition 2.1.6, the proof of the claim boils down to verifying the iden-
tity ∫

X×X
α ∧ β =

∫
B

β −
∫
∞×X

β −
∫
X×∞

β

for β ranging over the C-basis

i

2
p∗1ζi ∧ p∗2ζj ,

i

2
p∗1 ζ̄i ∧ p∗2ζ̄j ,

i

2
p∗1ζi ∧ p∗2ζ̄j ,

i

2
p∗1 ζ̄i ∧ p∗2ζj

and
i

2
p∗1(ζ1 ∧ ζ̄1),

i

2
p∗2(ζ1 ∧ ζ̄1)

for the de Rham cohomology of X × X in dimension 2. The latter calculation is
straightforward and can safely be omitted. Thus the claim is proved.

2.4.3. The Prime Form E. We define the prime form E to be the C-normalized
theta function on X̃ × X̃, unique up to a nonzero constant factor, representing the
divisor B′. The existence of E is guaranteed by Theorem 2.1.8, and the uniqueness
of E is clear. The notion of prime form defined here is nearly (but not exactly) the
same as that considered in [F, Chap. 2] or [M2, pp. 3.207–3.213]. We omit dis-
cussion of the comparison, just remarking that [M2, Chap. IIIb, Sec. 1, Lemma 2]
can be used to make the prime form as defined here explicit. In any case, an ex-
plicit formula will not be needed. For our purposes it suffices simply to know that
E exists, is unique up to a nonzero constant factor, and has the transformation
properties summarized in Proposition 2.4.5.

2.4.4. Guessing the Multiplier System for E. The form in which we pre-
sented the definition of the gauge C was intended to suggest the following pro-
cedure for guessing the multiplier system of E. Fix a semicharacter ψ of 1 with
respect to H arbitrarily. Consider the multiplier system{

ψ(λ) exp
(
πH(λ,w)+ π

2 H(λ, λ)
)}

on W relative to 1 determined by a theta function of type (W,H,1,ψ). Pulling
back under the map z(1), we obtain a multiplier system{

ψ(σ1) exp
(
πH(σ1, z(1))+ π

2 H(σ1, σ1)
)}

on X̃ × X̃ relative to = × =. Similarly, pulling back under the map −z(2) yields a
multiplier system{

ψ(−σ2) exp
(
πH(−σ2,−z(2))+ π

2 H(−σ2,−σ2)
)}

,

and by pulling back under the map z(1) − z(2) we obtain a multiplier system{
ψ(σ1− σ2) exp

(
πH(σ1− σ2, z(1) − z(2))+ π

2 H(σ1− σ2, σ1− σ2)
)}
.

After dividing the last multiplier system by the product of the first two and then
simplifying, we obtain a multiplier system{

exp
(−π(H(σ1, z(2))+H(σ2, z(1))+H(σ1, σ2))

)}
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on X̃ × X̃ relative to = × = such that any theta function determining that mul-
tiplier system is necessarily C-normalized. This is our guess for the multiplier
system determined by E. Next, we prove the guess.

Proposition 2.4.5. We have

(σ1, σ2)
∗E = exp

(−π(H(σ1, z(2))+H(σ2, z(1))+H(σ1, σ2))
)
E

for all
(σ1, σ2)∈= × = = Aut(X̃2/X2);

cf. [M2, p. 3.210]. Moreover, E is antisymmetric under exchange of factors in the
product X̃ × X̃.

Proof. In essence, the proof is an adaptation to the present situation of the proof
of the theorem of the square. We introduce the following temporary notation. We
write (σ, τ) instead of (σ1, σ2), we denote the multiplier system claimed for E
by {Fστ }, and we denote the actual multiplier system of E by {F ′στ }. The ratio
{Fστ /F

′
στ } is a unitary and hence constant system of multipliers. The restricted

multiplier systems

{Fσ1|X̃×∞̃}σ∈Aut(X̃/X), {F1τ |∞̃×X̃}τ∈Aut(X̃/X)

are identically equal to 1, and the analogous remark holds for {F ′στ } because the
invertible sheaf OX×X(B′) has trivial restrictions to X ×∞ and∞× X. There-
fore, the multiplier system {Fστ /F

′
στ } is identically equal to 1; that is, the prime

form E transforms in the claimed fashion under the action of = × =. Since ex-
change of factors in the product X̃ × X̃ preserves both C and B′, and hence can
alter E only by a nonzero constant factor, it follows that E is either symmetric
or antisymmetric. The sign is nailed down by considering what happens near the
diagonal.

Corollary 2.4.6. For all canonical divisors K and divisors D of degree g − 1
on X, we have

ψ̄D = ψK−D.

(In particular, the real semicharacters of 1 with respect to H are in canonical
bijective correspondence with the half-canonical divisor classes on X; cf. [M2,
Chap. IIIa, Sec. 6].)

Proof. Let
δ : X̃→ X̃ × X̃

be the diagonal mapping, and note that

δ∗C = −2z∗+.

Let {Fστ } temporarily denote the multiplier system determined by E. On the one
hand, since the diagonal restriction of the invertible sheaf OX×X(−B′) is isomor-
phic to GX(2∞), it follows (in view of §2.1.10) that the diagonally restricted mul-
tiplier system
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{δ∗Fσσ}σ∈= = {exp(−2πH(σ, z)− πH(σ, σ))}σ∈=
is that determined by a −2z∗+-normalized theta function on X̃ relative to = rep-
resenting −K − 2∞. On the other hand, since the reciprocal of the diagonally
restricted multiplier system can be written as the product of multiplier systems
associated to z∗+-normalized theta functions on X̃ relative to = representing
D +∞ and K −D +∞ (respectively), it is clear that ψDψK−D = 1.

2.5. Example: Determinant Identities Satisfied
by the Riemann Theta Function

2.5.1. Setting and Notation. We now combine elements of all the preceding
examples. Fix a compact Riemann surface X of genus g > 0 and a universal cov-
ering map X̃ → X. Put = := Aut(X̃/X). Fix a basepoint ∞ ∈ X and a lifting
∞̃ ∈ X̃ thereof. Let (W,H,1) be the Jacobian of X, and let z be the Abel map
X̃→W based at ∞̃. Fix an integer n ≥ g. Given any function f defined on X̃

and index i = 1, . . . , n, let f (i) denote the result of following the ith projection
X̃n→ X̃ by f. Let E be the prime form. Given indices 1 ≤ i < j ≤ n, let E(i,j)

denote the result of following the (i, j)th projection X̃n→ X̃×X̃ by E. The sym-
bol∝ placed between two expressions (as in Proposition 2.5.4) indicates that both
expressions define not-identically-vanishing meromorphic functions on the same
complex manifold, agreeing up to a nonzero constant factor.

2.5.2. A Special Class of Theta Functions. Given a semicharacter ψ on 1

with respect to H, an integer �, and a meromorphic function u on X̃, we say that
u is a theta function of type (X,∞,ψ , �) if

σ ∗u = ψ(σ) exp
(
πH(σ, z)+ π

2 H(σ, σ)
)
u

for all σ ∈G; moreover, u has no singularities save poles of order at most � − 1
at each lifting of the basepoint ∞. The collection of all such theta functions u

forms a vector space over the complex numbers. (Deviating from the convention
we have followed before, in this case we do not exclude the case u = 0.) Note
that, for any divisor D of degree g−1, integer �, and z∗+-normalized theta func-
tion φ representing D +∞, the map

(f �→ (lifting of f )φ) : H 0(X, OX(D + �∞))→
(

space of theta functions
of type (X,∞,ψD , �)

)
is bijective. Since every semicharacter ψ is of the form ψD for some D, and since
(by assumption) for any such D we have

deg(D + n∞) ≥ g − 1+ g > 2g − 2,

it follows that

dimC

(
space of theta functions
of type (X,∞,ψ , n)

)
= n

by the Riemann–Roch theorem.
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Lemma 2.5.3. Fix a semicharacter ψ on 1 with respect to H. Recall that we are
assuming n ≥ g. There exists a not-identically-vanishing meromorphic function
φ on X̃n, unique up to a nonzero constant factor, with the following properties.

(1) The function φ transforms according to the rule

σ ∗φ =
n∏

i=1

ψ(σi) exp(πH(σi, z
(i)))φ

for all
σ = (σi)

n
i=1∈=n = Aut(X̃n/Xn).

In particular, φ is a theta function on X̃n relative to =n.

(2) The divisor

−(n− 1)(∞×Xn−1+X ×∞×Xn−2 + · · · +Xn−1×∞)

is a lower bound for the divisor of Xn represented by φ. In particular, φ is
regular on (X̃ \ =∞̃)n.

(3) The function φ is antisymmetric under exchange of factors of the product X̃n.

Proof. Let T ⊂ X̃ \ =∞̃ be a set of cardinality n such that the map

(u �→ u|T ) :

(
space of theta functions
of type (X,∞,ψ , n)

)
→
(

space of
functions on T

)
is bijective. For i = 1, . . . , n, by induction on i we can show that a meromorphic
function on X̃n satisfying conditions (1) and (2) vanishes identically if it vanishes
identically on T i × X̃n−i . Thus we find that the map

(φ �→ φ|T n) :

(
space of functions
satisfying (1) and (2)

)
→
(

space of
functions on T n

)
is bijective. Under the latter map, the space of functions satisfying conditions
(1)–(3) maps bijectively to the space of functions on T n that are antisymmetric
under exchange of factors. Clearly the latter space is 1-dimensional.

Proposition 2.5.4. Let ϑ be a theta function of type (W,H,1,ψ). Recall that
we are assuming n ≥ g. Let u1, . . . , un be a C-basis for the space of theta functions
of type (X,∞,ψ , n). We have

n

det
i,j=1

u
(i)
j ∝ ϑ

( n∑
i=1

z(i)
) ∏

1≤i<j≤n
E(i,j).

(The proposition is a Weil-style formulation of a classical determinant identity
satisfied by the Riemann theta function; see [F, Prop. 2.16] for a classical-style
formulation of this identity.)

Proof. The expression on the left (resp., right) side of the claimed relation de-
fines a not-identically-vanishing meromorphic function on X̃n, and moreover this
function clearly satisfies the conditions (1)–(3) (resp., (2) and (3)) enunciated in
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Lemma 2.5.3. It remains only to verify that the function on the right satisfies con-
dition (1). Fix

σ = (σi)
n
i=1∈=n = Aut(X̃n/Xn)

arbitrarily. We have

σ ∗ϑ
(∑

z(i)
)

= ϑ
((∑

z(i)
)+ (∑ σi

))
= ψ

(∑
σi
)

exp
(
πH
(∑

σi,
∑

z(i)
)+ π

2 H
(∑

σi,
∑

σi
))
ϑ
(∑

z(i)
)

and

σ ∗E(i,j) = ((σi, σj )
∗E)(i,j)

= exp
(−π(H(σi, z

(j))+H(σj , z(i))+H(σi, σj ))
)
E(i,j)

by definition of a theta function of type (W,H,1,ψ) and the transformation law
for the prime form E enunciated in Proposition 2.4.5, respectively. This is enough
to finish the proof.

Corollary 2.5.5. For any divisor D of X of degree g − 1, theta function ϑ of
type (W,H,1,ψD), divisor D ′ of X of degree 0, and 1-chain ∂−1D ′ on X with
boundary D ′, we have

ϑ(∂−1D ′) = 0 ⇐⇒ h0(D −D ′) > 0.

(The proposition is a Weil-style formulation of a weak version of the Riemann
vanishing theorem; for classical-style discussions of the latter, see [M1, chap. II,
Sec. 3] or the Riemann–Kempf singularity theorem [GH, p. 348].)

Proof. Both sides of the logical equivalence to be proved depend only on the divi-
sor class ofD ′. We may therefore assume (without loss of generality) that for some
n ≥ g, distinct points P1, . . . ,Pn ∈X \∞, and corresponding liftings P̃1, . . . , P̃n ∈
X̃ we have

D ′ = −n∞+
n∑
i=1

Pi, ∂−1D ′ =
n∑
i=1

[∞̃ → P̃i] =
n∑
i=1

z(P̃i)∈W.

We then have

h0

(
D + n∞−

n∑
i=1

Pi

)
= dimC

( space of theta functions
of type (X,∞,ψ , n)
vanishing at P̃1, . . . , P̃n

)
by the remarks of §2.5.2 and hence

h0

(
D + n∞−

n∑
i=1

Pi

)
> 0 ⇐⇒ ϑ

( n∑
i=1

z(P̃i)

)
= 0

by Proposition 2.5.4.

2.5.6. Remark. We continue in the setting of Corollary 2.5.5. At full strength,
the Riemann vanishing theorem states that h0(D − D ′) equals the order of van-
ishing of ϑ at the point ∂−1D ′ ∈W. (For an extended discussion of the Riemann
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vanishing theorem from the classical point of view, see e.g. [GH].) One can de-
duce the Riemann vanishing theorem at full strength from Proposition 2.5.4 by
manipulation of symmetric functions on Xn. Such manipulations are standard in
soliton theory (cf. [SWi, pp. 48–52]).

Corollary 2.5.7. Fix a half-canonical divisor D on X and a theta function ϑ

of type (W,H,1,ψD). The following are then equivalent:

(1) ϑ vanishes at the origin to order at least 2;
(2) h0(D) ≥ 2;
(3) the function ϑ(z(1) − z(2)) on X̃ × X̃ vanishes identically.

(To prove the equivalence of conditions (2) and (3), only the “weak” Riemann
vanishing theorem is needed.)

Proof. [(1) ⇔ (2)] This equivalence is a special case of the “full strength” Rie-
mann vanishing theorem.

[(2)⇒ (3)] If h0(D) > 1, then h0(D−P) > 0 for all points P of X and hence
h0(D − P +Q) > 0 for all points P and Q of X, whence the result via Corol-
lary 2.5.5.

[not (2)⇒ not (3)] We may assume without loss of generality that h1(D) = 1,
for otherwise ϑ(0) �= 0 by Corollary 2.5.5 and there is nothing to prove. To con-
clude, we now follow the proof of [M2, Lemma 2, p. 3.211]. Pick a point P on X

arbitrarily. We have either h0(D + P) = 1 or else (by Riemann–Roch)

h0(D − P) = h0(K −D − P) = h0(D + P)− 1= 1.

Existence of a Q such that h0(D + P −Q) = 0 in the former case and such that
h0(D − P +Q) = 0 in the latter case is clear, so in both cases the result now fol-
lows via Corollary 2.5.5.

2.6. Example: An ad hoc Deformation Theory

We continue to work in the setting of Section 2.5.

Proposition 2.6.1. Fix a divisor D of X of degree g − 1. Fix a theta function
ϑ of type (W,H,1,ψD). Make now the stronger assumption that n ≥ g + 1. Fix
distinct points

P1, . . . ,Pn ∈X \ {∞}
and corresponding liftings

P̃1, . . . , P̃n ∈ X̃
such that

ϑ

( n∑
i=1

z(P̃i)

)
�= 0.

For i = 1, . . . , n and P̃ ∈ X̃ \ =∞̃, put

ui(P̃ ) := ϑ

(
z(P̃ )+

∑
α∈{1, ...,n}\{i}

z(P̃α)

) ∏
α∈{1, ...,n}\{i}

E(P̃, P̃α),
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thereby defining a function that is regular on X̃ \ =∞̃ and meromorphic on X̃.

Then the following statements hold.

(1) The function ui is a theta function of type (X,∞,ψD , n).
(2) The functions u1, . . . , un form a C-basis for the space of theta functions of type

(X,∞,ψD , n).
(3) The divisor of X represented by ui, say Di, belongs to the divisor class of

D +∞.

(4) The divisors D1 + (n − 1)∞, . . . ,Dn + (n − 1)∞ are effective and have no
zeroes in common.

Proof. (1) This is clear in view of our complete knowledge of the laws governing
the transformation of ϑ and E.

(2) By construction of the ui we have
n∏
i=1

ui(P̃i) =
n

det
i,j=1

ui(P̃j ) �= 0

and hence the ui are C-linearly independent.
(3) By definition of ψD , a z∗+-normalized theta function representing D +∞

transforms under the action of = according to the same law as does any theta func-
tion of type (X,∞,ψD , n).

(4) It is clear that the divisors Di + (n− 1)∞ are effective. But further, under
our assumption that n ≥ g + 1 we have

deg(D + n∞) ≥ (g − 1)+ (g + 1) = 2g;
therefore, the linear system of effective divisors belonging to the divisor class of
D + n∞ is basepoint free.

Proposition 2.6.2. We continue in the setting of Proposition 2.6.1. Fix w0 ∈W.

Put

ϑ̇(w) := ∂

∂s
logϑ(w + sw0)

∣∣∣∣
s=0

,

thereby defining a meromorphic function on W that is regular away from the zero
locus of ϑ. For i = 1, . . . , n put

u̇i := ϑ̇

(
z+

∑
α∈{1, ...,n}\{i}

z(P̃α)

)
,

thereby defining a meromorphic function on X̃ that is regular away from the lift-
ing to X̃ of the support of the effective divisor Di + (n − 1)∞. If the functions
u̇i differ from one another by constants, then each of the functions u̇i reduces to a
constant and w0 = 0.

Proof. For i = 1, . . . , n, let Ui be the complement of the support of the effective
divisor Di + (n− 1)∞. By Proposition 2.6.1 the family {Ui} is an open covering
of X. Let Ũi ⊂ X̃ be the inverse image of Ui under the covering map. Since u̇i is
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regular on Ũi and since the family {Ũi} covers X̃, it follows that there exists some
holomorphic function u̇ on X̃ from which each function u̇i differs by a constant.
Clearly we have

ϑ̇(w + λ) = πH(λ,w0)+ ϑ̇(w)

for all λ∈1 and w ∈W such that ϑ(w) �= 0, and hence

σ ∗u̇ = πH(σ,w0)+ u̇

for all σ ∈=. It follows that u̇ is the primitive of some holomorphic 1-form on X,
say ω. By construction of ω we have∫

[∞̃→σ∞̃]
ω = πH(σ,w0)

for all σ ∈=, so ω = 0 and w0 = 0 by Proposition 2.3.5.

3. The Edited 4�-Embedding of a Jacobian

3.1. The Edited 4� Linear System

3.1.1. The Setting. Fix a compact Riemann surface X of genus g > 0 and a
universal covering map X̃→X. Put = := Aut(X̃/X). Fix a basepoint∞∈X and
a lifting ∞̃ ∈ X̃ thereof. Let (W,H,1) be the Jacobian of X, and let z be the Abel
map X̃ →W based at ∞̃. Let E be the prime form. Fix a real semicharacter ψ0

of 1 with respect to H and a theta function ϑ0 of type (W,H,1,ψ0). More gen-
erally, put

ϑt(w) = exp(−πH(t,w))ϑ0(w + t)

for all t ∈W and correspondingly put

ψt(λ) = exp(2πi�H(λ, t))ψ0(λ)

for all λ∈1, so that ϑt is then a theta function of type (W,H,1,ψt). Fix a set

0∈M ⊂ 1
21

of representatives for the quotient 1
21/1. Then {ψµ}µ∈M is the family of 4g real

semicharacters of 1 with respect to H.

3.1.2. Definition. By the Lefschetz embedding theorem, the family of 4g theta
functions {ϑµ(2w)}µ∈M embeds the quotient W/1 into projective space. For any
nonnegative integer �, let M≤� be the subset of M consisting of those µ such that
ϑµ vanishes at the origin to order ≤ �. We call

{ϑµ(2w)}µ∈M≤1

the edited 4� linear system associated to the Jacobian (W,H,1). Our goal is to
prove the following result.

Theorem 3.1.3. The edited 4� linear system embeds W/1 into projective space.
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The theorem can easily be reconciled with its classical-style formulation in Sec-
tion 1 by means of the remarks in §2.2.6. The proof of the theorem requires some
preparation and will not be completed until the end of Section 3.3.

3.1.4. Remark. As was noted by the referee, it is a part of the folklore of the
theory of compact Riemann surfaces that M≤1 = M generically. Nonetheless, our
theorem does have some content because in general the inequality M≤1 �= M does
hold. Indeed, the latter holds “with a vengeance” for hyperelliptic curves of large
genus; see [M2, Chap. IIIa, Sec. 6, p. 3.105].

3.1.5. Remark. We are grateful to the referee for providing us with a sketch of a
proof of the fact that M≤1 = M generically. We paraphrase the referee’s remarks
here. On the Teichmüller space T classifying marked Riemann surfaces of genus
g, each theta characteristic µ defines a subvariety Vµ whose points correspond to
marked Riemann surfaces such that θµ vanishes at the origin to order higher than
parity requires. What we have to prove is that none of the Vµ equals T . In any
case, for at least one even µ and one odd µ we have Vµ �= T, as can be verified by
the study of hyperelliptic curves. But since the mapping class group acts transi-
tively on the possible markings of a Riemann surface, and hence acts transitively
on the even (resp. odd) theta characteristics, we find that Vµ �= T for all µ, which
is what we wanted to prove.

3.1.6. Recollection of the Riemann Quartic Theta Identity. As in Cor-
ollary 2.2.8, let {Cµ}µ∈M be the unique family of constants such that

4∏
i=1

ϑ0(wi) =
∑
µ∈M

Cµ ·


ϑµ((+w1+ w2 + w3 + w4)/2)

· ϑµ((+w1+ w2 − w3 − w4)/2)

· ϑµ((+w1− w2 + w3 − w4)/2)

· ϑµ((+w1− w2 − w3 + w4)/2)

for all w1,w2,w3,w4 ∈W. Recall that none of the Cµ vanish.

Proposition 3.1.7. The linear system

{ϑµ(2w)}µ∈M≤0

is basepoint free (and hence so is the edited 4� linear system).

Proof. This is common knowledge, and the method of proof in classical terms is
likely known to the reader. We sketch the proof here just in order to help orient
the reader toward our point of view. Fix t ∈W and let w range over W. We have

1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



t + w

t − w

t + w

t − w

 =


2t
0

2w
0


and hence
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ϑ0(t + w)2ϑ0(t − w)2 =
∑

µ∈M≤0

Cµϑµ(2t)ϑµ(0)ϑµ(2w)ϑµ(0).

The left side of this equality does not vanish identically as a function of w and
hence ϑµ(2t) �= 0 for some µ∈M≤0.

3.2. The Generating Function Zt

We now introduce a technical device that enables us to take maximum advantage
of the Riemann quartic theta identity.

3.2.1. Definition. To each t ∈W we associate a generating function

Zt : X̃ 4 ×W → C

by the rule

Zt(P̃0, P̃1, P̃2, P̃3,w) :=


ϑ0(t − z(P̃0)− z(P̃1)+ w)

· ϑ0(t + z(P̃1)+ z(P̃3)− w)

· ϑ0(t − z(P̃2)− z(P̃3)+ w)

· ϑ0(t + z(P̃0)+ z(P̃2)− w).

The function Zt is holomorphic on X̃ 4×W and also depends holomorphically on
the parameter t. Since

ϑ0(−w) = ±ϑ0(w), ϑt(w) = exp(−πH(t,w))ϑ0(t + w),

we can rewrite the definition of Zt in the form

Zt(P̃0, P̃1, P̃2, P̃3,w) =


ϑ+t(w − z(P̃0)− z(P̃1))

· ϑ−t(w − z(P̃1)− z(P̃3))

· ϑ+t(w − z(P̃2)− z(P̃3))

· ϑ−t(w − z(P̃0)− z(P̃2)).

The latter presentation of Zt will be quite convenient later.

3.2.2. Key Properties. The generating function Zt , viewed as a function of t,
is a theta function on W relative to 1. More precisely, we have

Zt+λ(P̃0, P̃1, P̃2, P̃3,w) = exp(4πH(λ, t)+ 2πH(λ, λ))Zt(P̃0, P̃1, P̃2, P̃3,w)

for all λ ∈ 1. In particular, up to a nonzero constant factor, Zt depends only on
t mod1. Further and crucially, we have

1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



t − z(P̃0)− z(P̃1)+ w

t + z(P̃1)+ z(P̃3)− w

t − z(P̃2)− z(P̃3)+ w

t + z(P̃0)+ z(P̃2)− w

 =


2t

−z(P̃0)+ z(P̃3)

2w −
3∑

i=0

z(P̃i)

−z(P̃1)+ z(P̃2)


and hence
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Zt(P̃0, P̃1, P̃2, P̃3,w) =
∑

µ∈M≤1

Cµϑµ(2t) ·


ϑµ(−z(P̃0)+ z(P̃3))

· ϑµ
(

2w −
3∑

i=0

z(P̃i)

)
· ϑµ(−z(P̃1)+ z(P̃2))

by the Riemann quartic theta identity (as previously recollected) combined with
Corollary 2.5.7.

3.2.3. Rationale for the Terminology. We claim that the family

(P̃0, P̃1, P̃2, P̃3,w) �→


ϑµ(−z(P̃0)+ z(P̃3))

· ϑµ
(

2w −
3∑

i=0

z(P̃i)

)
· ϑµ(−z(P̃1)+ z(P̃2))


µ∈M≤1

of holomorphic functions on X̃ 4 ×W is C-linearly independent. At any rate, by
Corollary 2.5.7 there exist points P̃0, P̃1 such that∏

µ∈M≤1

ϑµ(−z(P̃0)+ z(P̃1)) �= 0

and hence, by evaluation at (P̃0, P̃0, P̃1, P̃1)∈ X̃ 4, we can specialize the family in
question to a family of functions on W of the form

{Dµϑµ(2(w + t0))}µ∈M≤1,

where the factors Dµ are nonzero constants and t0 is some particular point of W.

Families of the latter sort are clearly C-linearly independent. Thus the claim is
proved. The claim granted, it follows that for any t ∈W, to know the generating
function Zt up to a nonzero constant factor is to know the image of t under the map
to projective space determined by the edited 4� linear system, and vice versa. In
this sense Zt packages all the information in the edited 4� embedding and hence
deserves to be called a generating function.

3.3. Separation of Points and Tangent Vectors

3.3.1. An ad hoc Notion of General Position. Suppose we are given an in-
teger n ≥ g and a divisorD ofX of degree g−1. We say that pointsP0, . . . ,Pn+1∈
X are in (n,D)-general position if P0, . . . ,Pn+1,∞ are distinct and

h0

(
D + n∞−

∑
i∈I

Pi

)
= 0 = h0

(
K −D + n∞−

∑
i∈I

Pi

)
for all subsets I ⊂ {0, . . . , n + 1} of cardinality n, where as usual K denotes a
canonical divisor of X. Now fix t ∈W such that ψD = ψt, noting that ψK−D =
ψ−t by Corollary 2.4.6. Also fix distinct points P0, . . . ,Pn+1 ∈X \ {∞} and cor-
responding liftings P̃0, . . . , P̃n+1 ∈ X̃. By Corollary 2.5.5, the points P0, . . . ,Pn+1

are in (n,D)-general position if and only if
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∏
I⊂{0, ...,n+1}

#I=n

(
ϑt

(∑
i∈I

z(P̃i)

)
ϑ−t
(∑

i∈I
z(P̃i)

))
�= 0.

It follows that the set consisting of (n+ 2)-tuples of points of X in (n,D)-general
position is open dense in Xn+2.

Proposition 3.3.2. For all t, t ′ ∈W, if Zt ∝ Zt ′ then t ≡ t ′mod1.

Proof. Fix divisors D and D ′ of degree g − 1 such that ψt = ψD and ψt ′ = ψD ′ .
Fix an integer n ≥ g +1. Fix points P0, . . . ,Pn+1∈X \∞ in both (n,D)-general
and (n,D ′)-general position. Fix corresponding liftings P̃0, . . . , P̃n+1∈ X̃. For all
indices i, j = 1, . . . , n, we define a function Fij meromorphic on X̃ and regular on
X̃ \ =∞̃ by specializing the generating function Zt and multiplying by a factor
that is independent of t, as follows:

Fij(P̃ ) :=


Zt

(
P̃, P̃i, P̃j , P̃n+1, z(P̃ )+

n+1∑
α=1

z(P̃α)

)
·

∏
α∈{1, ...,n}\{i}

E(P̃, P̃α) ·
∏

β∈{1, ...,n}\{j}
E(P̃, P̃β).

By the second version of the definition of the generating function Zt we have

Fij(P̃ ) =



ϑ+t
( ∑

α∈{1, ...,n+1}\{i}
z(P̃α)

)

· ϑ−t
(
z(P̃ )+

∑
α∈{1, ...,n}\{i}

z(P̃α)

)
·

∏
α∈{1, ...,n}\{i}

E(P̃, P̃α)

· ϑ+t
(
z(P̃ )+

∑
β∈{1, ...,n}\{j}

z(P̃β)

)
·

∏
β∈{1, ...,n}\{j}

E(P̃, P̃β)

· ϑ−t
( ∑

β∈{1, ...,n+1}\{j}
z(P̃β)

)
.

The latter presentation of Fij makes it clear that Fij does not vanish identically.
Indeed, since the points P0, . . . ,Pn+1 are in (n,D)-general position, we have

n∏
i=1

n∏
j=1

Fij(P̃0) �= 0.

It is easily verified that Fij is a theta function on X̃ relative to = and hence repre-
sents some divisor on X, say Dij . By Proposition 2.6.1, the divisor

D∗ := (n− 1)∞+ n

min
i=1

Di1

belongs to the divisor class of D+∞. Since Zt ∝ Zt ′ , a repetition of the preced-
ing argument proves that D∗ also belongs to the divisor class of D ′ +∞. Thus the
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divisors D and D ′ are linearly equivalent, so ψt = ψD = ψD ′ = ψt ′ and hence
t ≡ t ′mod1.

Proposition 3.3.3. For all t,w0 ∈W, if the meromorphic function

∂

∂s
logZt+sw0

∣∣∣∣
s=0

on X̃ 4 ×W reduces to a constant, then w0 = 0.

Proof. Put

ϑ̇±t(w) := ∂

∂s
logϑ±t(w + sw0)

∣∣∣∣
s=0

,

thereby defining a meromorphic function on W that is regular away from the zero
locus of ϑ±t . Note that

ϑ±(t+sw0 )(w) = exp(−πH(±w0,w)s̄ + πH(t,w0)s)ϑ±t(w ± sw0)

and hence
∂

∂s
logϑ±(t+sw0 )

∣∣∣∣
s=0

= πH(t,w0)± ϑ̇±t .

Now fix a divisor D of X of degree g−1 such that ψt = ψD , an integer n ≥ g+1,
the points P0, . . . ,Pn+1∈X \∞ in (n,D)-general position, and the corresponding
liftings P̃0, . . . , P̃n+1∈ X̃. For i, j = 1, . . . , n we have

constant = ∂

∂s
logZt+sw0

(
P̃0, P̃i, P̃j , P̃n+1, z+

n+1∑
α=1

z(P̃α)

)∣∣∣∣
s=0

= 4πH(t,w0)+



ϑ̇+t
( ∑

α∈{1, ...,n+1}\{i}
z(P̃α)

)

− ϑ̇−t
(
z+

∑
α∈{1, ...,n}\{i}

z(P̃α)

)

+ ϑ̇+t
(
z+

∑
β∈{1, ...,n}\{j}

z(P̃β)

)

− ϑ̇−t
( ∑

β∈{1, ...,n+1}\{j}
z(P̃β)

)
.

We conclude via Proposition 2.6.2 that w0 = 0.

3.3.4. Completion of the Proof of Theorem 3.1.3. By Proposition 3.1.7, we
know at least that the edited 4� linear system defines a mapping from W/1 to
projective space. But then, on account of the “generating function” interpretation
of Zt provided in §3.2.3, we know that this mapping separates points by Proposi-
tion 3.3.2 and separates tangent vectors by Proposition 3.3.3.
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3.4. “Tying Together Algebraic and Analytic Jacobians”

The turn of phrase here is borrowed from [M2].

3.4.1. Identifications. Continuing in the setting of the proof of Theorem 3.1.3,
we now also contemplate the situation discussed in the first couple of paragraphs of
the Introduction. Recall in that setting we made the still stronger assumption that

n ≥ g + 2.

Write ψ0 = ψD0 for some half-canonical divisor D0. Write

E = OX(D0 + S + n∞), T = OX(T ),

where S and T are divisors of degree 0. Select s, t ∈W such that

ψs = ψD0+S , ψD0+T = ψt .

Make the evident identifications

H 0(X, T ±1⊗ E ) =
(

space of theta functions
of type (X,∞,ψs±t , n)

)
,

thereby inducing an identification of each matrix entry abel(T )ij with a func-
tion on X̃{0, ...,n+1}. We shall write down a formula for abel(T )ij(P̃0, . . . , P̃n+1) in
terms of the generating function Zt and some other factors independent of t. Since
knowledge of Zt up to a nonzero constant multiple is equivalent to knowledge of
the image of t under the map to projective space defined by the edited 4� linear
system, the formula we shall write down is the promised factorization of the map
T �→ abel(T ) through the edited 4� embedding.

3.4.2. Plugging into the Determinant Identity. As in Section 1, let u (resp.
v) be a row vector of length n with entries forming a basis of H 0(X, T −1 ⊗ E )
(resp. H 0(X, T ⊗ E )) over the ground field, the latter now taken to be C. Taking
into account the identifications made previously and after adjusting u and v by
suitably chosen nonzero constant factors, we have

( n

det
i,j=1

u
(i)
j

)
(P̃1, . . . , P̃n) =



ϑ−t
(
s +

n∑
i=1

z(P̃i)

)

· exp

(
−πH

(
s,

n∑
i=1

z(P̃i)

))
·
∏

1≤i<j≤n
E(P̃i, P̃j )

and

( n

det
i,j=1

v
(i)
j

)
(P̃1, . . . , P̃n) =



ϑt

(
s +

n∑
i=1

z(P̃i)

)

· exp

(
−πH

(
s,

n∑
i=1

z(P̃i)

))
·
∏

1≤i<j≤n
E(P̃i, P̃j )
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by plugging into the determinant identity of Proposition 2.5.4, it being noted that

exp(−πH(s,w))ϑ±t(s + w)

is a theta function of type (W,H,1,ψs±t ).

3.4.3. Completion of the Calculation. Finally, we have

abel(T )ij(P̃0, . . . , P̃n+1)

= Zt

(
P̃0, P̃i, P̃j , P̃n+1, s +

n+1∑
α=0

z(P̃α)

)

· exp

(
−πH

(
s,−2(z(P̃0)+ z(P̃i)+ z(P̃j )+ z(P̃n+1))+ 4

n+1∑
α=0

z(P̃α)

))
·

∏
α,β∈{0, ...,n+1}\{0,i}

α<β

E(P̃α , P̃β) ·
∏

α,β∈{0, ...,n+1}\{i,n+1}
α<β

E(P̃α , P̃β)

·
∏

α,β∈{0, ...,n+1}\{j,n+1}
α<β

E(P̃α , P̃β) ·
∏

α,β∈{0, ...,n+1}\{0,j}
α<β

E(P̃α , P̃β).

Note that, among the factors on the right side of this equality, only the very first
depends on t. Note also that, since n ≥ g + 2, this formula determines the gen-
erating function Zt uniquely in terms of (say) the matrix entry abel(T )12. The
formula generalizes the genus-1 identity [A, (49)] to arbitrary genus.
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