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Completions of Normal Affine Surfaces
with a Trivial Makar-Limanov Invariant

Adrien Dubouloz

Introduction

For a connected normal affine surface V = Spec(A) over C, the Makar-Limanov
invariant of V [10] is the subalgebra ML(V ) ⊂ A of all regular functions invari-
ant under every algebraic C+-action on V. Constant functions are certainly con-
tained in ML(V ), and we say that the Makar-Limanov invariant of V is trivial (or
that V is an ML-surface) if ML(V ) = C. In [1], Bandman and Makar-Limanov
have re-discovered a link between nonsingular ML-surfaces and geometrically
quasihomogeneous surfaces studied by Gizatullin in [6]—that is, surfaces whose
automorphism group has a Zariski open orbit with a finite complement. More pre-
cisely, they have established that, on a nonsingular ML-surface V, there exist at
least two nontrivial algebraic C+-actions that generate a subgroup H of the auto-
morphism group Aut(V ) of V such that the orbit H.v of a general closed point
v ∈ V has finite complement. By Gizatullin [6], such a surface is rational and is
either isomorphic to C

∗×C
∗ or can be obtained from a nonsingular projective sur-

face V̄ by deleting an ample divisor of a special form, called a zigzag. This is just
a linear chain of nonsingular rational curves. Conversely, a nonsingular surface
V completable by a zigzag is rational and geometrically quasihomogeneous (see
[6]). In addition, if V is not isomorphic to C

∗×A
1 then it admits two independent

C+-actions. More precisely, Bertin [2] showed that if V admits a C+-action then
this action is unique unless V is completable by a zigzag. Altogether, this leads
to the following result.

Theorem [1; 2; 6]. A nonsingular affine surface V that is nonisomorphic to
C

∗ × A
1 has a trivial Makar-Limanov invariant if and only if V is completable by

a zigzag.

More generally, in this paper we prove the following theorem.

Theorem. A normal affine surface V that is nonisomorphic to C
∗ × A

1 has a
trivial Makar-Limanov invariant if and only if V is completable by a zigzag.

We are grateful to the referee for pointing out that closely related results are proved
in two recent preprints [3; 14], under the additional assumption that V is rational.
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However, we think it might be useful to provide a self-contained and straightfor-
ward proof of this theorem in order to set up a good framework for a more detailed
study of ML-surfaces.

1. Rulings and Completions of Normal Surfaces

We use the following terminology.

• A surface is a connected, reduced, normal C-scheme of finite type and of di-
mension 2.

• The intersection number of two divisors D1 and D2 on a surface V regular at
the points ofD1 ∩D2 is denoted by (D1 ·D2). The self-intersection number of
a divisor D ⊂ Vreg is denoted by (D2) = (D ·D).

• For a morphism f : W → V between normal varieties and for a divisor D on
V, we denote by q−1(D) the set-theoretic preimage of D, while q∗(D) denotes
its preimage considered as a cycle.

• An A
1-fibration (a P

1-fibration) on a surfaceV is a surjective morphism ρ : V →
Z on a nonsingular curve Z with general fibers isomorphic to the affine line A

1

(to the projective line P
1, respectively). The fibers of ρ that are either not iso-

morphic to A
1 (resp., P

1) or not reduced are called degenerate.
• An SNC-divisor D on a surface is a divisor with normal crossing singularities

whose irreducible components are nonsingular.
• For a normal affine surface V, we call a completion of V an open embedding
i : V ↪→ V̄ of V into a normal projective surface V̄, nonsingular along B =
V̄ \ i(V ) and such that B is an SNC-divisor. We say that the completion is
minimal if B contains no (−1)-curve that meets at most two other components
transversally in a single point.

• For an isolated singularity (V,P) of a normal surface, a minimal embedded
resolution of p is a birational morphism π : W → V such that W is nonsin-
gular, W \ π−1(P )  V \ {P }, and π−1(P ) is an SNC-divisor that contains
no (−1)-curve meeting at most two other components transversally in a single
point.

Definition1.1. A zigzagB on a normal projective surface V̄ is a connected SNC-
divisor with nonsingular rational curves as irreducible components and whose dual
graph is a linear chain. If Supp(B) = ⋃n

i=1Bi, then the irreducible components
Bi (1 ≤ i ≤ n) of B can be ordered in such a way that

(Bi · Bj) =
{

1 if |i − j | = 1,

0 if |i − j | > 1.

A zigzag with such an ordering on the set of its components is called oriented and
the sequence ((B2

1 ), . . . , (B
2
n)) is called the type ofB. For an oriented zigzagB, the

components B1 and Bn are called the boundaries of B. Given an irreducible com-
ponent Bi0 of B, we denote by B±

i0
the component Bi0±1 (provided it does exist).

A zigzag B is called minimal if it contains no (−1)-curve.
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Let C ⊂ V̄ be an SNC-divisor. A zigzag B of C is a zigzag with support con-
tained in C and such that no irreducible component of B corresponds to a ramifi-
cation vertex of the dual graph of C. A zigzag B that is maximal for the inclusion
of supports is called maximal. If C itself is not a zigzag, then we call a maximal
zigzag B of C simple if only one boundary of B meets a ramification vertex of the
dual graph of C. We call it double if this happens for both boundaries of B.

We say that a normal affine surface V is completable by a zigzag if there exists
a completion V̄ of V such that B := V̄ \V is a zigzag.

Properties of P
1-Fibrations on Normal Projective Surfaces

We recall some properties of P
1-fibrations on a normal projective surface. The

following lemma is well known for a nonsingular surface V̄ (see [13, Lemma
1.4.1, p. 195]).

Lemma 1.2. Let q̄ : V̄ → Z̄ be a P
1-fibration. If F := ∑p

1=1 niCi is a fiber of q̄
with irreducible components Ci, then:

(1) the morphism q̄ admits a section S ⊂ V̄ ; and
(2) if F is irreducible and P = F ∩ S is a regular point of V̄, then F is nonde-

generate.

Now assume that F is degenerate. Then the following statements also hold.

(3) The support of F is connected.
(4) If a singular point P of V̄ is contained in a unique curve Ci, then it is a cyclic

quotient singularity. In this case, the proper transform of Ci in a minimal em-
bedded resolution π : W̄ → V̄ of P meets a terminal component of π−1(P ).

(5) If Ci does not contain any singular point of V̄, then it is nonsingular (Ci 
P

1) and (C2
i ) < 0.

(6) If Ci and Cj (i �= j) are nonsingular and do not contain any singular point
of V̄, then (Ci · Cj) = 0 or 1.

(7) For any three distinct indices i, j , l, either Ci ∩ Cj ∩ Cl = ∅ or Ci ∩ Cj ∩ Cl
is a singular point P of V̄.

(8) If F is contained in V̄ \ Sing(V̄ ) then at least one of the Ci, say C1, is a
(−1)-curve. If τ : V̄ → V̄1 denotes the contraction of C1 then q̄ factors as

q̄ : V̄
τ−→ V̄1

q̄1−→ Z̄,

where q̄1: V̄1 → Z̄ is a P
1-fibration. Hence all but one irreducible component

of F can be contracted successively to obtain a nondegenerate fiber. There-
fore, F is an SNC-divisor whose dual graph �(F ) is a tree.

(9) If F is contained in V̄ \ Sing(V̄ ) and if one of the ni, say n1, is equal to 1,
then there exists a (−1)-curve among the Ci, 2 ≤ i ≤ p.

Proof. We let φ : W̄ → V̄ be a minimal embedded resolution of singularities. We
denote by q̃ the P

1-fibration on W̄ lifting q̄ and by S̃ a section of q̃. Then S :=
φ(S̃ ) is a section of q̄, and so (1) follows. In the nonsingular case, (2) is a con-
sequence of the existence of a section of q̄ and (3)–(9) follow from the genus
formula.
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In the normal case, (3) and (5)–(9) follow at once from the nonsingular case and
(4) can be proved in the same way as Lemma 1.4.4 in [13, p. 196]. To show (2), we
let F = q̄−1(z0), z0 ∈ Z, be an irreducible fiber of q̄. Its total transform φ−1(F )

is the fiber F̃ = q̃−1(z0) of q̃. If P ∈ F is a singular point of V̄, then φ−1(P ) ⊂
W̄ contains no (−1)-curve that meets at most two other components transversally
in a single point. Then assertions (7) and (8) on W̄ imply that φ−1(P ) contains
no (−1)-curve at all. It follows from (8) that the proper transform F ′ of F is the
unique (−1)-curve in F̃. Hence F must be a nonreduced fiber of q̄, for otherwise
F ′ has multiplicity 1 in F̃, which contradicts (9). Provided that P0 = S ∩ F is a
regular point of V̄, F does not contain any singular point of V̄ and so is nondegen-
erate, which proves (2).

Remark 1.3. Note that by (7) and (8), a (−1)-curve E contained in a degenerate
fiber F ⊂ V̄reg of q̄ cannot be a ramification vertex of the dual graph of F ∪ S.
Definition 1.4. Let F ⊂ V̄reg be a degenerate fiber of a P

1-fibration q̄ : V̄ →
Z̄ over a nonsingular projective curve Z̄, and let S be a section of q̄. A maximal
zigzag D of F (see Definition 1.1) is called terminal if either D = F or D is a
maximal simple zigzag of F that does meet S.

In the following lemma we specify the position of (−1)-curves in a degenerate
fiber of a P

1-fibration.

Lemma 1.5. Let q̄ : V̄ → Z̄ be a P
1-fibration on a normal projective surface V̄

over a nonsingular projective curve Z̄. Let S be a section of q̄, and let F ⊂ V̄reg

be a degenerate fiber of q̄. If F ∪ S is not a zigzag then the following assertions
hold:

(1) at least one (−1)-curve E in F is contained in a maximal terminal zigzag
of F ;

(2) if all such (−1)-curves are contained in the same maximal terminal zigzag D
of F, then every ramification vertex of the dual graph �(F ∪ S) of F ∪ S be-
longs to the shortest path in �(F ∪ S) that joins D and S.

Proof. Given a (−1)-curve E in F, we let τE : V̄ → V̄1 be the contraction of E.
Consider the factorization

q̄ : V̄
τE−→ V̄1

q̄1−→ Z̄,

where q̄1 : V̄1 → Z̄ is a P
1-fibration with a degenerate fiberF1 := τE(F ) ⊂ (V̄1)reg

and a section S1 = τE(S). By assumption the graph �(F ∪ S) has a ramification
vertex, so F ∪ S has at least four irreducible components. By Remark 1.3, E is a
component of a maximal zigzag D of F.

We consider first the case that F ∪ S = E1 ∪ E2 ∪ ES ∪ S has four irreducible
components where ES meets S. It is easily seen that ES corresponds to a ramifi-
cation vertex of �(F ∪ S). Then E1 and E2 are both maximal terminal zigzags of
F and at least one of them is a (−1)-curve, which proves the first assertion in this
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case. The second assertion follows then at once because ES is a unique ramifica-
tion vertex of �(F ∪ S).

To show (1), we may assume that F is not a zigzag, for otherwise our statement
is evidently true. We also suppose that F ∪ S has n > 4 irreducible components,
and we assume on the contrary that every (−1)-curve E in F is contained either
in a maximal simple zigzag of F that meets S or in a maximal double zigzag of
F. We denote this maximal zigzag by D = D(E). By our assumption, the con-
traction τE of E gives a one-to-one correspondence between the maximal simple
zigzags of F ∪ S and the maximal simple zigzags of F1 ∪ S1. Moreover, none of
the maximal terminal zigzags of F is affected by this contraction. Since F1 has
one fewer irreducible component than F, we may conclude by induction that there
is a (−1)-curve E1 in F1 that belongs to a maximal terminal zigzag of F1. Then
τ−1
E (E1) is a (−1)-curve contained in a maximal terminal zigzag of F, a contradic-

tion. Thus assertion (1) is proved.
To prove (2), we may suppose that F is not a zigzag and that F ∪ S has n >

4 irreducible components. We let E be a (−1)-curve in D. If D �= E then the
contraction τE of E yields a bijection between maximal terminal zigzags of F1

and those of F. SinceD is the only maximal terminal zigzag of F affected by the
contraction of E, it follows from (1) that τE(D) contains a (−1)-curve. In fact, it
contains all (−1)-curves as in (1), and so we are finished by induction.

In case D = E we let H be a ramification vertex of �(F ∪ S) such that E is a
branch of �(F ∪ S) at H. Then H has valency 3, for otherwise τE(H ) is a ram-
ification vertex of �(F1 ∪ S1) and hence none of the maximal terminal zigzags
of F1 contains a (−1)-curve, which contradicts (1). Thus, if F1 ∪ S1 is a zigzag
then we are done. If F1 ∪ S1 is not a zigzag then τE(H ) is contained in a maximal
zigzag D1 of F1. If either D1 meets S1 or D1 is double, then τE provides a bijec-
tive correspondence between the maximal terminal zigzags of F different from E

and those of F1. Since these maximal zigzags of F were not affected by the con-
traction of E, it follows that none of the maximal terminal zigzags of F1 contains
a (−1)-curve, which again contradicts (1). Therefore, D1 is a maximal terminal
zigzag of F1 and by (1) it contains a (−1)-curveE1. Our induction hypothesis then
implies that every ramification vertex of �(F1 ∪ S1) belongs to the shortest path
from E1 to S1 in �(F1 ∪ S1). As H is the only ramification vertex of �(F ∪ S)
that is eliminated by the contraction of E, we conclude that every such ramifica-
tion vertex belongs to the shortest path from E to S in �(F ∪ S). This proves the
second assertion.

Properties of A
1-Fibrations on Normal Affine Surfaces

Given a normal affine surface V together with an A
1-fibration q : V → Z over a

nonsingular affine curve Z, we let V̄ be a minimal completion of V. Because V
is affine, the divisor B := V̄ \V is connected. The A

1-fibration q on V induces a
rational map q̄ : V̄ ��� Z̄, where Z̄ denotes a nonsingular projective model of Z.
The closures of the fibers of q in V̄ define a pencil of nonsingular rational curves
with at most one base point on B. If necessary, this base point and all infinitely
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near ones can be eliminated by a succession of blow-ups with centers outside of
V. Thus we may suppose that q̄ is a well-defined P

1-fibration on V̄.

1.6. In this way we arrive at a completion V̄ of V with the following properties.

(1) V̄ is a normal projective surface, nonsingular along B := V̄ \V, with a P
1-

fibration q̄ : V̄ → Z̄ such that the following diagram commutes:

V

q

��

� � �� V̄

q̄

��

Z � � �� Z̄ .

(2) B is a connected SNC-divisor and can be written as B = H ∪ S ∪G, where
S is a section of q̄, H = ⋃

Hj for Hj := q̄−1(zj ) with zj ∈ Z̄ \ Z, and the
connected components of G are trees of nonsingular rational curves.

(3) We can write G = ⋃s
i=1Gi, where q̄(Gi) = zi ∈Z and where z1, . . . , zs ∈Z

are the points such that the fiber q−1(zi) ⊂ V is degenerate. Thus q̄−1(zi) =
Gi ∪ q−1(zi), 1 ≤ i ≤ s, where q−1(zi) denotes the closure of q−1(zi) in V̄.

One can, moreover, assume that the boundary divisor B contains no (−1)-curve
except perhaps the section S. Since B contains no singular point of V̄, it follows
that everyHj is a nonsingular rational curve. In the sequel, such a completion will
be called a good completion of V with respect to q.

For degenerate fibers of an A
1-fibration on a normal affine surface V, we have the

following description.

Lemma 1.7 [13, Lemmas 1.4.2 & 1.4.4, p. 196]. If q : V → Z = A
1 is an A

1-
fibration, then the following assertions hold.

(1) Every irreducible componentC of q−1(z) is a connected component of q−1(z)

and is a rational curve with only one place at infinity; hence C is isomorphic
to A

1 provided it is nonsingular.
(2) Every such component C contains at most one singular point of V.
(3) The surface V has at most cyclic quotient singularities.
(4) If C contains a singular point P of V and if π :W → V is a minimal embed-

ded resolution of P, then the closure C̄ ′ in W of the proper transform C ′ of
C meets a terminal component of π−1(P ).

2. Completions of ML-Surfaces

This section is devoted to the proof of the following theorem.

Theorem 2.1. A normal affine surface V has a trivial Makar-Limanov invariant
if and only if it is completable by a zigzag.

In order to reformulate our statement, we need the following lemma.
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Lemma 2.2 ([5], e.g.). If V is a normal affine surface, then the following asser-
tions are equivalent:

(1) there exists an A
1-fibration q : V → Z over a nonsingular affine curve Z;

(2) the surface V contains a principal Zariski open subset U that is a cylinder,
U  C × A

1;
(3) there exists a nontrivial algebraic C+-action on V.

As a consequence we obtain the following corollary.

Corollary 2.3. For a normal affine surface V, the following assertions are
equivalent:

(1) the Makar-Limanov invariant of V is trivial;
(2) there exist at least two nontrivial algebraic C+-actions on V whose general

orbits do not coincide;
(3) there exist at least two A

1-fibrations, q1: V → Z1 and q2 : V → Z2 over non-
singular affine curves Z1 and Z2, such that the general fibers of q1 and q2 do
not coincide.

Thus, Theorem 2.1 can be equivalently formulated as follows.

Theorem 2.4. A normal affine surface is completable by a zigzag if and only if
it admits two A

1-fibrations whose general fibers do not coincide.

Normal Affine Surfaces Completable by a Zigzag

This section is closely related to the work of Gizatullin [6] and Danilov [7], where
the case of nonsingular surfaces completable by a zigzag was treated. Let us men-
tion first some useful technical results about zigzags on normal projective surfaces.
The following construction will be frequently used in the sequel.

Definition 2.5. Let V̄ be a normal projective surface, and let C and D be two
irreducible nonsingular curves on V̄ that intersect transversally at a single nonsin-
gular point of V̄. By the iterative modification of V̄ with center (C,D), length r ∈
N

∗, and divisors E1, . . . ,Er we mean the birational morphism σ : W̄ → V̄, where
W̄ is a normal projective surface, obtained by the following blow-up procedure.

• Step 1 is the blow-up σ1 : W̄1 → V̄ of the intersection point of C and D with
exceptional curve E1 ⊂ W̄1.

• Step k for 2 ≤ k ≤ r is the blow-up σk : W̄k → W̄k−1 of the intersection point of
Ek−1 and the proper transform of D in W̄k−1, with exceptional curve Ek ⊂ W̄k.

We let σ := σr � · · · � σ1 : W̄ := W̄r → V̄. If C ′ ⊂ W̄ (D ′ ⊂ W̄ ) denotes the
proper transform of C ⊂ V̄ (of D ⊂ V̄, resp.) then (C ′2) = (C2) − 1, (D ′2) =
(D2) − r , (E 2

r ) = −1, and (E 2
i ) = −2 for 1 ≤ i ≤ r − 1. For the dual graph of

the total transform of C ∪D in W̄, we use the following notation:

•
D

•
Er

r−1 •
C
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In 2.6–2.9 we establish some useful properties of affine surfaces completable by
a zigzag.

Lemma 2.6. Let V̄ be a normal projective surface. Let B ⊂ V̄ be a zigzag such
that V̄ is nonsingular along B and V := V̄ \ B is affine. If B is irreducible then
(B2) > 0. If B is reducible then it contains an irreducible component C with
(C2) ≥ −1.

Proof. Since V = V̄ \ B is affine, by a theorem of Goodman [8] there exists an
ample divisor D on V̄ such that Supp(D) = B. Hence the first assertion follows.
Now let B be reducible: B = ⋃n

i=1Ci with Ci irreducible and n ≥ 2; and let
D = ∑n

i=1miCi with mi > 0 for all 1 ≤ i ≤ n. Since B is a zigzag, we have(
Ci · ∑

j �=i Cj
) ≤ 2. From

(D · B) =
n∑
i=1

mi(Ci · B) =
n∑
i=1

mi

(
(C2

i )+
(
Ci ·

∑
j �=i

Cj

))
> 0

we conclude that there exists an i0 with (C2
i0
) > −(

Ci0 ·∑j �=i0 Cj
) ≥ −2, whence

(C2
i0
) ≥ −1.

Lemma 2.7. Given a normal affine surface V completable by a zigzag, there
exists a minimal completion V̄ of V by an oriented zigzag B such that its left
boundary C1 has nonnegative self-intersection.

Proof. If B is irreducible then the assertion follows from Lemma 2.6. Thus we
may assume that B = ⋃n

i=1Ci with n ≥ 2. By Lemma 2.6, (C2
i0
) ≥ −1 for some

i0, 1 ≤ i0 ≤ n. In fact, (C2
i0
) ≥ 0 because B is minimal. If i0 = 1 or i0 = n then,

up to reversing the ordering, we are done. If not, we let i0 be the minimal index
such that (C2

i ) ≥ 0, and we denote C(B) := Ci0 and d(B) = d(C1,C(B)) =
i0 − 1. Thus (C2

i ) ≤ −2 for every component Ci to the left of C(B).
Since C(B) is not a boundary of B, the successor C(B)+ of C(B) exists;

hence we can perform the iterative modification σ : W̄ → V̄ of V̄ with center
(C(B),C(B)+), length c + 1, and divisors E1, . . . ,Ec,Ec+1 with c := (C(B)2).

This yields (C(B)′2) = (E 2
c+1) = −1. If τ : W̄ → W̄1 is the contraction of C(B)′

then (τ (C(B)′−)2) = ((C(B)−)2)+ 1 and (τ (Ec+1)
2) = 0. By iterating this pro-

cedure, we obtain that ((C(B)−)2) = −1 and (C(B)2) = 0 . Contracting C(B)−
and all (−1)-curves that arise successively to the left of C(B), we arrive at a new
completion V̄1 of V by a zigzag B1 with d(B1) < d(B). Since no (−1)-curve has
been created on the right ofC(B1) under this procedure, it follows that V̄1 is a min-
imal completion of V. Now the proof can be completed by induction.

Corollary 2.8. A normal affine surface completable by a zigzag is rational.

Proof. It is enough to show that there exists a completion W̄ of V and a nonsingu-
lar rational curve C ⊂ W̄reg with (C2) > 0. Let V̄, B, and C1 be as in Lemma 2.7.
If (C2

1 ) > 0 then we are done. If not, then B is reducible because it is the support
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of an ample divisor. By assumption, (C2
1 ) = 0 and (C2

2 ) ≤ 0. After blowing-up
with center in C1\C2, the proper transform of C1 becomes a (−1)-curve; we then
contract it, obtaining a completion of V with (C2

2 ) increased by one. By iterating
this procedure we derive a completion W̄ of V and a nonsingular rational curve
C ⊂ W̄reg with (C2) > 0.

Lemma 2.9. If V is a normal affine surface completable by a zigzag, then the
following assertions hold:

(1) if V is completable by a zigzag of type (0, 0), then V  A
2;

(2) if V is completable by a zigzag of type (0, 0, 0), then V  C
∗ × A

1;
(3) if V � C

2 and V � C
∗ × C, then there exists a completion V̄ of V by an

oriented zigzag of type (0, 0, k1, . . . , km), where ki ≤ −2 for 1 ≤ i ≤ m.

Proof. We let W̄ be a minimal completion ofV by an oriented zigzagB = ⋃n
i=1Ci

such that its left boundary C1 is a curve with nonnegative self-intersection.
(1) If B = C1 then c := (B2) > 0 because B is the support of an ample di-

visor. Let D ⊂ W̄ be a nonsingular curve germ meeting C1 transversally in a
single point, and consider the iterative modification σ : W̄1 → W̄ of W̄ with cen-
ter (D,C1), length c, and divisors E1, . . . ,Ec (see Definition 2.5). Then the total
transform B1 of B is a zigzag whose left boundary is the proper transform C ′

1 of
C1. Moreover, (C ′2

1 ) = 0, (E 2
c ) = −1, and (E 2

i ) = −2 for 1 ≤ i ≤ c−1. Thus B
is now replaced by a zigzag with the following dual graph:

•
C ′

1

0
•
Ec

−1
•
Ec−1

−2
· · · •

E1

−2

Let π : W̄2 → W̄1 be the blow-up of a point v ∈C ′
1 \Ec with exceptional compo-

nent E ⊂ W̄2. Then the proper transform of C ′
1 in W̄2 is a (−1)-curve that can be

contracted to obtain a completion V̄ of V by a zigzag of type (0, 0, −2, . . . , −2).
(2) If B �= C1 and c = (C2

1 ) > 0, then by applying the same procedure as
in (1) we obtain a new minimal completion W̄1 of V by a reducible zigzag such
that (C2

1 ) = 0. Performing (if necessary) elementary transformations, we obtain
a minimal completion by a zigzag with (C2

1 ) = (C2
2 ) = 0. We must distinguish

then the following three cases.

Case 1: B = C1 ∪ C2. Since W̄1 is rational, the linear system |C1| defines a
P

1-fibration q̄ : W̄1 → Z̄ = P
1 whose restriction to V is an A

1-fibration q : V →
Z = Z̄ \ {q̄(C1)}  A

1. Thus W̄1 is a good completion of V with respect to q.
Moreover, every fiber q̄−1(z), z ∈ Z, coincides with the closure of q−1(z) in V̄
and, being connected, is irreducible. Therefore, by virtue of Lemma 1.2(2), q̄ has
no degenerate fiber and hence W̄1 is nonsingular. From (C2

1 ) = (C2
2 ) = 0 we fi-

nally deduce W̄1  P
1 × P

1, so that V = W̄1\ (C1 ∪ C2) is isomorphic to A
2.

Case 2: If B = C1 ∪C2 ∪C3 and (C2
3 ) = 0, then the linear system |C1| defines

a P
1-fibration q̄ : W̄1 → Z̄ = P

1 whose restriction to V is an A
1-fibration q : V →

Z = Z̄ \{q̄(C1), q̄(C3)}  C
∗. Thus W̄1 is a good completion of V with respect to
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q, and we can again conclude that q̄ has no degenerate fiber. Hence W̄1 is a nonsin-
gular surface isomorphic to P

1 × P
1. Finally we have V = W̄1\ (C1 ∪C2 ∪C3) 

C
∗ × A

1.

Case 3: It remains to consider the case B = C1 ∪ C2 ∪ G, where either G =
C3 with (C2

3 ) �= 0 or G = ⋃n
i=3 Ci with n > 3. The linear system |C1| defines a

P
1-fibration q̄ : W̄1 → P

1 having C2 as a cross-section. SinceG is connected and
does not intersect C1, it must be contained in a fiber F of q̄. Moreover, F must be
a singular fiber of q̄, for otherwise we would have F = C3 and hence 0 = (F 2) =
(C2

3 ) �= 0, a contradiction. By Lemma 1.2, every Ci with 3 ≤ i ≤ n has negative
self-intersection. Since the initial completion W̄ has been assumed minimal and
since our transformations do not affect the curves Ci for 3 ≤ i ≤ n, we conclude
that (C2

i ) ≤ −2 for all 3 ≤ i ≤ n.

The next proposition proves one of the two implications of Theorem 2.1.

Proposition 2.10. If V is a normal affine surface nonisomorphic to C
∗×A

1 and
completable by a zigzag, then V has a trivial Makar-Limanov invariant.

Proof. If V admits a completion V̄ by a zigzag of type (0, 0), then Lemma 2.9(1)
shows that V  C

2, which has a trivial Makar-Limanov invariant. We may thus
assume from now on that Lemma 2.9(3) holds—that is, V has a completion V̄1 by
a zigzag B1 of type (0, 0, −k1, . . . , −kn) with ki ≥ 2, 1 ≤ i ≤ n. As in 1.6, we
write

B1 = F1,1 ∪ S1 ∪
( n⋃
i=1

E1,i

)
,

where (F 2
1,1) = (S2

1 ) = 0 and (E 2
1,i ) = −ki for 1 ≤ i ≤ n. The dual graph �(B1)

is as follows:

•
F1,1

0
•
S1

0
•
E1,1

−k1

· · · •
E1,n

−kn

The linear system |F1,1| defines a P
1-fibration q̄1 : V̄1 → P

1 with S1 as a cross-
section, so the restriction q1 : V → A

1 of q̄1 toV is an A
1-fibration. Thus it remains

to find a second A
1-fibration q2 : V → A

1 such that the general fibers of q1 and q2

do not coincide. In order to do this we construct a completion W̄ of V together
with a birational morphism σ1 : W̄ → V̄1, which will also dominate a good com-
pletion V̄2 of V with respect to this A

1-fibration q2. It will be convenient in the
sequel to denote the component F1,1 of B by E2,n.

If n = 1, then σ1 : W̄ → V̄1 is the iterative modification of V̄1 with center
(S1,E2,1), length k1, and divisors D1, . . . ,Dk1−1, S2. For the total transform B of
B1 we obtain the following symmetrical dual graph:

•
E2,1

−k1

•
S2

−1
k1−1

S1

−1
• •

E1,1

−k1

For n = 2, we obtain σ1 : W̄ → V̄1 by the following procedure.
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Step 1 is the iterative modification π1 : W̄1 → V̄1 with center (S1,E2,2), length
k1, and divisors D1,1,D1,k1−1,E2,1. The dual graph of the total transform of B1 is
as follows:

•
E2,2

−k1

•
E2,1

−1
k1−1

S1

−1
• •

E1,1

−k1

•
E1,2

−k2

Step 2 is the iterative modification π2 : W̄2 → W̄1 of W̄1 with center (E+
2,1 =

D1,k1−1,E2,1), length k2 − 1, and divisors D2,1, . . . ,D2,k2−2, S2 if k2 > 2 or just
S2 if k2 = 2. We then let W̄ := W̄2 and σ1 = π1 � π2 : W̄ → V̄1. The dual graph
of the total transform B = σ−1

1 (B1) of B1 has the following structure:

•
E2,2

−k1

•
E2,1

−k2

•
S2

−1
k2−2

D1,k1−1

−3
• k1−2

S1

−1
• •

E1,1

−k1

•
E1,2

−k2

We observe that the same dual graph can be obtained from a zigzag of type
(0, 0, −k2, −k1) by reversing the ordering and the blow-up procedure.

For n ≥ 3, W̄ is obtained from V̄1 by the following procedure.
Step 1 is the iterative modification π1 : W̄1 → V̄1 with center (S1,E2,n), length

k1, and divisors D1,1, . . . ,D1,k1−1,E2,1. Then the dual graph of the total transform
of B1 is

•
E2,n

−k1

•
E2,n−1

−1
k1−1

S1

−1
• •

E1,1

−k1

· · · •
E1,n

−kn

Stepm, where 2 ≤ m ≤ n−1, is the iterative modification πm : W̄m → W̄m−1 of
W̄m−1 with center (E+

2,n−m,E2,n−m), length km−1, and divisorsDm,1, . . . ,Dm,km−2,
E2,n−m−1 if km > 2 or just E2,n−m−1 if km = 2.

Step n is the last step, consisting of the iterative modification πn : W̄n → W̄n−1

of W̄n−1 with center (E+
2,1,E2,1), length kn − 1, and divisors Dn,1, . . . ,Dn,kn−2, S2

if kn > 2 or just S2 if kn = 2.
Then we let W̄ := W̄n and σ1 := π1 � · · · � πn : W̄ → V̄1. For the total transform

B := σ−1
1 (B1) of B1, we obtain the following dual graph:

•
E2,n

−k1

· · · •
E2,1

−kn
•
S2

−1
C

S1

−1
• •

E1,1

−k1

· · · •
E1,n

−kn

The dual graph of C looks like

kn−2

Dn−1−r1,kn−r1 −2

−r1−3
• kn−1−r1 −2 · · · · · ·

D1,k1−1

−rp−3
• k1−2

where the rj ≥ 0 (0 ≤ j ≤ p) depend on the number of (−2)-curves among the
E1,i (1 ≤ i ≤ n). Obviously, V = W̄ \B. We observe as before that the same dual
graph can be obtained from a zigzag of type (0, 0, −kn, . . . , −k1) by a symmetric
blow-up procedure.
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Henceforth, the sub-zigzag

D := C ∪ S1 ∪
n−1⋃
i=1

E1,i

of B can be contracted to a nonsingular point. We denote this contraction by
σ2 : W̄ → V̄2 and let

B2 = F2,1 ∪ S2 ∪
( n⋃
i=1

E2,n−i+1

)

be the image of B by σ2, where F2,1 := E1,n. Then V = V̄2 \ B2, where B2 is a
zigzag of type (0, 0, −kn, . . . , −k1).

The linear system |F2,1| then defines a P
1-fibration q̄2 : V̄2 → P

1 whose restric-
tion to V is a second A

1-fibration q2 : V → A
1. Moreover, since

σ2(σ
∗
1 (F1,1)) = αS2 +

n∑
i=1

βiE2,i

with α > 0 and βi ≥ 0 (1 ≤ i ≤ n), it follows that
(
F2,1 · σ2(σ

∗
1 (F1,1))

) ≥
1. Thus the general fibers of q1 and q2 do not coincide, whence V has a trivial
Makar-Limanov invariant.

Finally, we have the following proposition.

Proposition 2.11. Every normal affine toric surface except for C
∗ × C

∗ and
C

∗ × A
1 has a trivial Makar-Limanov invariant. Consequently, every cyclic quo-

tient singularity appears as a singular point of an ML-surface.

Proof. Recall that, given a 2-dimensional lattice N, an affine toric surface corre-
sponds to a strictly convex rational polyhedral cone in NR = N ⊗Z R. If V is a
normal affine toric surface nonisomorphic to C

∗ × C
∗ or C

∗ × C, then there exists
a basis of N such that V is given by the cone σ12 = 〈e1, e2〉 with e1 = (1, 0) and
e2 = (n, q), where n and q are coprime integers; see Figure 1.

n

q

e1

e2

Figure 1

In order to construct a completion of V, we need to include σ12 into a complete
fan / in NR. This can be done, for example, as shown in Figure 2. We let σij =
〈ei, ej〉 with e3 = (0,1), e4 = (−1, 0), and e5 = (0, −1). In /, the only possibly
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σ12

σ23

σ34

σ45 σ51

/

σ12σ34

σ45 σ51

/̃

Figure 2

singular cones (i.e., cones whose generators do not form a basis ofN) are σ12 and
σ23. We can subdivide the cone σ23 if necessary to obtain a new fan /̃ such that
σ12 is the only possibly singular cone in /̃. We denote by ei for 6 ≤ i ≤ r the new
generators introduced in this subdivision procedure. Then V̄ := V(/̃) is a com-
pletion of V := V(σ12). We let Di = V(τi) be the divisor on V̄ corresponding to
the cone τi = 〈ei〉 for 3 ≤ i ≤ r. Then B := V̄ \V = D3 ∪ D4 ∪ · · · ∪ Dr is a
zigzag, whence V has a trivial Makar-Limanov invariant by Proposition 2.10.

Completion of a Normal Affine Surface
with a Trivial Makar-Limanov Invariant

In this section we prove that, conversely, every ML-surface V is completable by
a zigzag.

2.12. By Corollary 2.3 there exist two A
1-fibrations, q1 : V → Z1  A

1 and
q2 : V → Z2  A

1, whose general fibers do not coincide. We denote by V̄1 a good
completion of V with respect to q1, with a boundary divisor B = H ∪ S ∪ G ⊂
(V̄1)reg as in 1.6. Thus q1 extends to a P

1-fibration q̄1 : V̄1 → Z̄1 = P
1, so that

H = q̄−1
1 (∞) =: F∞ is a nondegenerate fiber of q̄1 over the point ∞ := Z̄1\ Z1,

and S  P
1 is a section.

We let q̄2 : V̄1 ��� Z̄2  P
1 be the rational map that extends q2 : V → Z2. We let

T̄2 be the closure in V̄1 of a general fiber T2 of q2. The point T̄2 \ T2 belongs to
F∞, for otherwise the restriction of q1 to a general fiber of q2 would be constant
and then the general fibers of these two A

1-fibration would coincide, contrary to
our assumption. Because G is disjoint from F∞, the map q̄2 has no base point on
G and so q̄2|G must be locally constant. Moreover, q̄2|S \{P0} = ∞, for otherwise
q2 would be bounded and thus constant along a general fiber of q1. Since S ∪G
is connected, it follows that q̄2|(S∪G)\{P0} = ∞.

Lemma 2.13. If q̄2 : V̄1 ��� Z̄2 is a morphism, then G = ∅, B = F∞ ∪ S is a
zigzag, and V  A

2.
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Proof. If q̄2 : V̄1 → Z̄2 is a morphism, then it is a P
1-fibration and its general fiber

meets F∞ at one point. It follows that F∞ is a section of q̄2 and that S ∪G is con-
tained in the fiber q̄−1

2 (∞) ⊂ (V̄1)reg. Moreover, q̄−1
2 (∞) = S ∪G, as q̄−1

2 (∞) ⊂
V̄1 \V. Since V̄1 is a minimal completion of V, it follows that S ∪ G contains no
(−1)-curve and thus is a nondegenerate fiber of q̄2 (see (5) of Lemma 1.2). Hence
(S2) = 0, G = ∅, and q̄−1

2 (∞) = S, so the zigzag B = F∞ ∪ S is of type (0, 0)
and V  A

2 by Lemma 2.9.

2.14. If q̄2 is not a morphism then it defines a linear pencil with a unique base
point P ∈F∞. Suppose that P = P0 := S ∩ F∞. If we blow up the point P0 into
an exceptional component E, the proper transform F ′∞ of F∞ is a (−1)-curve. By
contracting F ′∞, we obtain a new completion of V in which (S2) has decreased
by one. By applying these transformations with center P0 several times, we ar-
rive at the situation that the linear pencil q̄2 : V̄1 ��� Z̄2  P

1 has no base point
on the proper transform of S. So we may assume from the very beginning that V̄1

is a good completion of V with respect to q1 such that q̄2 has a unique base point
P ∈ F∞ \ S. Note that this new completion V̄1 of V is not necessarily minimal,
but in any event the only possible (−1)-curve in the boundary B is a section S of
q̄1. Observe also that, since V̄1 is obtained from a given good completion V̄ of V
with respect to q̄1 by means of elementary transformations with centers in F∞, it
follows that V̄1\V is a zigzag if and only if V̄ \V is.

The following proposition proves the second implication of Theorem 2.1.

Proposition 2.15. Let V be a ML-surface with an A
1-fibration q : V → Z 

A
1. Then, for any good completion V̄ of V with respect to q as in 1.6, the divisor
B = V̄ \V is a zigzag. Moreover, the A

1-fibration q has at most one degenerate
fiber.

Proof. If q̄2 : V̄ → Z̄2 is a morphism then, by Lemma 2.13, B is a zigzag and we
are done. We now suppose that q̄2 is not a morphism. By 2.14 we can also sup-
pose that the unique base point P of the linear pencil q̄2 belongs to F∞ \ S. We
let π : W̄ → V̄1 be a minimal resolution of the base points of q̄2 and denote by
q̃2 : W̄ → Z̄2 the P

1-fibration that lifts q̄2. The last (−1)-curve arising from this
elimination procedure gives rise to a section S2 of q̃2, and it is a unique (−1)-curve
in π−1(P ). Since q̄2|S∪G = ∞, the proper transform of S ∪G in W̄ is contained
in the fiber q̃−1

2 (∞). If T̃2 is a general fiber of q̃2, then the point T̃2 \ T2 belongs
to π−1(P ). It follows that the proper transform of F∞ in W̄ is disjoint from T̃2

and thus is contained in a fiber of q̃2. Since P ∈F∞ \ S, we know that the proper
transform of B = F∞ ∪ S ∪ G is connected and so is contained in q̃−1

2 (∞) ⊂
W̄reg. As q̃−1

2 (∞) ⊂ W̄ \V is then degenerate, by Lemma 1.2(8) it must contain
a (−1)-curve. Since no such curve can be contained in G ∪ (π−1(P ) ∩ q̃−1

2 (∞)),
it follows that the proper transform of S or F∞ is a (−1)-curve. Since these two
curves meet and are contained in a maximal simple zigzag of q̃−1

2 (∞) that inter-
sects the section S2, we deduce from Lemma 1.5 that q̃−1

2 (∞) ∪ S2 is a zigzag.
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ThereforeG is connected and is a zigzag, whence q has a unique degenerate fiber.
It follows that B = F∞ ∪ S ∪G is a zigzag.

More generally, we have the following theorem.

Theorem 2.16. If V is an ML-surface, then the boundary divisor C := V̄ \V of
any minimal completion V̄ of V is a zigzag.

The proof is worked out in 2.17–2.20. Recall (see Definition 1.1) that V̄ is a mini-
mal completion of V if and only if C is an SNC-divisor containing no (−1)-curve
that meets at most two other irreducible components transversally in a single point.
Since V is affine, C is connected. The A

1-fibration q1 : V → A
1 extends to a ra-

tional map q̄1 : V̄ ��� P
1 with at most one base point P on C.

Lemma 2.17. If q̄1: V̄ → P
1 is a morphism, then C is a zigzag.

Proof. Since the closure T̄1 of a general fiber T1 of q1 intersects C in a single
point, it follows that there exists a unique irreducible component S of C that is a
section of q̄1. If C = S we are done.

If S is a terminal component of C, then C \ S is connected and thus contained
in a unique fiber F of q̄1. Moreover, since q̄−1

1 (∞) ⊂ C, we have F = F∞ =
q̄−1

1 (∞) and F∞ = C \ S ⊂ V̄reg. By the minimality of C, it then follows from
Remark 1.3 that C \ S cannot contain a (−1)-curve. Hence the fiber F∞ of q̄1 is
nondegenerate and so C = S ∪ F∞ is a zigzag with two components.

If S is not a terminal component of C, we denote by G1, . . . ,Gn the connected
components ofC \ S. Then everyGi is contained in a fiberFi of q̄1, whence (using
the same argument as before)Gi cannot contain a (−1)-curve. Since one of the Fi
(say, Fn) is the fiber F∞ = q̄−1

1 (∞) ⊂ V̄reg, it follows thatGn = F∞  P
1. Hence

V̄ is a minimal good completion of V with respect to q1 (see 1.6). Thus, accord-
ing to Proposition 2.15, n = 2 and C = F∞ ∪ S ∪G1 is a zigzag.

2.18. We may therefore suppose in the sequel that that neither q1 nor q2 extends
to a morphism on V̄. Let P ∈ C be the unique base point of the rational map
q̄1 : V̄ ��� Z̄1 and let π : W̄ → V̄ be a minimal resolution of P. That is, q̄1 lifts to
a P

1-fibration q̃1 : W̄ → Z̄1 and π−1(P ) contains a unique (−1)-curve S that is a
section of q̃1. Since the closure T̃1 in W̄ of a general fiber of q1 meets π−1(C) in
a single point, it follows that every connected component of the proper transform
C ′ of C in W̄ is contained in a fiber of q̃1.

Lemma 2.19. If P belongs to just one irreducible component D of C, then C is
a zigzag.

Proof. In this case C ′ is connected and so is contained in the fiber F∞ of q̃1. Thus
F∞ ⊂ W̄reg does not contain (−1)-curves except perhaps for the proper transform
D ′ ofD. Indeed, by the minimality of C and of P ’s resolution, such a (−1)-curve
in F∞ (different from D ′) must be a ramification point of C ′, which is excluded
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by 1.3. If the fiber F∞ does not contain a (−1)-curve then it is nondegenerate, so
F∞ = D ′ with (D ′2) = 0 and C = D is a zigzag.

We now suppose that C �= D. Then F∞ is degenerate, and D ′ is a unique
(−1)-curve in F∞. Therefore D is a terminal component of C, for otherwise D ′
is a ramification vertex of �(F∞ ∪ S), which contradicts Remark 1.3. If C is not
a zigzag then F∞ ∪ S is not a zigzag either, since it contains C ′. To eliminate this
possibility, we note that if π−1(P ) is a zigzag then D ′ is contained in a maximal
simple zigzag of F∞ that meets S; otherwise, D ′ is contained in a maximal dou-
ble zigzag of F∞. But both these possibilities are excluded by Lemma 1.5. Hence
C is a zigzag.

The following lemma completes the proof of Theorem 2.16.

Lemma 2.20. In the situation of 2.18, if P belongs to two irreducible compo-
nents (say, D1 and D2) of C, then C is a zigzag.

Proof. In this case the proper transform C ′ of C has two connected components
C ′

1 and C ′
2, where D ′

i is a terminal component of C ′
i , i = 1, 2. Therefore, either

C ′ is entirely contained in the fiber F∞ of q̃1 or there exists another fiber F1

of q̃1 such that say C ′
1 ⊂ F1 and C ′

2 ⊂ F∞. The latter happens if and only if
D ′

1 ∪ π−1(P )∪D ′
2 is a zigzag. Indeed, otherwise—at some step k ≥ 2 of the res-

olution procedure—we must have blown up a simple point Pk ∈ π−1
k−1(D1 ∪ D2)

into an exceptional component Ek. Because Ek is terminal in the dual graph of
D ′

1 ∪ π−1
k (P ) ∪ D ′

2, we then conclude that π−1
k (C) \ Ek is connected. Since all

further blow-ups have their centers over Ek, it follows that the proper transform
of π−1

k−1(C) in W̄ contains C ′ and is connected. This implies that C ′ is entirely
contained in a fiber of q̃1.

1. We first suppose that C ′ is contained in the fiber F∞ ⊂ W̄reg of q̃1. For i =
1, 2 we consider the shortest paths joining D ′

i to S in the tree �(F∞ ∪ S), and
we denote by D0 the vertex where they meet. Since C ′ is not connected, it fol-
lows that D0 is contained in F∞ \ C ′ and is a ramification vertex of �(F∞ ∪ S).
Moreover, F∞ is degenerate, and the only possible (−1)-curves in F∞ areD ′

1 and
D ′

2. Hence, by Lemma 1.5(1) at least one of theD ′
i (say,D ′

1) is a (−1)-curve con-
tained in a maximal terminal zigzag of F∞. Clearly, this zigzag also contains C ′

1.

This implies that D1 is not a ramification vertex of �(C), for otherwise D ′
1 is a

ramification vertex of �(F∞ ∪ S), which contradicts Remark 1.3.
If either C ′

2 is not a zigzag or D2 is a ramification vertex of �(C), then D ′
1 is a

unique (−1)-curve contained in a maximal terminal zigzag of F∞ and there exists
a ramification vertex H ′ of �(F∞ ∪ S) that is not contained in the shortest path
joiningD ′

1 to S in �(F∞ ∪ S). Indeed, in the first case C ′
2 is not a zigzag, whence

it contains such a ramification vertexH ′; in the second case, we can chooseH ′ =
D ′

2. This contradicts Lemma 1.5(2) and so C ′
2 is a zigzag and D2 is not a ramifi-

cation vertex of �(C). Thus, C = C1 ∪ C2 is a zigzag, too.
2. We now suppose that C ′ is not entirely contained in a fiber of q̃1. Thus

D ′
1 ∪ π−1(P ) ∪D ′

2 is a zigzag. Moreover, there exist two connected components
(say, G1 and G2) of π−1(C) \ S as well as two different fibers F1 and F2 = F∞
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of q̃1 such that C ′
i ⊂ Gi ⊂ Fi for i = 1, 2. Since F∞ ⊂ W̄reg, we can deduce

(similarly as in Lemma 2.19) that F∞ ∪ S is a zigzag. This implies that C2 is
a zigzag and that D2 is not a ramification vertex of �(C). We let τ∞ : W̄ →
W̄1 be the contraction of F∞ to a nondegenerate fiber of a P

1-fibration. That is,
τ∞(F∞)  P

1 is a nondegenerate fiber F̂∞ = q̂−1
1 (∞) of the resulting P

1-fibration
q̂1 : W̄1 → Z̄1. Since the components of F1 are not affected by this contraction,
τ∞(D ′

1) is the only possible (−1)-curve in τ∞(G1) ⊂ F̂1 = τ∞(F1). Moreover,
since D ′

1 ∪ π−1(P ) ∪D ′
2 is a zigzag, τ∞(D ′

1) is contained in the maximal simple
zigzag of τ∞(G1) that meets the section Ŝ of q̂1.

If τ∞(G1) contains no (−1)-curve, then W̄1 is a good completion of V with
respect to q1 and it follows (from Proposition 2.15) that τ∞(G1 ∪ Ŝ ) is a zigzag.
Thus C1 also is a zigzag and D1 is not a ramification vertex of �(C).

Otherwise τ∞(D ′
1) is a unique (−1)-curve of τ∞(G1). Starting with τ∞(D ′

1),
we can successively contract the (−1)-curves that arise in τ∞(G1) to obtain a min-
imal good completion W̄2 of V with respect to q1. Hence the image of τ∞(G1 ∪ Ŝ )
in W̄2 is a zigzag, by Proposition 2.15. Because τ∞(D ′

1) is contained in a maximal
simple zigzag of τ∞(G1) that meets Ŝ, none of the possible ramification vertices
of τ∞(G1∪ Ŝ ) has been eliminated by the foregoing contractions. This means that
τ∞(G1 ∪ Ŝ ) is also a zigzag. Thus, C1 is a zigzag andD1 is not a ramification ver-
tex of �(C). Hence C = C1 ∪ C2 is a zigzag, too.

We complete our discussion with a characterization of the affine plane. We need
the following lemma.

Lemma 2.21 (see also [1]). Let V be an ML-surface, and let qi : V → Zi  A
1

(i = 1, 2) be two A
1-fibrations whose general fibers do not coincide. Then φ12 :=

q1 × q2 : V → A
2 is a surjective, quasifinite morphism.

Proof. We let V̄ be a good completion of V with respect to q1 by a zigzag B =
G ∪ S ∪ F∞ as in 2.12, and we denote by q̄1 : V̄ → Z̄1  P

1 the P
1-fibration

that extends q1. If the A
1-fibration q2 : V → Z2  A

1 extends to a P
1-fibration

q̄2 : V̄ → Z̄2  P
1, then V  A

2 by Lemma 2.13 and q1 and q2 are coordinates
on V, which proves the assertion. So we may assume from now on that q̄2 : V̄ ���
Z̄2  P

1 is a linear pencil with a unique base point P ∈F∞ \ S (see 2.14). There-
fore, q̄2|S∪G = ∞ and T̄2 \ T2 = P for the closure T̄2 of a general fiber T2 of q2.

To prove that φ12 is quasifinite, it is sufficient to show that none of the irre-
ducible components of a fiber of q2 is contained in a fiber of q1. Suppose on the
contrary that there exists an irreducible component C of a fiber F1 of q1 that is
contained in a fiber F2 of q2. If F1 were a nondegenerate fiber of q1, then its clo-
sure F̄1 = C̄ in V̄ would meet S in a single point P1. Since q̄2|C is constant and
finite and since q̄2(C̄ ∩ S) = ∞, it follows that P1 would be a base point of q̄2,
which is impossible. Thus, by Proposition 2.15, F1 is a unique degenerate fiber
of q1 and hence C̄ meets G (see 2.12). Since q2|C is constant and finite and since
q̄2(G ∩ C̄ ) = ∞, it follows that Q = G ∩ C̄ is a base point of q̄2, which again is
impossible. Hence there is no such curve C on V and so φ12 is quasifinite.
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The normalization of every irreducible component C of a fiber of q2 is isomor-
phic to A

1 by Lemma 1.7. Hence the restriction of q1 to C is nonconstant and
surjective and so φ : V → A

2 is a surjection, as required.

Corollary 2.22. A normal affine surface V is isomorphic to A
2 if and only if it

admits two A
1-fibrations whose general fibers meet in a single point.

Proof. We let qi : V → Zi  A
1 (i = 1, 2) be two A

1-fibrations as before. The
morphism φ := q1 × q2 : V → A

2 is surjective and quasifinite by Lemma 2.21.
Since the general fibers of q1 and q2 meet in a single point, φ must be birational.
By the Zariski main theorem (see e.g. [9]) there exists a factorization

φ : V
φ ′−→ X

u−→ A
2,

where φ ′ is an open immersion and u : X → A
2 is finite and birational, whence

an isomorphism. Then φ ′ = φ is also an isomorphism since φ is surjective.

To conclude, we provide a series of examples of nonsingular affine surfaces in A
3

with easily computable completions, distinguishing ML-surfaces among these.

Example 2.23. Consider the hypersurface V := VP,n of A
3 = Spec C[x, y, z]

with equation xnz = P(y), where P = ∏r
i=1(y − yi) is a polynomial with r sim-

ple roots. Given n > 1, let us show that if V has a nontrivial Makar-Limanov
invariant then r ≥ 2 (see [11] and [12] for a purely algebraic proof of this result).
By Theorem 2.16 it is sufficient to find a minimal completion V̄ of V such that
B = V̄ \V is not a zigzag. We proceed as follows.

Consider the birational morphism

V
φ0−−→ V0 := A

2 ⊂ V̄0 := P
1 × P

1,

(x, y, z) !−→ (x, y),

and let S = P
1 × {∞} ⊂ V̄0, F∞ = {∞} × P

1 ⊂ V̄0, and F0 = {0} × P
1 ⊂ V̄0.

We denote by Ci ⊂ V the curve x = 0, y = yi for 1 ≤ i ≤ r; these are the irre-
ducible components of the degenerate fiber of the A

1-fibration pr1�φ0 on V. Then
φ0(Ci) = (0, yi) ⊂ F0 is a point. We let Vi = V

∖( ⋃
j �=i Ci

)  A
2 with coordi-

nates (x, ui), where ui := x−n(y − yi) = ∏
j �=i(y − yj )−1z. The restriction of φ0

to Vi is given by

Vi  A
2
φ0|Vi−−→ A

2,

(x, ui) !−→ (x, xnui + yi).

Now letπ1 : V̄1 → V̄0 be the blow-up of V̄0 in the points φ0(Ci)with exceptional
divisors E1,i for 1 ≤ i ≤ r. Clearly φ0 : V → V0 lifts to a morphism φ1 : V →
V1 ⊂ V̄1\ (F ′∞ ∪ S ′ ∪ F ′

0 ). Moreover,

φ1(Vi) ⊂ V1,i := V̄1

∖(
F ′

∞ ∪ S ′ ∪ F ′
0 ∪

( ⋃
j �=i
E1,j

))
 A

2,
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and φ1 is given by

Vi  A
2
φ1|Vi−→ A

2,

(x, ui) !−→ (x, xn−1ui + y1,i ),

for some y1,i ∈ C. Iterating the construction, after n blow-ups as before we ar-
rive at an open embedding φn : V ↪→ V̄ of V in a nonsingular projective surface
V̄. Let B = V̄ \V. If C̄i denotes the closure of φn(Ci) in V̄, then the dual graph of
B ∪ C̄1 ∪ · · · ∪ C̄r has the following structure:

•
−2

•C̄1

−1

•
F∞

0
•
S

0

�������
F0

−r
•

−2
•C̄k
−1

•

�������
−2

•C̄r
−1



r times

where stands for a linear chain of (−2)-curves of length n−3 (provided n≥ 3).
Thus V̄ is a minimal completion of V by an SNC-divisor B, which is a zigzag

iff r = 1. Hence by Propositions 2.10 and 2.15, V has a trivial Makar-Limanov in-
variant iff n = 1 or n > 1 and r = 1. The interested reader is referred to [1; 4] for
a more systematic study of these surfaces and to [2] for more explicit examples of
surfaces with C+-actions.
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