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Polynomial Solutions of the Complex
Homogeneous Monge–Ampère Equation

Morris Kalka & Giorgio Patrizio

1. Introduction

Let P be a homogeneous real polynomial on Cn of bidegree (k, k), that is, a poly-
nomial such that, for every z ∈ Cn and λ∈ C,

P(λz) = |λ|2kP(z).

It follows that the vector field

Z = 1

k

n∑
i=1

zi

∂

∂zi

annihilates the complex Hessian of the function log P(z). Thus it follows that, on
{z ∈ Cn | P(z) �= 0}, the function u = log P satisfies the complex homogeneous
Monge–Ampère equation

(ddcu)n = 0. (1)

A natural question is: To what extent does property (1) characterize the homo-
geneous real polynomial of bidegree (k, k), for instance, among all real homoge-
neous polynomials on Cn? Of course, one needs to add some reasonable condition
to make the question a feasible one. Burns [3] asked if a homogeneous polyno-
mial P on Cn that is positive (i.e., with P(z) > 0 and P(z) = 0 iff z = 0 and such
that ddcP ≥ 0 and (ddcP )n−1 �≡ 0, with u = log P satisfying (1)) needs to be a
homogeneous polynomial of bidegree (k, k). In this paper we prove the following
result.

Theorem 1.1. Let P be a convex positive homogeneous polynomial on Cn such
that u = log P is plurisubharmonic and satisfies (1). Then P is a homogeneous
polynomial of bidegree (k, k).

Of course, the result is much weaker than the statement in Burns’s question. More-
over, we employ arguments that rely heavily on properties that hold only in the
convex case and cannot be extended to the plurisubharmonic case. On the other
hand, our proof points out the main difficulties in establishing a more general state-
ment, and the rather heavy machinery needed gives an idea of the progress that
should be made. As Burns indicates in [3], the point of his question is to under-
stand the singularities of Monge–Ampère foliations. The key ingredient in our
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resolution of this question in the convex case is the possibility of reconstructing a
Monge–Ampère foliation even for degenerate solutions of (1) in the convex case.
Under the hypothesis of convexity, this is achieved by exploiting Lempert’s re-
sults on the Kobayashi metric of convex domains. In the general case, one needs
new insights on the singularities of foliations associated to solutions of (1).
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the University in Florence. He would like to express his thanks for the hospital-
ity shown to him there. G. Patrizio thanks the Max-Planck-Institute für Mathe-
matik and Tulane University, where he was guest while part of this research was
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2. Preliminaries

We recall a few facts about real homogeneous polynomials on Cn for future ref-
erence. Let P : Cn → R be a homogeneous polynomial of degree d, that is, such
that

P(tz) = t dP(z) ∀t ∈ R , ∀z ∈ Cn. (2)

Then P admits a unique decomposition

P(z) =
∑

k+h=d

P k,h(z) with P k,h(z) = P k,h(z), (3)

where the P k,h are homogeneous (complex) polynomials of bidegree (k, h):

P k,h(λz) = λkλ̄hP k,h(z) ∀λ∈ C, ∀z ∈ Cn. (4)

If z = (z1, . . . , zn) ∈ Cn and Q is a (complex) homogeneous polynomial of bi-
degree (k, h) then, differentiating the relation Q(λz) = λkλ̄hQ(z) with respect to
λ and taking λ = 1, one derives the following useful formulas:

Qµ(z)z
µ = kQ(z), Qν̄(z)z

ν̄ = hQ(z), (5)

where subscripts denote differentiation as usual. Obviously, if Q is a (complex)
homogeneous polynomial of bidegree (k, h) then Qµ is a homogeneous polyno-
mial of bidegree (k − 1, h) and Qν̄ is a homogeneous polynomial of bidegree
(k, h − 1).

For a real homogeneous polynomial P, we say that it is nonnegative (P ≥ 0) if
P(z) ≥ 0 for all z ∈ Cn and that it is positive (P > 0) if P(z) = 0 if and only if
z = 0. With this terminology we have the following lemma.

Lemma 2.1.

(i) Let P be a real homogeneous polynomial of bidegree (k, k). If ddcP ≥ 0 on
Cn \ {0} then P ≥ 0. If furthermore ddcPz > 0 for some z ∈ Cn \ {0}, then
P(z) > 0.

(ii) Let P be a real homogeneous polynomial of degree d. If P ≥ 0 and P �≡ 0
then d = 2k and P k,k ≥ 0. If furthermore P(z) > 0 for some z ∈ Cn \ {0},
then P k,k > 0.
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(iii) Let P be a real homogeneous polynomial of degree d. If ddcP ≥ 0 then m =
2k and ddcP k,k ≥ 0. If furthermore ddcPz > 0 for some z ∈ Cn \ {0}, then
ddcP k,k

z > 0.

Proof. (i) This is immediate, since if z = (z1, . . . , zn)∈ Cn then using (5) yields

Pµν̄(z)z
µz̄ν = kPµ(z)z

µ = k2P(z).

(ii) If z ∈ Cn \ {0} and θ ∈ R , then

0 ≤ P(eiθz) =
∑

l+h=d

P l,h(e iθz) =
∑

l+h=d

e i(l−h)θP l,h(z),

so that

0 ≤
∫ 2π

0
P(eiθz) dθ =

∑
l+h=d

P l,h(z)

∫ 2π

0
ei(l−h)θ dθ = I.

If d is odd then I = 0 and, since P ≥ 0, it follows that P(eiθz) = 0 for all θ. Since
z ∈ Cn \ {0} was arbitrary, this implies that P ≡ 0, contradicting the hypothesis.
Thus m = 2k and

0 ≤
∫ 2π

0
P(eiθz) dθ =

∑
l+h=d

P l,h(z)

∫ 2π

0
ei(l−h)θ dθ = 2πP k,k(z).

If one assumes the strict inequality P(z) > 0 for z ∈ Cn \ {0}, then P is positive
in a neighborhood of z and the same proof shows that P k,k(z) > 0.

(iii) If z,v ∈ Cn \ {0}, then

LP (z,v) =
∑

Pµν̄(z)v
µv̄ν ≥ 0.

For a fixed v, L(z) = LP (z,v) is a homogeneous polynomial in z of degree d − 2
that decomposes as

L =
∑

l+h=d

P l,h
µν̄ vµv̄ν.

By (ii) we then have d = 2k and P
k,k
µν̄ vµv̄ν ≥ 0. Since v ∈ Cn \{0} was arbitrary,

it follows that ddcP k,k ≥ 0. Starting again with strict inequality, one obtains strict
inequality.

Of course, the next lemma applies (as a special case) to positive homogeneous
polynomials.

Lemma 2.2. Let F be a convex real analytic function on RN \ {0}. Let

(i) F(X) > 0 and F(X) = 0 iff X = 0, and let
(ii) there be a positive integer d such that F(tX) = |t |dF(X) for all X ∈ RN \{0}

and t ∈ R.

Then, for every r > 0, there are no line segments on the boundary of !r = {X |
F(X) < r}, which is therefore geometrically strictly convex.
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Proof. Because of (i) and (ii), if

m = min‖X‖=1
F(X) and M = max‖X‖=1

F(X)

then for all X we have

m‖X‖d ≤ F(X) ≤ M‖X‖d,

and hence ∂!r = {X | F(X) = r} is a compact set for every r > 0. On the other
hand, if a line segment were contained in ∂!r , then for some A ∈ RN \ {0} and
B ∈ RN and for all t ∈ (−ε, ε) we would have F(At + B) = r. But then, by ana-
lyticity, F(At + B) = r for all t ∈ R so that the compact set ∂! would contain a
line.

3. Proof of Theorem 1.1

Let P be a convex positive homogeneous polynomial on Cn of degree d such that
u = log P satisfies (1). Then by Lemma 2.1 we have that d = 2k and that, for all
r > 0, the sublevel set !r = {X | P(X) < r} is geometrically strictly convex
for any r > 0. Lempert’s results [7] on the Kobayashi metric of convex domains
imply that, for every direction v with ‖v‖ = 1, there exists a unique holomor-
phic curve φr(·,v) : ( → !r of the unit disk ( into !r , with φr(0,v) = 0 and
φ ′

r (0,v) = sv for s > 0 real, that realizes the Kobayashi length of v at 0. Fur-
thermore, for v in {v | ‖v‖ = 1}, the images of maps φr(·,v) define a foliation
of !r \ {0} parameterized by v (see [7] and, concerning uniqueness for just geo-
metrically strictly convex domains, [5]). In fact, all these holomorphic discs meet
only at 0 and, for every z ∈!r \{0}, there exists a unique v with ‖v‖ = 1 such that
z = φr(t,v) with t > 0 real; the Kobayashi distance γr(0, z) from 0 to z is given
exactly by

γr(0, z) = tanh−1(t).

The Kobayashi metric of any !r is at least continuous. Hence, for any r > 0, the
maps φr(·,v) depend continuously on v and, again by the uniqueness of Kobayashi
extremal maps, for any r > 0 we have

φr(ζ, eiθv) = φr(e
iθζ,v).

Lempert proves much more. For instance, the holomorphic disks φr(·,v) are in
fact complex geodesics for both the Kobayashi and Carathéodory distance and
metric, which agree on each !r. Furthermore, if vr(z) = log tanh(γr(0, z)) then
the following holds.

Proposition 3.1. The function vr is the pluricomplex Green function of !r with
pole at zero; that is, vr is the unique function such that:

(i) vr ∈C 0(!r \ {0}) ∩ PSH(!r);
(ii) (ddcvr)

n ≡ 0 on !r \ {0};
(iii) vr ≡ 0 on ∂!r;
(iv) vr(z) − log|z| = O(1) as z → 0.
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The proposition is just a compilation of known results. The fact that ur satisfies
(i)–(iv) is due to Lempert [7], while the uniqueness statement can be derived eas-
ily from the Beford and Taylor comparison principle (see [2] or [6]).

If the domain !r were strongly convex (i.e., if at each point of the boundary
the real Hessian of a defining function were positive definite on the tangent space
to the boundary), then Lempert’s theory would further show that, in fact, ur ∈
Cω(!r \ {0}). Here we have just that !r is geometrically strictly convex and—
though the notions are close to each other—the regularity argument of Lempert
does not apply. On the other hand we have the following.

Corollary 3.2. If u = log P and if 2k is the degree of P, then u = 2kvr + log r.

Proof. This is immediate from the hypothesis on P because u is plurisubharmonic,
satisfies (1), and has (1/2k)(u − log r) as the prescribed boundary behavior since
P is a positive homogeneous polynomial of degree 2k.

As an immediate consequence of Corollary 3.2, it follows that if 0 < r < R then
!r is a ball of suitable radius centered at the origin for the Kobayashi distance of
!R. More precisely, if γr and γR denote the Kobayashi distances of !r and !R

(respectively), then on !r we have

γr = tanh−1

[(
R

r

)1/2k

tanh γR

]
. (6)

Furthermore, (6) and the uniqueness of Kobayashi extremal disks imply that, for
z in the unit disk (,

φr(ζ,v) = φR

((
R

r

)1/2k

ζ,v

)
, (7)

where φr(·,v) and φR(·,v) are the (unique) Kobayashi extremal disks at the origin
in the direction v, ‖v‖ = 1, of !r and !R , respectively. Since P is an exhaustion
of Cn, it follows that if w �= 0 then w ∈!r for any r > P(w). Then there exists a
unique complex curve Lw, locally parameterized by φr(·,v), that passes through
0 and w. As (7) holds, Lw is well-defined; in fact, if w �= 0 and Lw is in the im-
age of φr(·,v) for some r > 0 and v, ‖v‖ = 1, then Lw is the surface such that,
for every R > 0,

Lw ∩ !R = φR(·,v)(().

Furthermore, since u = log P is an unbounded harmonic function on Lw \{0} with
logarithmic singularity at the origin, it follows that Lw is a parabolic Riemann sur-
face and hence is biholomorphic to C. Thus we obtain a foliation of Cn \ {0}
whose leaves all extend through the origin and meet only there. We call this foli-
ation in extended Kobayashi disks. Finally, as mentioned before, the Kobayashi
metric of any !r is at least continuous, so for any r > 0 the maps φr(·,v) depend
continuously on v and φr(z, eiθv) = φr(e

iθz,v). Hence the foliation in extended
Kobayashi disks of Cn \{0} obtained in this way is continuous, and the leaf space
of the foliation in extended Kobayashi disks has CP n−1 as its leaf space.

We can summarize our discussion so far as follows.
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Lemma 3.3. There exists a continuous foliation of Cn \ {0} in parabolic Rie-
mann surfaces with leaf space CP n−1 and with the property that any leaf L of the
foliation extends holomorphically through the origin and, for any r > 0, the in-
tersection of a leaf with !r is the image of a Kobayashi extremal disk through the
origin of !r. Furthermore, the restriction of u = log P to any leaf of this folia-
tion of Cn \ {0} is harmonic.

Because P is a convex positive homogeneous polynomial on Cn (whose sublevel
sets are even strictly geometrically convex), there exists an open dense subset U

of Cn such that P has positive definite real Hessian on U and hence is strictly
plurisuharmonic. Thus the complex vector field

Z = P µν̄Pν̄

∂

∂zµ
(8)

is defined on U, where we use the usual summation convention, subscripts indicate
derivatives, and P µν̄ is the inverse of the Levi matrix Pµν̄ of P. It is well known
(see e.g. [3]) that, on the set U where P is strictly plurisubharmonic, the vector
field Z is tangent to the Monge–Ampère foliation associated to u = log P, which
by definition is the foliation in Riemann surfaces generated by the distribution de-
fined for w ∈U :

Annw ddcu = {V ∈ Tw(U) = Cn | ddcuw(V, X̄) = 0 ∀X ∈ Cn}. (9)

The leaf L of the Monge–Ampère foliation on U passing through a given point is
exactly the maximal Riemann surface through that point such that the restriction
of u to L is harmonic.

It is also useful to recall (see [3] or [8]) that on U the Monge–Ampère equa-
tion (1) is equivalent to

Z(P ) = P µν̄Pν̄Pµ = P. (10)

It is also known that, in general, the restriction of the vector field Z to any leaf
of the Monge–Ampère foliation is holomorphic. We can actually say more as
follows.

Lemma 3.4. The vector field Z extends to a holomorphic vector field on Cn.

Furthermore, for w = (w1, . . . ,wn)∈ Cn we have

Zw = 1

k
wµ ∂

∂zµ
. (11)

Proof. Again, let U be the open subset of Cn on which P has positive definite
Hessian and hence is strictly plurisuharmonic (notice that 0 /∈U). On U the vector
field Z is defined and has real analytic coefficients. Furthermore, on U the func-
tion u = log P satisfies (ddcu)n−1 �= 0; that is, the Levi form of u has exactly
n − 1 positive eigenvalues (and one equal to 0). As we noticed previously, the re-
striction of u = log P to a leaf of the foliation in extended Kobayashi disks is a
harmonic function. Thus, for every r > 0, the leaves of Monge–Ampère folia-
tion on U ∩!r coincide with the leaves of the foliation induced by the Kobayashi
extremal discs through the origin. Hence, on U ∩ !r , for every v by (10) we have
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ddcuφr (z,v)(φ
′
r (z,v), X̄) = 0 ∀X ∈ Cn,

which in terms of P implies that, for all ν̄,

P(φr(z,v))Pµν̄(φr(z,v))φ ′µ
r (z,v) = Pµ(φr(z,v))φ ′µ

r (z,v)Pν̄(φr(z,v)). (12)

On the other hand, as a consequence of Corollary 3.2 we have

P(φr(z,v)) = exp((2k) log tanh(γr(0, φr(z,v)) + log r) = r|z|2k. (13)

Differentiating gives

Pµ(φr(z,v))φ ′µ
r (z,v) = kr|z|2(k−1)z̄. (14)

Then, (12), (13), and (14) together yield

zPµν̄(φr(z,v))φ ′µ
r (z,v) = kPν̄(φr(z,v)),

which implies (using definition (8) of the vector field Z) that

Zµ
φr (z,v)

= zφ ′µ
r (z,v). (15)

From (15) we conclude that the vector field Z has continuous extension on !r for
any r > 0 and hence on all Cn. Notice that the extension is continuous because
the Kobayashi metric is continuous on any !r and hence, for all r > 0, the map
φr(z,v) depends continuously on v.

In conclusion, since P is a homogeneous polynomial of degree 2k, the very def-
inition (8) implies that the components of Z are rational functions, homogeneous
of degree 1. The components of Z are real analytic on the open set U, where P is
strictly plurisubharmonic, and have continuous extensions to all of Cn. We shall
now show that Z is holomorphic on U and, as a consequence, on all Cn. The idea
is to adapt the proof of [3, Thm. 3.1], as we now indicate. If T (1,0)M is the bun-
dle of (1, 0) tangent vectors of M and if T is the subbundle of vectors tangent to
the foliation, then let N = T (1,0)M/T be the (1, 0) normal bundle to the foliation.
The Bedford–Burns twist tensor of the foliation L : T ⊗ N̄ → N is defined by

L(V,W̄ ) = [V,W̄ ] mod(T ⊕ T (0,1)M), (16)

where the Lie bracket is computed for vector fields that extend the tangent vec-
tors V and W. It is known (see e.g. [1; 3]) that L vanishes on the open set U if and
only if the restriction of the foliation to U is holomorphic which is the case iff the
vector field Z is holomorphic on U. Let u = log P. Outside the degeneracy set,
E = {(ddcu)n−1 = 0} ⊂ Cn \ U, and the form ddcu naturally induces a metric
on the normal bundle N. Let L0 be a leaf of the foliation in extended Kobayashi
disks. Then either L0 ∩ E is a discrete set or L0 ⊂ E. If L0 ∩ E is a discrete set,
then the Ricci form φ of the restriction of N to L0 vanishes iff the Bedford–Burns
twist tensor vanishes along L0 \E (see [1]). Letting Ric(φ) denote the Ricci form
of the form φ at the points where φ > 0, a word-by-word repetition of the proof
of [3, Thm. 3.1] yields, on L0 ∩ {φ > 0} \ E,

Ric(φ) ≥ 2

n − 1
φ. (17)
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Since L0 is a parabolic Riemann surface, the curvature estimate (17) and Ahlfors’s
lemma imply that φ, and hence the Bedford–Burns twist tensor L, vanishes along
L0. Since this is true for any leaf of the foliation that is not entirely contained
in E = {(ddcu)n−1 = 0} ⊂ Cn \ U, we can conclude that the vector field Z is
holomorphic on U. The set Ê = Cn \U is the polynomial variety where the de-
terminant of the Levi matrix of P vanishes, so for any compact subset K ⊂ Cn it
follows that the (2n−1)-Hausdorff measure of Ê ∩ K is finite. Hence, a standard
result on the removability of singularities of a continuous holomorphic function
(see e.g. [4, Thm. A1.5]) shows that Z is holomorphic on Cn. On the other hand,
since by (8) we know that Z is homogeneous of degree 1 on a dense subset of Cn,
it follows that Z is, in fact, linear. In order to obtain the expression (11) for Z, we
use (10) and a bidegree argument. Suppose that

P =
∑

l+m=2k

P l,m

is the decomposition of P into homogeneous polynomials of bidegree (l, m).

Using (10) and differentiating with respect to z̄α, we have∑
l+m=2k

m≥1

P l,m
ᾱ = Pᾱ = (ZµPµ)ᾱ =

∑
l+m=2k
l,m≥1

ZµP l,m
µᾱ .

Comparing bidegrees, we conclude that

0 = P 0,2k
ᾱ = P 2k,0

ᾱ

and, for every l, m with l + m = 2k and l, m ≥ 1,

P l,m
ᾱ = ZµP l,m

µᾱ ;
here, as before, we have used the summation convention. Let w = (w1, . . . ,wn)

be such that ddcPw > 0; then ddcP k,k
w > 0 by Lemma 2.1 and

Zµ
w = (P k,k)ᾱµ(W )P k,k

ᾱ (W ) = 1

k
wk,

where the last equality is immediate from (5) because P k,k
ᾱ is homogeneous of

degree (k, k − 1) and hence P
k,k
µᾱ (W )wµ = kP k,k

ᾱ . Therefore, by continuity, (11)
holds on all Cn.

To conclude the proof of Theorem 1.1 it is enough to observe that, by Lemma (3.3),
the restriction of log P to any complex line through the origin is harmonic with a
logarithmic singularity of weight 2k at the origin; hence, for any 0 �= z ∈ Cn and
λ∈ C,

log P(λz) = 2k log|λ| + O(1).

The restriction of P to any complex line through the origin is therefore homoge-
neous of bidegree (k, k) and so P is a homogeneous polynomial of bidegree (k, k)
on Cn.
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