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Poles Near the Origin Produce Lower Bounds for
Coefficients of Meromorphic Univalent Functions

F. G. Avkhadiev & K.-J. Wirths

1. Introduction

Let D denote the open unit disc. In this paper we consider functions f meromor-
phic and univalent in D that have a simple pole at the point p ∈D \ {0}. For r ∈
(0,1) fixed, let Ur denote the class of all such functions f, |p| = r, that are nor-
malized by f(0) = 0 and f ′(0) = 1. Hence, any function f ∈Ur has an expansion

f(z) = z+
∞∑
n=2

an(f )z
n, |z| < r,

and f(p) = ∞.

As usual, we denote by S the class of functions g holomorphic and univalent in
D with Taylor coefficients an(g) = g(n)(0)/n!, where a0(g) = 0 and a1(g) = 1.
By de Branges’s famous proof [4] of the validity of the Bieberbach conjecture, it
is known that the domain of variability of an(g) for g ∈ S and n ≥ 2 is the whole
disc defined by

|an(g)| ≤ n (1)

and that equality in (1) is attained if and only if

g(z) = κd(z) := z

(1 − d̄z)2
, |d| = 1. (2)

In [9] Goodman conjectured that, for f ∈Ur with r ∈ (0,1), the inequalities

|an(f )| ≤ 1

r n−1

n−1∑
k=0

r 2k, n ≥ 2, (3)

are valid. Jenkins [12] proved that (3) is true for aN(f ) if (1) is valid for n =
2, . . . , N. Hence (3) holds for all n ≥ 2. From Jenkins’s proof it is also evident
that equality in (3) is attained if and only if

f(z) = κp(z) := z

(1 − p̄z)(1 − z/p)
, |p| = r. (4)

Concerning the inverse functions g−1 of g ∈ S, a classical theorem of Löwner [19]
indicates that, for the Taylor coefficients An(g−1), the inequalities
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|An(g−1)| ≤ Ln := 1

n+ 1

(
2n
n

)
, n ≥ 2, (5)

are valid. For the Taylor coefficients An(f −1), n ≥ 2, of the inverse functions of
f ∈Ur with r ∈ (0,1), Baernstein and Schober [3] proved that

|An(f −1)| ≤ 1

n

n−1∑
k=0

(
n

k + 1

)(
n

k

)
r n−2k−1. (6)

In (5) and in (6), equality is attained if and only if g−1 and f −1 are the inverses of
the functions defined in (2) and (4), respectively.

This paper is devoted to the perhaps surprising fact that, at least for little r ∈
(0,1), the domain of variability of an(f ) and An(f −1), f ∈ Ur, is not a disc but
an annulus. For n = 2 this is a consequence of some formulas due to Goluzin ([8,
Chap. IV.3]; cf. [15]). As far as we know, there has been scant attention given to
this fact for n ≥ 3. We have found only one reference (namely, [6]) concerning
this for Ur and some results and conjectures in this direction for subclasses of Ur
(see [1; 2; 17; 18; 20]).

In Section 2 we discuss in some detail the domain of variability of a2(f ), f ∈
Ur—especially for little r ∈ (0,1),where this domain is an annulus. Furthermore,
we give some simple examples showing that, for n ≥ 2 and r ∈ (0,1) big enough,
the domain of variabilty of an(f ) is a disc.

In Section 3 (Theorem 1) we prove the estimate∣∣∣∣ 1 − pn−1an(f )

1 − n−2pn−1an(f )

∣∣∣∣ ≤ nr 2, n ≥ 2, f ∈Ur, r ∈ (0,1), (7)

and its consequence, the asymptotically sharp formula

pn−1an(f ) = 1 +O(r 2), (8)

where n, f, and r are as before.
An explicit computation of the center and radius of the disc (7) reveals that the

domain of variability of an(f ), f ∈Ur, is an annulus at least for r < 1/
√
n.

Concerning the Taylor coefficientsAn(f −1), from formula (5) (where the quan-
tities Ln are defined) and formulas (6)–(8) we obtain that the inequalities∣∣∣∣ (−1)n−1 − pn−1An(f

−1)

(−1)n−1 − L−2
n pn−1An(f −1)

∣∣∣∣ ≤ Lnr
2 (9)

and the asymptotically sharp equalities

pn−1An(f
−1) = (−1)n−1 +O(r 2) (10)

are valid in the range of parameters under discussion.
Analogous computations yield that the domain of variability ofAn(f −1), f ∈Ur,

is an annulus for r < 1/
√
Ln.

In Section 4 we derive positive lower bounds that are not dependent on n for
Re(pn−1an(f )), f ∈Ur, if r < (eπ/2 −1)/(eπ/2 +1) = 0.656 . . . . This improves
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the results of Section 3 concerning the existence of an annulus as domain of vari-
ability of an(f ).

Using these results, we conclude by showing that there is a positive answer to
a question posed by Livingston [17].

2. The Case n = 2 and Examples for n ≥ 2

Lewandowski and Zlotkiewicz [15] observed that the set�2(r) := {a2(f ) | f ∈Ur}
is given by Goluzin’s inequality,∣∣∣∣pa2(f )+ 1 − r 2 − 2

E(r)

K(r)

∣∣∣∣ ≤ 2

(
1 − E(r)

K(r)

)
(see [8]), where E and K denote the complete elliptic integrals defined by

E(r) :=
∫ π/2

0

√
1 − r 2 sin2 t dt and K(r) :=

∫ π/2

0

dt√
1 − r 2 sin2 t

.

In particular, for r ∈ (0,1) we have

max{|a2(f )| | f ∈Ur} = r + 1

r

(see also [7] and [14]) and

min{|a2(f )| | f ∈Ur} = max

{
0,

1

r

(
r 2 − 3 + 4

E(r)

K(r)

)}
.

Now let r0 = 0.865 . . . be defined by

r 2
0 − 3 + 4

E(r0)

K(r0)
= 0.

From the foregoing we immediately conclude that for r ∈ [r0,1) the set �2(r) is
a disc of radius r + r−1, whereas for r ∈ (0, r0) the domain of variability �2(r) is
an annulus.

The following examples show that, for any n ∈ N, there exist a parameter r ∈
(0,1) and a function fn ∈ Ur such that an+1(fn) = 0. This implies that the do-
main of variability of an+1(f ), f ∈Ur, is a disc in this case. A simple example is
given by

fn(z) = g(r)g(z)

g(r)− g(z)
,

where
g(z) = z

(1 + zn)1/n(1 − z2n)1/(2n)
.

The function g is univalent and starlike in D (see e.g. [8]). Computations show
that

an+1(fn) = −1

n
+ (1 + r n)

√
1 − r 2n

r n
.

There exists a parameter r = r(n) ∈ (0,1) for which the expression on the right
side of this equation vanishes. In particular, a2(f1) = 0 for r = 0.883 . . . .
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The contents of this section show that there is a negative answer to the question
of Fang [6] concerning whether

|an+1(f )| ≥ (1 − r 2)r−n

for all n∈ N, all f ∈Ur, and all r ∈ (0,1).

3. Asymptotic Behavior of the Coefficients

Theorem 1. For n ≥ 2, r ∈ (0,1), and f ∈Ur, the estimate∣∣∣∣ 1 − pn−1an(f )

1 − n−2pn−1an(f )

∣∣∣∣ ≤ nr 2

from (7) is valid.

For the proof of Theorem 1 we need the following two lemmas.

Lemma 1. For r ∈ (0,1), the inequalities

r 2

2
≤ 1 − E(r)

K(r)
≤ r 2 (11)

are valid. These inequalities are asymptotically sharp because

lim
r→0

1

r 2

(
1 − E(r)

K(r)

)
= 1

2
and

lim
r→1

1

r 2

(
1 − E(r)

K(r)

)
= 1.

Proof. A straightforward computation yields

X(r) := 1 − E(r)

K(r)
= r 2

∫ π/2
0

sin2 t dt√
1−r 2 sin2 t∫ π/2

0
dt√

1−r 2 sin2 t

.

This immediately implies the second inequality in (11).
The first inequality in (11) is equivalent to the assertion∫ π/4

0

1 − 2 sin2 t√
1 − r 2 sin2 t

dt ≤
∫ π/2

π/4

2 sin2 t − 1√
1 − r 2 sin2 t

dt.

By the change of variable t = π/2− τ in the second integral we get the equivalent
inequality ∫ π/4

0

1 − 2 sin2 t√
1 − r 2 sin2 t

dt ≤
∫ π/4

0

1 − 2 sin2 τ√
1 − r 2 cos2 τ

dτ,

which is valid since sin2 t ≤ cos2 t for t ∈ [0, π/4].
Therefore, it is now clear that

lim
r→0

X(r)

r 2
= 1

2
and lim

r→1

X(r)

r 2
= 1.
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Lemma 2. For any n ≥ 2, there exists a positive constant C(n) such that

|pn−1an(f )− 1| ≤ r 2C(n), f ∈Ur, r ∈ (0,1). (12)

Proof. Let f ∈Ur and choose c ∈ C such that c /∈ f(D). Then the function

g(z) := cf(z)

c − f(z)
= z+

∞∑
n=2

an(g)z
n, z∈D,

is a member of the class S. We have

c = −g(p) and f(z) = g(z)

1 + g(z)/c
=

∞∑
n=1

g(z)n

g(p)n−1
,

where the expansion is valid in some neighborhood of the origin. Straightforward
computations using the last formula yield

a2(f ) = a2(g)+ 1

g(p)
, a3(f ) = a3(g)+ 2a2(g)

g(p)
+ 1

g(p)2
,

and it is easy to see that

an(f ) =
n∑
k=1

1

g(p)k−1

∗∑
aj1(g)aj2(g) · · · ajk(g),

where the sum
∑∗ ranges over all (j1, j2, . . . , jk)∈ Nk such that j1 + j2 + · · · +

jk = n.

It is evident that

an(f ) = an(g)+ Pn,1

g(p)
+ · · · + Pn,n−2

g(p)n−2
+ 1

g(p)n−1
, (13)

where Pn,k (k = 1, . . . , n − 2) denotes a polynomial in a2(g), . . . , an−k(g) with
coefficients in N. In particular,

Pn,n−2 = (n− 1)a2(g). (14)

Using (13) and (14), the inequalities |an(g)| ≤ n, and Koebe’s 1
4 -theorem

1

4
≤

∣∣∣∣g(p)p
∣∣∣∣ for g ∈ S and p ∈D \ {0},

we obtain the existence of a constant C1(n) such that∣∣∣∣pn−1an(f )− pn−1

g(p)n−1
− (n− 1)a2(g)p

n−1

g(p)n−2

∣∣∣∣ ≤ r 2C1(n). (15)

Now, we use formula (31) from [8, Chap. IV.3], which may be expressed in our
notation as ∣∣∣∣ p

g(p)
+ a2(g)p + 1 − r 2 − 2

E(r)

K(r)

∣∣∣∣ ≤ 2

(
1 − E(r)

K(r)

)
.

Together with the inequalities (11) of Lemma 1, this yields
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p

g(p)
+ a2(g)p = 1 + 3r 2ω, where |ω| ≤ 1. (16)

The previous formula for a2(f ) and (16) imply that

|pa2(f )− 1| ≤ 3r 2.

In order to prove Lemma 2 for n ≥ 3, we evaluate(
p

g(p)
+ a2(g)p

)n−1

= (1 + 3r 2ω)n−1

with the help of the binomial theorem, using |a2(g)| ≤ 2, |ω| ≤ 1, and (once
again) Koebe’s 1

4 -theorem. These computations give the existence of a constant
C2(n) such that ∣∣∣∣ pn−1

g(p)n−1
+ (n− 1)a2(g)p

n−1

g(p)n−2
− 1

∣∣∣∣ ≤ r 2C2(n).

This estimate, together with (15), yields (12) forn ≥ 3 withC(n) = C1(n)+C2(n).

Proof of Theorem 1. For f ∈ Ur we choose the function g ∈ S as in the proof of
Lemma 2. We recall that

f(z) = g(p)g(z)

g(p)− g(z)
, z∈D.

For this fixed g ∈D we consider the functions fζ ∈U|ζ|, ζ ∈D \ {0}, defined as

fζ(z) = g(ζ)g(z)

g(ζ)− g(z)
, z∈D.

The formula (13) yields that the function

ϕ(ζ) := ζ n−1an(fζ ), ζ ∈D \ {0},
is holomorphic in D \ {0}. By Lemma 2, the function ϕ(ζ) has a holomorphic
completion at the origin that we also call ϕ. Lemma 2 likewise implies that this
completion fulfills

ϕ(0) = 1 and ϕ ′(0) = 0.

From (3) we obtain

|ϕ(ζ)| ≤
n−1∑
k=0

|ζ|2k ≤ n, ζ ∈D.

Hence, the Schwarz lemma yields∣∣∣∣∣
ϕ(ζ)− 1

1 − ϕ(ζ)/n2

∣∣∣∣∣ ≤ n|ζ|2, ζ ∈D,

which implies the assertion of Theorem 1.

Using Theorem 1 allows us to derive asymptotic formulas for functionals over Ur,
r → 0. In particular, the formulas (8),
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pn−1an(f ) = 1 +O(r 2), n ≥ 2,

are immediate consequences of (12). Another example for this possibility is given
by the following.

Corollary 1. For any n ≥ 2 there exists a positive constant D(n) such that,
for all f ∈Ur, r ∈ (0,1), the inequalities (cf. (10))

|pn−1An(f
−1)− (−1)n−1| ≤ r 2D(n)

are valid.

Proof. It is known (see e.g. [10, v. 1, p. 56]) that

A2(f
−1) = −a2(f ), A3(f

−1) = −a3(f )+ 2a2(f )
2,

and, in general,

An(f
−1) =

n−1∑
k=1

(−1)k
(n+ k − 1)!

n!

∗∗∑ a2(f )
j1a3(f )

j2 · · · an(f )jn−1

j1! j2! · · · jn−1!
, (17)

where the sum
∑∗∗ ranges over all (j1, j2, . . . , jn−1)∈ (N ∪ {0})n−1 such that

j1 + j2 + · · · + jn−1 = k and j1 + 2j2 + · · · + (n− 1)jn−1 = n− 1.

Now, according to (12), we may insert into (17)

ak(f ) = (1 + r 2δk(f ))p
1−k,

where |δk(f )| ≤ C(k). This yields a representation

An(f
−1) = (Cn + r 2D(n; r, f ))p1−n,

where

Cn =
n−1∑
k=1

(−1)k
(n+ k − 1)!

n!

∗∗∑ 1

j1! j2! · · · jn−1!
.

Because of the inequalities |δk(f )| ≤ C(k), there exists an uniform upper bound
D(n) for |D(n; r, f )| with r ∈ (0,1) and f ∈Ur. On the other hand, for

f(z) = z

1 − z/p

we have that
f −1(w) = w

1 + w/p
.

In this case, formula (17) becomes

(−1)n−1 =
n−1∑
k=1

(−1)k
(n+ k − 1)!

n!

∗∗∑ 1

j1! j2! · · · jn−1!
.

Hence, Cn = (−1)n−1. This, when combined with our previous results, proves
Corollary 1 and so (10) is true.
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Now it is easy to prove (9) using the same technique as in the proof of Theorem 1.
In this proof, one need only replace Lemma 2 by Corollary 1 and replace (1) and
(3) by (5) and (6), respectively.

Remark 1. It is easy to prove that the domain of variability of an(f ), f ∈Ur, is a
disc or an annulus that contains the circle {w | |w| = r1−n} by using the transform

f(z, t) =
{ g(tp)g(tz)

t(g(tp)−g(tz)) , 0 < |t | ≤ 1,
z

(1−z/p) , t = 0,

where g is fixed by f as before.

4. Lower Bounds for the Coefficients for Little r

In Section 2 we derived the existence of a positive lower bound for |a2(f )| (f ∈
Ur) if and only if r < r0 = 0.865 . . . , and in Section 3 it was shown that such a
positive lower bound for |an(f )| (f ∈Ur) exists if r < 1/

√
n. We did not mention

these bounds explicitly because in the present section we shall prove an improve-
ment of this assertion.

Theorem 2. Let f ∈Ur. Then, for all n ≥ 2, the inequalities

Re(pn−1an(f )) ≥
{ 1

3 , r ∈ (0, r1],

1
3 cos

(
ln 1+r

1−r
)
, r ∈ (r1, r2),

are valid, where

r1 = e − 1

e + 1
= 0.461 . . . and r2 = eπ/2 − 1

eπ/2 + 1
= 0.656 . . . .

In the proof of this theorem we only consider functions f ∈ Ur having their pole
in the real point z = r. One easily obtains the general case by a rotation.

The proof is based on two lemmas. The first one is a modified version of a
classical formula used in the proof of Carathéodory’s theorem on functions with
positive real part (cf. [2; 5; 21, Chap. V.3]).

Lemma 3. Let f ∈Ur with its pole in z = r, r ∈ (0,1). Then, for almost all θ ∈
[0, 2π), the limit

f(eiθ ) = lim
R→1−0

f(Reiθ )

exists and

an(f ) = − 1

2π

∫ 2π

0
f(eiθ )

(
r n + 1

r n
− 2 cos(nθ)

)
dθ. (18)

Proof. The existence of the angular limit f(eiθ ) for θ -a.e. in [0, 2π) is implied by
Fatou’s theorem (see [8, Chap. IX]), since the function

h(z) :=
{
(1 − zn(r n + 1/r n)+ z2n)f(z), z∈D \ {r},
lim0<|w−r|→0 h(w), z = r,
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is bounded and holomorphic for n ≥ 1. It is clear that

an(h) = an(f ), n ≥ 1.

As a consequence of a theorem of F. Riesz (see e.g. [8, p. 404]) we get

lim
R→1−0

∫ 2π

0
|h(Reiθ )− h(eiθ )| dθ = 0.

This together with the residue theorem yields

an(h) = 1

2π

∫ 2π

0
h(eiθ )e−inθ dθ,

which is equivalent to the assertion of Lemma 3.

Lemma 4. Let g ∈ S and r ∈ (0,1). Then

Re(g(r)) ≥
{ r

(1+r)2 , r ∈ (0, r1],

r

(1+r)2 cos
(
ln 1+r

1−r
)
, r ∈ (r1, r2),

where

r1 = e − 1

e + 1
= 0.461 . . . and r2 = eπ/2 − 1

eπ/2 + 1
= 0.656 . . . .

Proof. Grunsky’s inequality (see [8; 11; 13]) implies that, for g ∈ S and r ∈ (0,1),∣∣∣∣ln g(r)r + ln(1 − r 2)

∣∣∣∣ ≤ ln
1 + r

1 − r
=: α.

Thus,
g(r)(1 − r 2)

r
∈.(D̄;α), .(z;α) := eαz.

If r ∈ (0, r1] then α ∈ (0,1], hence

Re

(
1 + z

. ′′(z;α)

. ′(z;α)
)

= Re(1 + αz) ≥ 0, z∈ D̄.

Therefore, the function.(·;α) is univalent inD and.(D̄;α) is a convex set. On
the other hand, .(D̄;α) is symmetric with respect to the real axis. Hence

min|z|≤1
Re(eαz) = min

x∈[−1,1]
eαx = e−α

for α ∈ (0,1], and

Re
g(r)(1 − r 2)

r
≥ e−α = 1 − r

1 + r
, r ∈ (0, r1],

which is equivalent to the first part of the assertion.
If r ∈ (r1, r2) then α ∈ (1, π/2). Hence, cosα > 0 and

min|z|≤1
Re(eαz) = min

θ∈[0,2π)
eα cos θ cos(α sin θ) > e−α cosα,

which implies the second inequality of Lemma 4.
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Remark 2. Since Grunsky’s inequality describes the exact domain of variability
of g(r), g ∈ S, the values r1 and r2 in Lemma 4 are best possible in the following
sense. For r ∈ (0, r1], the lower bound given in Lemma 4 is best possible. In the
case r ∈ (r1, r2), we preferred an explicit estimate that is not sharp. It is also clear
that, for any r ∈ (r2,1), there exist functions g ∈ S such that Re(g(r)) < 0.

Proof of Theorem 2. Let f(eiθ ) be an angular limit of a function f ∈Ur that has
its pole in z = r. We fix θ and consider the function g(·; θ) defined by

g(z; θ) = f(eiθ )f(z)

f(e iθ )− f(z)
, z∈D.

One has
g(r; θ) = −f(eiθ ),

and g(·; θ)∈ S for almost all θ ∈ [0, 2π) (cf. [13]). Using Lemma 4 yields

Re(f(e iθ )) ≤
{ − r

(1+r)2 , r ∈ (0, r1],

− r

(1+r)2 cos
(
ln 1+r

1−r
)
, r ∈ (r1, r2).

These inequalities together with (18) imply

Re(r n−1an(f )) ≥



1+r 2n

(1+r)2 , r ∈ (0, r1],

1+r 2n

(1+r)2 cos
(
ln 1+r

1−r
)
, r ∈ (r1, r2).

This completes the proof of Theorem 2, since

1 + r 2n

(1 + r)2
>

1

(1 + r)2
>

1

3
for r ∈ (0, r2).

Remark 3. Let f ∈Ur with its pole in the real point z = r, r ∈ (0,1). Using the
sharp estimate of Komatu (see [14]),

|res(f, z = r)| ≥ r 2(1 − r 2),

and the relation
lim
n→∞(r

n+1an(f )) = −res(f, z = r),

which follows from Lemma 3, we get a theorem proved by Fang [6]—namely,

lim
n→∞(r

n−1|an(f )|) ≥ 1 − r 2.

Here, equality is attained if and only if

f(z) = z(1 − rz)

1 − z/r
.

Hence, for any f ∈ Ur, r ∈ (0,1), there exists a natural number n(f ) such that
an(f ) �= 0 for all n > n(f ). If r < r2, then n(f ) = 1 by Theorem 2. It is not
clear whether the quantity

nr := sup{n(f ) | f ∈Ur}
is finite for r ∈ [r2,1).
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Remark 4. Livingston [17] investigated the set 1∗
r of weakly starlike meromor-

phic functions. The set 1∗
r is related to the class Ur as follows. Any function F ∈

1∗
r has an expansion

F(z) = 1 +
∞∑
n=1

an(F )z
n, |z| < r,

and the function

f(z) := F(z)− 1

a1(F )

is a member of the classUr. In [17] Livingston posed the question of whether there
is a positive lower bound for |an(F )|, F ∈1∗

r .

The estimate

|a1(F )| ≥ (1 − r)2

r
, F ∈1∗

r ,

proved in [16] implies that

|an(F )| ≥ (1 − r)2

r
|an(f )|, F ∈1∗

r , f ∈Ur,
for n ≥ 2. Hence, Theorem 2 implies that Livingston’s question has a positive
answer for r < r2 and n ≥ 2.
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