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Poles Near the Origin Produce Lower Bounds for
Coefficients of Meromorphic Univalent Functions

F. G. AvKHADIEV & K.-J. WIRTHS

1. Introduction

Let D denote the open unit disc. In this paper we consider functions f meromor-
phic and univalent in D that have a simple pole at the point p € D \ {0}. For r €
(0, 1) fixed, let U, denote the class of all such functions f, |p| = r, that are nor-
malized by f(0) = 0 and f'(0) = 1. Hence, any function f € U, has an expansion

[o.¢]
f =2+ a2 lzl<r
n=2
and f(p) = oo.

As usual, we denote by S the class of functions g holomorphic and univalent in
D with Taylor coefficients a,(g) = g (0)/n!, where ag(g) = 0 and a;(g) = 1.
By de Branges’s famous proof [4] of the validity of the Bieberbach conjecture, it
is known that the domain of variability of a,(g) for g € S and n > 2 is the whole
disc defined by

lan(g)l < n M
and that equality in (1) is attained if and only if
b4
7)) =Kg\2) i\m —————, d == 1 2
80 = k(@) i= s ld] 2)
In [9] Goodman conjectured that, for f € U, with r € (0, 1), the inequalities
n—1
lan(P)l < == Y r*, n=2, 3)
ri—
k=0

are valid. Jenkins [12] proved that (3) is true for ay (f) if (1) is valid for n =

2, ..., N. Hence (3) holds for all » > 2. From Jenkins’s proof it is also evident
that equality in (3) is attained if and only if
Z

f(2) =Kp(2) := Ip| =r. 4)

(1-p(1—2z/p)’

Concerning the inverse functions g~! of g € S, a classical theorem of Lowner [19]

indicates that, for the Taylor coefficients A, ( g’l), the inequalities
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1 2n
AgH<L,:=—— , n>2, 5
An(s ™)) = n—|—1<n) nz (5)
are valid. For the Taylor coefficients A,(f "), n > 2, of the inverse functions of
f €U, withr € (0, 1), Baernstein and Schober [3] proved that

1220/ » n
—1 n—2k—1
|An(f DI < ;Z<k+1>(k>r : (6)

k=0

In (5) and in (6), equality is attained if and only if g~' and £ ! are the inverses of
the functions defined in (2) and (4), respectively.

This paper is devoted to the perhaps surprising fact that, at least for little r €
(0, 1), the domain of variability of a,(f) and A.(fY, f € U,, is not a disc but
an annulus. For n = 2 this is a consequence of some formulas due to Goluzin ([8,
Chap. IV.3]; cf. [15]). As far as we know, there has been scant attention given to
this fact for n > 3. We have found only one reference (namely, [6]) concerning
this for U, and some results and conjectures in this direction for subclasses of U,
(see [1; 2; 17; 18; 20]).

In Section 2 we discuss in some detail the domain of variability of a,(f), f €
U,—especially for little r € (0, 1), where this domain is an annulus. Furthermore,
we give some simple examples showing that, for n > 2 and r € (0, 1) big enough,
the domain of variabilty of a,(f) is a disc.

In Section 3 (Theorem 1) we prove the estimate

1—-p"la,
p"a,(f) <nr2, n>2, feU, re,1), @)

- n—2pn—lan(f) -

and its consequence, the asymptotically sharp formula
P an(f) =1+ 00, ®)

where n, f, and r are as before.
An explicit computation of the center and radius of the disc (7) reveals that the
domain of variability of a,(f), f € U,, is an annulus at least for r < 1/./n.
Concerning the Taylor coefficients A,,(f 1), from formula (5) (where the quan-
tities L, are defined) and formulas (6)—(8) we obtain that the inequalities

(_l)n_l - pn_lAn(f_l) 2

~ < L,r ©)
(=D = L pn= 1A (f )
and the asymptotically sharp equalities
P" AT = (D" 00 (10)

are valid in the range of parameters under discussion.

Analogous computations yield that the domain of variability of A,(f 1), fe U,,
is an annulus for r < 1/\/L>,,.

In Section 4 we derive positive lower bounds that are not dependent on n for
Re(p"la,(f)), f €U, ifr < (e™? —1)/(e™? 4+ 1) = 0.656..... This improves
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the results of Section 3 concerning the existence of an annulus as domain of vari-
ability of a,(f).

Using these results, we conclude by showing that there is a positive answer to
a question posed by Livingston [17].

2. The Case n =2 and Examples for n > 2

Lewandowski and Zlotkiewicz [15] observed that the set 2, (r) := {a>(f) | f € U,}
is given by Goluzin’s inequality,
E
O o, E®
K(r) K(r)

(see [8]), where E and K denote the complete elliptic integrals defined by

E(r) _/ V1—=r2sin®tdt and K(r) —f

par(f)+1—r?=2

\/l—r sin? '

In particular, for r € (0, 1) we have

1
max{lax(/)I | feU}=r+ -
(see also [7] and [14]) and

minf{lax(f)| | feU,} = max{o, %(rz B 3+4E(r))}_

Now let rp = 0.865 ... be defined by

rg _3 E(rg) _

K(ro)
From the foregoing we immediately conclude that for r € [rg, 1) the set Q2,(r) is
a disc of radius r 4 r~!, whereas for r € (0, ry) the domain of variability Q,(r) is
an annulus.

The following examples show that, for any n € N, there exist a parameter r €
(0, 1) and a function f, € U, such that a,+(f,) = 0. This implies that the do-
main of variability of a,+(f), f € U,, is a disc in this case. A simple example is
given by

g(r)g(z)
g(r) —g@)’
Z
(1 + Zn)l/n(l _ Z2n)1/(2n) :
The function g is univalent and starlike in D (see e.g. [8]). Computations show

that
(l + r")\/ 1—r2

fn(z) =

where

g(zx) =

ant1(fu) =

There exists a parameter r = r(n) € (O, 1) for Wthh the expression on the right
side of this equation vanishes. In particular, a,(f;) = 0 forr = 0.883....
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The contents of this section show that there is a negative answer to the question
of Fang [6] concerning whether

lan1 () = A =r?)r™"
foralln eN, all f eU,, andallr € (0, 1).

3. Asymptotic Behavior of the Coefficients

THEOREM 1. Forn >2,r €(0,1), and f € U,, the estimate

L= p"af) |-

L—n=2p"la,(f)| ~

from (7) is valid.
For the proof of Theorem 1 we need the following two lemmas.
LEmMA 1. Forr € (0, 1), the inequalities

2 E(r) 2

r
_<1_
2 = K(r) —

are valid. These inequalities are asymptotically sharp because

1 < E(r)) 1
lim Ss\1-==)=5
r—=0r K(r) 2

.1 E(r)
lim —2<1 — ) =1
r—lr K@)

Proof. A straightforward computation yields

(11

and

/‘ﬂ/z sin? 7 dt

E =
X)i=1- B0 0 e
(r) f ___dt

0 /1I=rZsinZ¢
This immediately implies the second inequality in (11).
The first inequality in (11) is equivalent to the assertion
/”/4 1—2sin’t 72 2sin?t — 1
0

——dt < —_—dt.

V1 —r?sin®¢ w4 /1 —r2sint
By the change of variable r = /2 — 7 in the second integral we get the equivalent
inequality

T4 1 —2sin’t T4 1 —2sin’t1
——dt < — dfr,
0 +/1—r2sin’t 0 +1—r2cos’t
which is valid since sin® ¢ < cos? ¢ for t € [0, /4].
Therefore, it is now clear that

X(r) 1

X
lim _ D im X9

— 1. O
r—0 }"2 2 r—1 r2
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LEMMA 2. For any n > 2, there exists a positive constant C(n) such that
1p"~lan(f) =11 <r*C(n),  feUy, re,D). (12)
Proof. Let f € U, and choose ¢ € C such that ¢ ¢ f(D). Then the function

_cfld = .
g(2) := —c—f(z) —z+n;an(g)z , z€D,

is a member of the class S. We have

8@ Z g(a)"

¢=-s(p) and S =17k 2(p)

where the expansion is valid in some neighborhood of the origin. Straightforward
computations using the last formula yield

ax(f) = a(g) + — (f) = as(g) + 228 1

=a _, a =a s
2 28 g(p) ’ 38 g(p)  g(p)?
and it is easy to see that

n

an(f)=)_

g(p)k IZaJl(g)a/z(g) -a;, (),
k=1

where the sum " ranges over all (ji, j», ..., jx) € N* such that j; + j, +--- +
Jk =n.
It is evident that

(f) = an(g) + —= +- Puna 1
ay ay N 3
8 ( ) g(p)n=2  g(p)!

where P,y (k =1,...,n — 2) denotes a polynomial in a>(g), ..., a,—x(g) with
coefficients in N. In particular,

Pn,an = (11 - l)aZ(g) (14)

Using (13) and (14), the inequalities |a,(g)| < n, and Koebe’s %—theorem

13)

1

- < w for ge S and p e D\ {0},

4 p

we obtain the existence of a constant C;(n) such that
n—1 n—1
e (n —Dax(g)
‘ an(f) — L - 28| <ram. a9
g(p) g(p)

Now, we use formula (31) from [8, Chap. IV.3], which may be expressed in our
E@r)

notation as
- 2<1 _ ﬂ)
K(r) K(r)

Together with the inequalities (11) of Lemma 1, this yields

‘—+a2(g)p+1—r -2
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L u(ep=143r2w, where || <1. (16)
g(p)

The previous formula for a,(f) and (16) imply that
|pax(f) =1 < 3r%

In order to prove Lemma 2 for n > 3, we evaluate

n—1
(L + az(g)P> = (1+3r%w)"™!
g(p)

with the help of the binomial theorem, using |a>(g)| < 2, |w| < 1, and (once
again) Koebe’s %—theorem. These computations give the existence of a constant
C,(n) such that

‘ n—1 n—1

p (n —Dax(g)p
g(p)! g(p)n—?
This estimate, together with (15), yields (12) forn > 3 with C(n) = Ci(n)+C»(n).
[
Proof of Theorem 1. For f € U, we choose the function g € S as in the proof of
Lemma 2. We recall that

—1

<r’Cy(n).

_ &(p)g2)
M= s —s
For this fixed g € D we consider the functions f, € Uj;|, ¢ € D \ {0}, defined as
8(5)g(z)
= ——— D.
TO= o —s €

The formula (13) yields that the function

9(©) == ¢""a,(f), ¢eD\{0},

is holomorphic in D \ {0}. By Lemma 2, the function ¢(¢) has a holomorphic
completion at the origin that we also call ¢. Lemma 2 likewise implies that this
completion fulfills

0 =1 and ¢'(0) =0.

From (3) we obtain

n—1
lp@I <> el <n, teD.

k=0
Hence, the Schwarz lemma yields

) —1

W §n|§|2, teD,

which implies the assertion of Theorem 1. O

Using Theorem 1 allows us to derive asymptotic formulas for functionals over U,,
r — 0. In particular, the formulas (8),



Lower Bounds for Coefficients of Meromorphic Univalent Functions 125

p"la,(f) =14+ 00?), n>2,

are immediate consequences of (12). Another example for this possibility is given
by the following.

COROLLARY 1. For any n > 2 there exists a positive constant D(n) such that,
forall f eU,, re(0,1), the inequalities (cf. (10))

Ip" AL — (=D < r*D(n)

are valid.

Proof. Ttis known (see e.g. [10, v. 1, p. 56]) that
A(f ) =—ax(f),  A(STH = —as(f) +2ax(f)7,

and, in general,

nol o 1 2 ... jn—1
aiF = S DS e D

— n! Jiljale s juet! ’
where the sum Y_** ranges over all (ji, ja, ..., ja_1) € (N U {0})"~! such that
sitj2+t+jpi=k and ji+2jpp+--+(m—1Dj1=n—-1L
Now, according to (12), we may insert into (17)
ar(f) = 1+ r28(Hp'*,
where |8 (f)| < C(k). This yields a representation
An(fTH = (Co+r?D(nsr, )P,

where
*k

! k—1)! 1
C, = Z(_l)k (n +n! ) Z
k=1

g gl el

Because of the inequalities |8;(f)| < C(k), there exists an uniform upper bound
D(n) for |D(n; r, f)| withr € (0, 1) and f € U,. On the other hand, for

z
f@) =1 gy
we have that w
-1 _
frw) = 14+ w/p

In this case, formula (17) becomes

#ok

= k—1)! 1
(1= Y D

pa n! gt jaml

Hence, C, = (—1)""!. This, when combined with our previous results, proves
Corollary 1 and so (10) is true. O
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Now it is easy to prove (9) using the same technique as in the proof of Theorem 1.
In this proof, one need only replace Lemma 2 by Corollary 1 and replace (1) and
(3) by (5) and (6), respectively.

REMARK 1. Itis easy to prove that the domain of variability of a,(f), f € U,, isa
disc or an annulus that contains the circle {w | |w| = r!~"} by using the transform
8(tp)g(tz)
1(g(tp)—g(12))’
f@n = { w

(=z/p)’

0<lrf =1,
t=0,
where g is fixed by f as before.

4. Lower Bounds for the Coefficients for Little r

In Section 2 we derived the existence of a positive lower bound for |a,(f)| (f €
U,) if and only if r < ro = 0.865..., and in Section 3 it was shown that such a
positive lower bound for |a,( )| (f € U,) exists if r < 1/,/n. We did not mention
these bounds explicitly because in the present section we shall prove an improve-
ment of this assertion.

THEOREM 2. Let f € U,. Then, for all n > 2, the inequalities
1 %? r e (0’ rl]’
Re(p"la,(fN =11
3

cos(In{t5), re(ri, r),

are valid, where

e—1 e™? —1
= =0.461... and r, = ———
e+1 e™? +1

In the proof of this theorem we only consider functions f € U, having their pole
in the real point z = r. One easily obtains the general case by a rotation.

The proof is based on two lemmas. The first one is a modified version of a
classical formula used in the proof of Carathéodory’s theorem on functions with
positive real part (cf. [2; 5; 21, Chap. V.3]).

=0.656....

r

LEMMA 3. Let f € U, with its pole in z = r, r € (0, 1). Then, for almost all 0 €
[0, 27), the limit ' '
fle)y = lim f(Re")

exists and
2w

a(f) = _ L f(ei0)<r” + LR 2005(119)) de. (18)
21w Jo rht

Proof. The existence of the angular limit f(e?) for #-a.e. in [0, 27) is implied by
Fatou’s theorem (see [8, Chap. IX]), since the function
A=z2"¢" +1/r") + 22" f(2), ze€D\{r},

lirnO<\wfr|~>0 h(U)), =T,

h(z) = {
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is bounded and holomorphic for n > 1. It is clear that
ay(h) =a,(f), n=1

As a consequence of a theorem of F. Riesz (see e.g. [8, p. 404]) we get
2r ) )
lim [h(Re') — h(e'®)|do = 0.
R—1-0 Jo
This together with the residue theorem yields
1 o i6y ,—inb
ap(h) = — h(e)e do,
2 0
which is equivalent to the assertion of Lemma 3. O

LEmMA 4. Letge Sandr € (0,1). Then

I, re0,r],
Re(g(r) = { ™ o
T cos(In ), re(ri,r),
where
e—1 e —1
r= =0461... and ry=—5—=0.656....
e+1 e +1

Proof. Grunsky’s inequality (see [8; 11; 13]) implies that, for g € S and r € (0, 1),

14+r
<In = .
1—r

g(r)

In>— +1In(l — r?)
r

Thus,
1= 2 _
8OU=T) Cwihia), W(za) = e,
.

If r € (0, r{] then «a € (0, 1], hence
\IJ//(Z; Ol)

Re(l+z
( V(z; )

) =Re(l+az) >0, zeD.
Therefore, the funct_ion W(-; ) is univalent in D and \IJ(D; «) is a convex set. On
the other hand, W (D; «) is symmetric with respect to the real axis. Hence

minRe(e®’) = min e* =™
lz|<1 xe[-1L1]
for o € (0, 1], and
1—r2 1—
eMze*az_"’ r€(07r1]7
r 1+r
which is equivalent to the first part of the assertion.
Ifr € (r1,ry) theno € (1, 7/2). Hence, cosa > 0 and

R

acosf

minRe(e“*) = min e cos(a sinf) > e % cosa,

|z]=<1 0€[0,2m)

which implies the second inequality of Lemma 4. O
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REMARK 2. Since Grunsky’s inequality describes the exact domain of variability
of g(r), g €S, the values r| and r, in Lemma 4 are best possible in the following
sense. For r € (0, r{], the lower bound given in Lemma 4 is best possible. In the
caser € (ry, rp), we preferred an explicit estimate that is not sharp. It is also clear
that, for any r € (73, 1), there exist functions g € S such that Re(g(r)) < 0.

Proof of Theorem 2. Let f(e'®) be an angular limit of a function f € U, that has
its pole in z = r. We fix 6 and consider the function g(-; #) defined by

fe®) f(z)

_ D.
e — @ °€

g(z;0) =

One has '

8(r;0) = —f(e),
and g(-; 6) € S for almost all 8 € [0, 27) (cf. [13]). Using Lemma 4 yields
_(Hfir)z’ re (07 rl]v

seos(In L), re(ry,r2).

1-r

r

)
These inequalities together with (18) imply

Re(f(e')) < {

142"
- At re (0,1,
Re(r"“a,(f)) = Lyptn .
s cos(In{t), re(ri,r).

This completes the proof of Theorem 2, since

1472 1

— f 0 . O
(Y > (e > 3 or re(0,r)

ReEMARK 3. Let f € U, with its pole in the real point z = r, r € (0, I). Using the
sharp estimate of Komatu (see [14]),

res(f.z =r)| = r’(—r?),
and the relation
lim (r"*la,(f)) = —res(f, z = 1),
n—oQ
which follows from Lemma 3, we get a theorem proved by Fang [6]—namely,

lim (" a, () = 1—r%
n—o0

Here, equality is attained if and only if

Hence, for any f € U,, r € (0, 1), there exists a natural number n(f) such that
a,(f) #0foralln > n(f). If r < ryp, then n(f) = 1 by Theorem 2. It is not
clear whether the quantity

n, :=sup{n(f) | f €U}
is finite for r € [r,, 1).
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REMARK 4. Livingston [17] investigated the set A% of weakly starlike meromor-
phic functions. The set A¥ is related to the class U, as follows. Any function F €
A% has an expansion

oo
F(z)=1+) au(F)z", |zl <r,

n=1

and the function

is a member of the class U, . In [17] Livingston posed the question of whether there
is a positive lower bound for |a,(F)|, F € A%.
The estimate

1_ 2
a) = L2 pear,
r

proved in [16] implies that

2
jan(F)| = anw, Fen, feU,

for n > 2. Hence, Theorem 2 implies that Livingston’s question has a positive
answer forr < rp andn > 2.
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