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Lattice Points inside Random Ellipsoids

S. Hofmann, A. Iosevich, & D. Weidinger

1. Introduction

Let
Na(t) = #{t�a ∩ Z

d}, (0.1)

where
�a = {

(a− 1
21 x1, a

− 1
22 x2, . . . , a

− 1
2

d xd) : x ∈�
}

(0.2)

with 1
2 ≤ aj ≤ 2 and where � is the unit ball.

Let
Na(t) = t d |�a| + Ea(t). (0.3)

A classical result due to Landau states that

|Ea(t)| � t
d−2+ 2

d+1 ; (0.4)

here and throughout the paper, A � B means that there exists a positive constant C
such that A ≤ CB. Similarly, A � B, with a parameter t, means that given δ > 0
there exists a Cδ > 0 such that A ≤ Cδt

δB.

A number of improvements over (0.4) have been obtained over the years in two
and three dimensions. The best-known result in three dimensions (to the best of

our knowledge) is |Ea(t)| � t
21
16 proved by Heath-Brown [HB], improving on an

earlier breakthrough due to Vinogradov [V]. It is proved by Szegö that∣∣∣∣E1,1,1(t) − 4π

3
t 3

∣∣∣∣ � t log(t). (0.5)

In two dimensions, the best-known result is |Ea(t)| � t
46
73 due to Huxley [Hu].

A classical result due to Hardy says that

|E1,1(t) − πt 2| � t
1
2 log

1
2(t). (0.6)

Thus it is reasonable to conjecture that the estimate

|Ea(t)| � t
d−1

2 (0.7)

holds in R
2 and R

3.
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In higher dimensions, the problem of a pointwise estimate of Ea(t) is com-
pletely solved. It is a result of Walfisch that if d ≥ 4 then |Ea(t)| � t d−2, and a
logarithm may be removed in dimension 5 and greater. It is also known that if the
eccentricities (a1, . . . , ad) are rational, then this estimate is essentially sharp.

It is not known if there exists a single a = (a1, a2, . . . , ad) such that |Ea(t)| �
t

d−1
2 in any dimension. The question of finding such an a was posed by Sarnak

in a two-dimensional setting a number of years ago. Sarnak’s question would be
answered by the following estimate.

Conjecture. Given any δ > 0,

sup
t≥1

t−
d−1

2
−δ|E(·)(t)| ∈Lp

([
1
2 , 2

] × [
1
2 , 2

] × · · · × [
1
2 , 2

])
(0.8)

for some p ≥ 1 with a constant depending on δ.

Of course, (0.8) would imply that the estimate |Ea(t)| � t
d−1

2 holds for almost
every a ∈ ([

1
2 , 2

] × [
1
2 , 2

] × · · · × [
1
2 , 2

])
. We hope to address this issue in a sub-

sequent paper.
Other types of square averages of lattice point discrepancy functions have been

studied in the past and in recent years. For example, a classical result due to
Kendall is that ∫

T2
|#{(t� + τ) ∩ Z

d} − t d |�||2 dτ � t
d−1

2 (0.9)

for every convex domain whose boundary has everywhere nonvanishing Gaussian
curvature.

This result was recently sharpened by Magyar and Seeger, who proved that the
estimate (0.9) still holds in R

d if the exponent 2 is replaced by p ≤ 2d
d−1

.

Another type of average is studied in [ISS]. The authors prove that
(

1

h

∫ R+h

R

|#{t� ∩ Z
d} − t d |�||2 dt

)1
2

� Rαd, (0.10)

where
α2 = 1

2 with h ≥ log(R) (0.11)

and
αd = d − 2 with h ≈ R (0.12)

for d ≥ 4. If d = 3 then αd = 1 and an additional factor log(R) is present. These
results improve upon those previously obtained by Muller [M]. See also [Hu] and
[ISS] and the references contained therein.

Using (0.10), (0.11), (0.12), and their proofs, one can deduce the following
result.

Theorem 0.1. Let Ea(t) be as before. Then∫ 2

1
2

∫ 2

1
2

· · ·
∫ 2

1
2

|Ea(t)|2 da � Rαd, (0.13)



Lattice Points inside Random Ellipsoids 15

where αd is exactly as described previously and where the additional log(t) factor
is still present in three dimensions.

The purpose of this paper is to give a simple and transparent proof of Theorem 0.1
in two and three dimensions. Similar two-dimensional results have recently been
obtained by Toth and Petridis [TP] using different methods. We believe it is likely
that our approach will lead to a better estimate in higher dimensions, where we
conjecture that (0.13) holds with αd = d−1

2
. We hope to address this issue in a

subsequent paper.
We shall give the proof in three dimensions. We shall then indicate how a two-

dimensional proof follows from a simpler version of the same argument.

1. Basic Setup

We start with the following standard reduction. Let ρ0 ∈ C∞
0

(
1
4 , 4

)
with ρ0 ≡ 1

on [1, 2], and let ρ be the radial extension of ρ0 such that
∫
ρ(x) dx = 1.

Let ρε(x) = ε−3ρ
(
x
ε

)
, and let

Nε
a (t) =

∑
k∈Z3

χt�a
∗ ρε(k) = t 3|�a| + t 3

∑
k �=(0,0,0)

χ̂�a
(tk)ρ̂(εk)

= t 3|�a| + Eε
a(t). (1.1)

It is not hard to see that there exists a C > 0 such that

Nε
a (t − Cε) ≤ Na(t) ≤ Nε

a (t + Cε). (1.2)

It follows that∫
[

1
2
,2

]
×
[

1
2
,2

]
×
[

1
2
,2

]|Ea(t)|2 da �
∫
[

1
2
,2

]
×
[

1
2
,2

]
×
[

1
2
,2

]|Eε
a(t)|2 da + t 4ε2. (1.3)

We conclude that it suffices to establish estimates for Eε
a(t) with ε = t−1.

Using the standard asymptotic formula for the Fourier transform of the charac-
teristic function of a bounded smooth convex domain where the Gaussian curva-
ture of the boundary is nonvanishing (see e.g. [H]), we see that χ̂�a

(tk) is a sum
of two terms of the form

e2πit |k|a t−2|k|−2
a + O((t |k|)−3), (1.4)

where
|k|a =

√
a1k

2
1 + a2k

2
2 + a3k

2
3. (1.5)

It follows that

Eε
a(t) = t

∑
k �=(0,0,0)

e2πit |k|a|k|−2
a ρ̂(εk) + t 3

∑
k �=(0,0,0)

O((t |k|)−3)ρ̂(εk)

= I + II. (1.6)

Since we can easily handle II pointwise, we turn our attention to I. Squaring,
integrating in a, and replacing the limits of integration in a by a smooth cutoff
function, we obtain
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t 2
∑

k,l �=(0,0,0)

|k|−2|l|−2ρ̂(εk)ρ̂(εl)

∫
e2πit(|k|a−|l|a)ψk,l(a) da

= t 2
∑

k,l �=(0,0,0)

|k|−2|l|−2ρ̂(εk)ρ̂(εl)Ik,l(t); (1.7)

here

ψk,l(a) =
( |k|

|k|a
)2( |l|

|l|a
)2

ψ(a), (1.8)

where ψ is a positive smooth cutoff function that is supported in
[

1
4 , 4

]
and iden-

tically equal to 1 on
[

1
2 , 2

]
. Observe that, if k �= (0, 0, 0) and l �= (0, 0, 0), then

ψk,l ∈ C∞
0 with constants uniform in k and l. It suffices to show that (1.7) is

bounded above by Cδt
2+δ for any δ > 0.

2. Preliminary Reductions

This section contains some simple observations that we shall make use of in Sec-
tion 3, where the main result of the paper is proved.

Lemma 2.1. Let δ > 0, and let N > 1
δ

+ 1. Then∑
|k|>ε−1−δ

|k|−2|εk|−N � 1. (2.1)

Proof. We have
∑

|k|>ε−1−δ

|k|−2|εk|−N � ε−N

∫
|x|>ε−1−δ

|x|−2−N dx

� ε−Nε−1−δεNεδN 1

N − 1
� 1 (2.2)

if N > 1
δ

+ 1.

Since |ρ̂(εk)| � (1 + |εk|)−N for any N > 0 and since |Ik,l(t)| � 1, Lemma 2.1
shows that in estimating (1.7) we may sum over |k|, |l| � ε−1−δ (δ > 0). In par-
ticular, this means that we may sum over |kj |, |lj | � ε−1−δ.

Lemma 2.2. Let S, S ′ be subsets of {1, 2, 3} of cardinality at most 2. Then

t 2
∑

1≤|ki |,|lj |� ε−1−δ;i∈S,j∈S ′
|k|−2|l|−2 � t 2. (2.3)

Proof. The proof is immediate since we are down to at most two variables in k

and l, so the power −2 suffices (up to logarithms).

Lemma 2.3. Let U = {k, l ∈ Z
3 × Z

3 : |kj |, |lj | � ε−1−δ; k1 = 0, l1 �= 0}. Then

t 2
∑
U

|k|−2|l|−2Ik,l(t) � t 2. (2.4)
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Proof. Let %k,l(a) = |k|a − |l|a. We have

∇%k,l(a) = 1

2

(
k2

1

|k|a − l2
1

|l|a ,
k2

2

|k|a − l2
2

|l|a ,
k2

3

|k|a − l2
3

|l|a
)
. (2.5)

Since k1 = 0, it follows that |∇%k,l(a)| � l2
1/|l|. Integrating by parts once (see

Section 5) shows that

|Ik,l(t)| � t−1 |l|
l2
1

. (2.6)

We then have

t 2 t−1
∑

1≤|kj |,|lj | � ε−1−δ;k1=0

|k|−2|l|−2|l|l−2
1

� t
∑

1≤|lj | � ε−1−δ

(|l2| + |l3|)−1l−2
1 � tε−1 � t 2. (2.7)

The same argument works if k2 = 0 and l2 �= 0, or if k3 = 0 and l3 �= 0.
The basic idea of these reductions is that we need only sum up to |k|, |l| � ε−1−δ

and that it suffices to consider the case where kj, lj �= 0 for j = 1, 2, 3.

3.
∣∣∣∣∣∣∣∣∣∣∣∣ k1

k2

∣∣∣∣∣∣−
∣∣∣∣∣∣ l1

l2

∣∣∣∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∣∣∣k1

k3

∣∣∣∣∣∣−
∣∣∣∣∣∣ l1

l3

∣∣∣∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∣∣∣k2

k3

∣∣∣∣∣∣−
∣∣∣∣∣∣ l2

l3

∣∣∣∣∣∣∣∣∣∣∣∣ �= 0

The determinant of the Hessian matrix of %k,l with respect to (a1, a2) equals

− 1

16

(k2
1 l

2
2 − k2

2 l
2
1 )

2

|k|3
a|l|3

a

, (3.1)

and its absolute value is bounded from below by a constant multiple of

(k2
1 l

2
2 − k2

2 l
2
1 )

2

|k|3|l|3
. (3.2)

It follows that

t 2
∑

1≤|kj |,|lj | � ε−1−δ;
∣∣∣∣ k1

k2

∣∣−∣∣ l1

l2

∣∣∣∣ �=0

|k|−2|l|−2Ik,l(t)

� t
∑

1≤|kj |,|lj | � ε−1−δ;
∣∣∣∣ k1

k2

∣∣−∣∣ l1

l2

∣∣∣∣ �=0

|k|− 1
2 |l|− 1

2 |k2
1 l

2
2 − k2

2 l
2
1 |−1

� t
∑

1≤|kj |,|lj | � ε−1−δ;
∣∣∣∣ k1

k2

∣∣−∣∣ l1

l2

∣∣∣∣ �=0

|k3|− 1
2 |l3|− 1

2 |k2
1 l

2
2 − k2

2 l
2
1 |−1

� tε−1
∑

1≤|kj |,|lj | � ε−1−δ;j=1,2;
∣∣∣∣ k1

k2

∣∣−∣∣ l1

l2

∣∣∣∣ �=0

|k2
1 l

2
2 − k2

2 l
2
1 |−1.

(3.3)

Either sgn(k1l2) = sgn(l1k2) or sgn(k1l2) = −sgn(l1k2). Without loss of gen-
erality, suppose that kj, lj > 0. It follows that (3.3) is bounded by the expression
of the form
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tε−1
≈log(ε−2)∑

m=0

2−m

∣∣∣∣∣∣∣
∑

1≤kj,lj � ε−1−δ,j=1,2;
2m≤|k1l2−k2 l1|≤2m+1

k−1
1 l−1

2

∣∣∣∣∣∣∣

� tε−1
≈log(ε−2)∑

m=0

2−m

∣∣∣∣
∫

1≤xj,yj≤ε−1;
2m≤|x1x2−y1y2|≤2m+1

x−1
1 x−1

2 dx dy

∣∣∣∣. (3.4)

Let

u1 = x1x2, u2 = x2; v1 = y1y2, v2 = y2. (3.5)

It follows that
du1 = x2dx1 + x1dx2, du2 = dx2;
dv1 = y2dy1 + y1dy2, dv2 = dy2.

(3.6)

Also, x1 = u1/u2 and so x1x2 = u1. Combining this with (3.5) and (3.6), we see
that (3.4) is bounded by

tε−1
≈log(ε−2)∑

m=0

2−m

∣∣∣∣
∫

1≤u1,v1≤ε−2,1≤u2,v2≤ε−1;
2m≤|u1−v1|≤2m+1

u−1
1 u−1

2 v−1
2 du dv

∣∣∣∣

� tε−1
≈log(ε−2)∑

m=0

2−m

∣∣∣∣
∫

1≤u1,v1≤ε−2;
2m≤|u1−v1|≤2m+1

u−1
1 du1 dv1

∣∣∣∣ � tε−1 ≤ t 2. (3.7)

Clearly, the same argument works if
∣∣∣∣
∣∣∣∣ k1

k3

∣∣∣∣ −
∣∣∣∣ l1l3

∣∣∣∣
∣∣∣∣ �= 0 or

∣∣∣∣
∣∣∣∣k2

k3

∣∣∣∣ −
∣∣∣∣ l2l3

∣∣∣∣
∣∣∣∣ �= 0.

4.
∣∣∣∣∣∣∣∣∣∣∣∣ k1

k2

∣∣∣∣∣∣−
∣∣∣∣∣∣ l1

l2

∣∣∣∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∣∣∣k1

k3

∣∣∣∣∣∣−
∣∣∣∣∣∣ l1

l3

∣∣∣∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∣∣∣k2

k3

∣∣∣∣∣∣−
∣∣∣∣∣∣ l2

l3

∣∣∣∣∣∣∣∣∣∣∣∣= 0

In this case, ∣∣∣∣k1

l1

∣∣∣∣ =
∣∣∣∣k2

l2

∣∣∣∣ =
∣∣∣∣k3

l3

∣∣∣∣. (4.1)

It follows that k = αl. Dominating |Ik,l(t)| by 1, we have

t 2
∑

1≤|kj |,|lj | � ε−1−δ;
∣∣ k1

l1

∣∣=∣∣ k2

l2

∣∣=∣∣ k3

l3

∣∣
|k|−2|l|−2Ik,l(t). (4.2)

We are summing over the set where l = αk. Observe that α must be of the form
m/gcd(k1, k2, k3). It follows that the expression in (4.2) is bounded by a constant
multiple of
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� t 2
∑

1≤|k| � ε−1−δ

∑
α=m/gcd(k1,k2,k3)� ε−1−δ

α−2|k|−4

= t 2
∑

1≤|k| � ε−1−δ

≈ε−1−δ/gcd(k1,k2,k3)∑
m=1

(gcd(k1, k2, k3))
2

m2
|k|−4

� t 2
∑

1≤|k| � ε−1−δ

(gcd(k1, k2, k3))
2|k|−4

= t 2
≈log(ε−1−δ)∑

n=1

2−4n
∑

|k|≈2n

≈ε−1−δ∑
j=1

∑
gcd(k1,k2,k3)=j

j 2

≈ t 2
≈log(ε−1−δ)∑

n=1

2−4n
∑

|k|≈2n/j

≈ε−1−δ∑
j=1

∑
gcd(k1,k2,k3)=1

j 2

� t 2
≈log(ε−1−δ)∑

n=1

≈ε−1−δ∑
j=1

2−4n 23n

j 3
j 2

= t 2
≈log(ε−1−δ)∑

n=1

≈ε−1−δ∑
j=1

2−nj−1 � t 2. (4.3)

This completes the three-dimensional proof. We now outline the two-dimen-
sional argument. The determinant of the Hessian matrix of %k,l in two dimensions
is given by (3.1). When

∣∣ k1
k2

∣∣ �= ±∣∣ l1
l2

∣∣, a calculation identical to the one contained

in (3.3)–(3.7) does the job. If
∣∣ k1
k2

∣∣ = ±∣∣ l1
l2

∣∣, we repeat the argument in (4.2) and
(4.3) as follows:

t
∑

1≤|kj |,|lj | � ε−1−δ;
∣∣ k1

l1

∣∣=∣∣ k2

l2

∣∣
|k|− 3

2 |l|− 3
2Ik,l(t)

� t
∑

1≤|kj |,|lj | � ε−1−δ;
∣∣ k1

l1

∣∣=∣∣ k2

l2

∣∣
|k|−1|l|−1Ik,l(t)

� t
∑

1≤|k| � ε−1−δ

∑
α=m/gcd(k1,k2 )� ε−1−δ

α−1|k|−2

= t
∑

1≤|k| � ε−1−δ

≈ε−1−δ/gcd(k1,k2 )∑
m=1

gcd(k1, k2)

m
|k|−2

� t
∑

1≤|k| � ε−1−δ

gcd(k1, k2)|k|−2
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= t

≈log(ε−1−δ)∑
n=1

2−2n
∑

|k|≈2n

≈ε−1−δ∑
j=1

∑
gcd(k1,k2 )=j

j

≈ t

≈log(ε−1−δ)∑
n=1

2−2n
∑

|k|≈2n/j

≈ε−1−δ∑
j=1

∑
gcd(k1,k2 )=1

j

� t

≈log(ε−1−δ)∑
n=1

≈ε−1−δ∑
j=1

2−2n 22n

j 2
j

= t

≈log(ε−1−δ)∑
n=1

≈ε−1−δ∑
j=1

2−nj−1 � t. (4.4)

5. Appendix: Oscillatory Integrals of the First Kind

In this paper we made use of the following basic facts about oscillatory integrals
of the form

I(t) =
∫

Rd

e itf(x)ψ(x) dx, (5.1)

where ψ is a smooth cutoff function and f is smooth. See for example [St] or
[BNW] for related information.

Theorem 5.1. Suppose that f is convex and of finite type, and supose that the
Hessian matrix of f contains an M × M submatrix of determinant ≥ c0. Then

|I(t)| � t−
M
2 c− 1

20 . (5.2)

Theorem 5.2. Suppose that |∇f(a)| � c0. Then

|I(t)| � t−1c−1
0 . (5.3)

We note that, in both theorems, the constants may depend on the upper bounds of
derivatives of f and ψ.
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