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Lattice Points inside Random Ellipsoids

S. HoFrMANN, A. IoSEVICH, & D. WEIDINGER

1. Introduction

Let
N, (1) = #{1Q2, N 29}, 0.1
where 1 1 1
Q, = {(al_ixl,az_ixg,...,aﬁxd) :er} 0.2)

with < a; < 2 and where € is the unit ball.

Let
Ny(t) = t91Q4] + Eq(1). (0.3)
A classical result due to Landau states that
2
|E.(0)] S o472 am; 0.4)

here and throughout the paper, A < B means that there exists a positive constant C
such that A < CB. Similarly, A < B, with a parameter ¢, means that given § > 0
there exists a Cs > 0 such that A < Cs¢°B.

A number of improvements over (0.4) have been obtained over the years in two
and three dimensions. The besﬂt-known result in three dimensions (to the best of
our knowledge) is |E, ()| < t6 proved by Heath-Brown [HB], improving on an
earlier breakthrough due to Vinogradov [V]. It is proved by Szego that

47
‘El,l,l(t) - ?l‘3

> tlog(t). 0.5)

46
In two dimensions, the best-known result is |E,(t)| < ¢ 7 due to Huxley [Hu].
A classical result due to Hardy says that

|Evi(6) — mt] 2 12 log3 (). 0.6)
Thus it is reasonable to conjecture that the estimate
d—1
[E.(Dl 512 0.7

holds in R? and R3.
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In higher dimensions, the problem of a pointwise estimate of E,(¢) is com-
pletely solved. It is a result of Walfisch that if d > 4 then |E ()| £ 1972 and a
logarithm may be removed in dimension 5 and greater. It is also known that if the
eccentricities (ay, ..., ag) are rational, then this estimate is essentially sharp.

It is not known if there exists a single a = (ay, a, ..., ag) such that |E, ()| £
T in any dimension. The question of finding such an @ was posed by Sarnak
in a two-dimensional setting a number of years ago. Sarnak’s question would be
answered by the following estimate.

CONJECTURE. Given any § > 0,

supt~ T PEnl e LP([,2] x [1,2] x - x [1,2]) 0.8)

t>1

for some p > 1 with a constant depending on §.

Of course, (0.8) would imply that the estimate |E,(¢)| t% holds for almost
everya € ([5,2] x [3.2] x -+ x [5,2]). We hope to address this issue in a sub-
sequent paper.

Other types of square averages of lattice point discrepancy functions have been
studied in the past and in recent years. For example, a classical result due to
Kendall is that

/ BQ + 1) N 24 — 14)Q)Pdr S 15 0.9)
']1‘2

for every convex domain whose boundary has everywhere nonvanishing Gaussian
curvature.
This result was recently sharpened by Magyar and Seeger, who proved that the

estimate (0.9) still holds in R if the exponent 2 is replaced by p < %.
Another type of average is studied in [ISS]. The authors prove that
R+h i
(ﬁ/ [#{tQNZY — td|§2||2dt> < R%, (0.10)
R

where

ay =1 with h > log(R) (0.11)
and

ag=d—2 with h~ R (0.12)

ford > 4. If d = 3 then «; = 1 and an additional factor log(R) is present. These
results improve upon those previously obtained by Muller [M]. See also [Hu] and
[ISS] and the references contained therein.

Using (0.10), (0.11), (0.12), and their proofs, one can deduce the following
result.

THEOREM 0.1.  Let E,(t) be as before. Then

2 2 2
/ff |Ea(1)]* da < R, (0.13)
373 3
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where o is exactly as described previously and where the additional log(t) factor
is still present in three dimensions.

The purpose of this paper is to give a simple and transparent proof of Theorem 0.1
in two and three dimensions. Similar two-dimensional results have recently been
obtained by Toth and Petridis [TP] using different methods. We believe it is likely
that our approach will lead to a better estimate in higher dimensions, where we
conjecture that (0.13) holds with oy = %. We hope to address this issue in a
subsequent paper.

We shall give the proof in three dimensions. We shall then indicate how a two-
dimensional proof follows from a simpler version of the same argument.

1. Basic Setup

We start with the following standard reduction. Let pg € C 8"(%, 4) with pg = 1
on [1, 2], and let p be the radial extension of p( such that f p(x)dx =1.

Let p.(x) = 8’3/0(%), and let

NI = tug, *pe(k) =1Qal +1° Y Ra, (th)p(ek)

kezZ? k#(0,0,0)
=1|Qu| + EL@). (1.1)
It is not hard to see that there exists a C > 0 such that
Ni(t — Ce) < N,(t) < NE(t + Ce). (1.2)
It follows that
/ |E.(0)*da < / |ES@)|)? da + t*e?. (1.3)
[2]x[52]x[52] [2]x[52]x[52]

We conclude that it suffices to establish estimates for Ef(r) with e = ¢,

Using the standard asymptotic formula for the Fourier transform of the charac-
teristic function of a bounded smooth convex domain where the Gaussian curva-
ture of the boundary is nonvanishing (see e.g. [H]), we see that xq, (tk) is a sum
of two terms of the form

X Kar =2 k=2 4+ O((t]k|) ), (1.4)
where
Iklo = Vaik? + ark? + ask>. (1.5)
It follows that
Exy=1 Y k| 2pek) +17 Y 0k Ek)
k#(0,0,0) k#(0,0,0)
=I1+1I. (1.6)

Since we can easily handle /7 pointwise, we turn our attention to /. Squaring,
integrating in a, and replacing the limits of integration in a by a smooth cutoff
function, we obtain
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PY IR e [T ) da

k,1(0,0,0)

=17 Y KT AER)AED I @) (1LT)
k,15(0,0,0)

W <a>—('k' )2(”—')2w<a> (1.8)
S ANTTW AN ’ ‘

where v is a positive smooth cutoff function that is supported in [i, 4] and iden-
tically equal to 1 on [%, 2]. Observe that, if £ # (0,0,0) and [ # (0, 0, 0), then
Y, € C§° with constants uniform in k and /. It suffices to show that (1.7) is
bounded above by Cs¢%>*? for any § > 0.

here

2. Preliminary Reductions

This section contains some simple observations that we shall make use of in Sec-
tion 3, where the main result of the paper is proved.

LEMMA 2.1. Let 8 > 0, and let N > 5 + 1. Then

> Ik lek Y <1 2.1

|k|>g—1-8

Proof. We have

> 1k ek ™Y < s*”/ x| 727N dx

—1-8
X|>€&
lk|>e~1- 1]

e NeTIH0gNegN <] 2.2)
N -1
if N> §+1. O

Since |p(ek)| < (1 + |ek|)™" for any N > 0 and since [, ()| <1, Lemma 2.1
shows that in estimating (1.7) we may sum over |k|, |I| < e 179 (8 > 0). In par-
ticular, this means that we may sum over |k;|, |/;| < g~1-d.

LEMMA 2.2, Let S, S’ be subsets of {1, 2, 3} of cardinality at most 2. Then
t2 > k|22 S o2 (2.3)

I<|kil, |l Se'=%5ies, jes’

Proof. The proof is immediate since we are down to at most two variables in k
and /, so the power —2 suffices (up to logarithms). UJ

LEMMA 2.3. Let U = {k, 1 € Z* x Z% : |kj|, |;| S e7'7%; ki = 0,1; # 0). Then
2 kT () S 1 (2.4)
U
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Proof. Let ®; ;(a) = |k|, — |l|,. We have
1/ k? ? k2 2 k3 12
V&, i (a) = —< L L= _2 3 _ —3). (2.5)
2\Ilkla  Ma Tkla  Ma Tkl e
Since k; = 0, it follows that |V®; ;(a)| 2 112/|l|. Integrating by parts once (see
Section 5) shows that "
_1_

i (D] St 2 (2.6)
i

‘We then have
r*r”! > k721072100072
1<[kjl, ;] S 7178 k1=0
St (Ll+ID T s e S @)

1<|lj| <e~1=8 O

The same argument works if k&, = 0 and [, # 0, orif k3 =0 and I3 # 0.
The basic idea of these reductions is that we need only sumup to ||, |/] < &~
and that it suffices to consider the case where k;,[; # 0 for j =1, 2, 3.

-8

Sl = 1B+ R =T+ =15 #o
The determinant of the Hessian matrix of ®; ; with respect to (ay, a;) equals
L (5 —klpy?
16 k3G
and its absolute value is bounded from below by a constant multiple of
(k313 — k313)?
k1?17

@3.1)

(3.2)

It follows that
2 > kI L (1)

ki Iy
<\|k; d<eml=s 2L 2 _||
l_‘kjlall_/|~£ e I #0

<1 3 K722k — 3
L

I

1s|k,»\,u,»\sr'*”:||ﬁ—'z|*

#0

1
<1 3 ksl =2 11| 2113 — K313

Iy

. < —l—B.Hk_"_
1=Ik LG S e[ = | |0

-1 272 272,-1
Ste > |22 — k227"

ki

E‘“‘;H#O 3.3)

L<Ikjl, |11 S e71=9; j=1,2;

Either sgn(k;ly) = sgn(lik;) or sgn(kily) = —sgn(l 1k, ). Without loss of gen-
erality, suppose that k;, [; > 0. It follows that (3.3) is bounded by the expression
of the form



18 S. HoFMANN, A. IoSEVICH, & D. WEIDINGER

~log(s~?)

e Y2 > k!
m=0

1<kj,l; <7170, j=1,2
2" <|kila—koly|<2"F]

~log(s™2)
Ste ) 2 /lng,yjis_l; x7xyNdxdy|. (3.4)
m=0 2" <|xpxa—y1ya|<2mH!
Let
Uy = X1X2, Uz =2X2; VI=Y1y2, V2= Y). (3.5)

It follows that

duy = xodxy + x1dx,, dur, = dxy; 36
(3.6)
dvy = yadyi + yidys,  dvy =dys.

Also, x; = u;/u, and so x;x, = u;. Combining this with (3.5) and (3.6), we see
that (3.4) is bounded by

~log(s~?)
e Z 27" /lful7U1557271§u271j2§£71;ufluglvgldudv
m=0 21n5‘u1_U1|§2m+1
~log(e %)
Ste ) 2 /liuhvlgs_zg uy'duydvy| Sre7t <tk (3.7)
m=0 2" <Jup—vy| <2
Clearly, the same argument works if
k [ k [
—1——175Oor —2——2750.
k3 l3 k3 I3
ky I ky I ky L _
szl =+ =R =12 =0
In this case,
k k k
LN [ e . 2 A.1
A 123 I3
It follows that k = «/. Dominating |I; ;(¢)| by 1, we have
2 > k22 0 (0). (4.2)

ky
. . —1-5. —
1<|k;|,|lj| <e "F‘_

k2 k3
L= ‘ i

We are summing over the set where [ = k. Observe that « must be of the form
m/gecd(ky, ko, k3). It follows that the expression in (4.2) is bounded by a constant
multiple of
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<2 Z Z a2k

1<|k| < e71=8 a=m/ged(ki, k2, k3) S e~1=3

~e170/ged (ki k2, k3)

2
2 (ged(ky, ka, k3))”
= ) > M
1<[k| Se71=0 m=1
SP Y (ged(ki, ko k3) 1k
1<|k| <e—1-8
~log(e™'7%) ~gmIm0
42 —4n )
D IR DD DD DR
n=1 lkix2n =1 ged(ki,ka,k3)=
~log(e~'~%) gm0
~ 2 —4n -2
DR DD DD DR
n=1 [kl~=2%/j  j=1 ged(ki,ka,k3)=1

~log(e™17%) ~e

sﬂZ Z

~log(e™17%) ~g—1-8

=2 Y > 2T ge (4.3)

n=1 j=1

This completes the three-dimensional proof. We now outline the two-dimen-
sional argument. The determinant of the Hessian matrix of ®; ; in two dimensions

is given by (3.1). When | | # :I:}
in (3.3)—(3.7) does theJob. If |E = :I:|%|, we repeat the argument in (4.2) and
(4.3) as follows:

. » K172 1172 (1)
1=l < e 1= | 2]
<t 3 k)1 ()
1=l 1y <o [ 2] = |2

st > o[k

1<|k| S &0 a=m/ged(k1,ky) eI

~e 17/ ged(ki,k2)

=t Z Z W“dﬂ

1|k e m=l

<t Y ged(ky, ko) k|72

1<kl el
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~log(e™17%) g0
_2 .
=2 Ty )
n=l1 [kl=2m j=1 ged(ki,ka)=j

~log(e™17%) g8
~ -2 ;
S EDIEED DD DD DI
n=1 |kl=27/j j=1  ged(ki,ka)=1

~og(e™18) ~e—l-

S t Z Z 2—211

~log(e™ 1=8y g

Y Zzﬂjlgt. (44)

n=1

5. Appendix: Oscillatory Integrals of the First Kind

In this paper we made use of the following basic facts about oscillatory integrals
of the form

(1) = f ey (x) dx, (5.1
]Rd

where Y is a smooth cutoff function and f is smooth. See for example [St] or
[BNW] for related information.

THEOREM 5.1.  Suppose that f is convex and of finite type, and supose that the
Hessian matrix of f contains an M x M submatrix of determinant > co. Then

()] <t 2ege. (5.2)
THEOREM 5.2.  Suppose that |Vf(a)| 2 co. Then
(1) <t (5.3)

We note that, in both theorems, the constants may depend on the upper bounds of
derivatives of f and .
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