Erratum

Klas Diederich \& Sergey Pinchuk

Lemma 5.1 in [1] (see the notation of that paper) makes the following claim.
Lemma 1.1. The set \tilde{F} is analytic in $V \times U_{1}^{\prime}$, and $\operatorname{dim} \tilde{F} \leq n$.
Although this statement is correct, we have since realized that the proof of the analyticity part must be corrected. However, by a nice coincidence we had already given a correct argument in our more recent paper [2] before noticing the difficulty in the original proof. Because the analyticity appears in [2] in a different context, we repeat the proof here in the form in which it belongs in [1], using all notation and definitions as introduced in that paper.

Proof of Lemma 1.1. We need to show that \tilde{F} is an analytic set in $V \times U_{1}^{\prime}$.
First, we do this for the case where \hat{F} is a (single-valued) holomorphic map. Here it is obvious. Indeed, (5.1) of [1] can be written as

$$
\begin{equation*}
\tilde{F}=\left\{\left(z, z^{\prime}\right) \in V \times U_{1}^{\prime}: \rho^{\prime}\left(\hat{F}\left(' w, h\left(^{\prime} w, \bar{z}\right)\right), \bar{z}^{\prime}\right)=0 \forall^{\prime} w \in^{\prime} \Omega\right\} \tag{2.1}
\end{equation*}
$$

where $w_{n}=h\left({ }^{\prime} w, \bar{z}\right)$ is the equation of Q_{z}. This, however, is a family of (anti) holomorphic equations for z, z^{\prime}.

Consider now the general case where $\hat{F}: \Omega \rightarrow U_{1}^{\prime}$ is a holomorphic correspondence with sheet number $m \geq 2$. There exists an analytic set $\sigma_{1} \subset \Omega$ of dimension $\leq n-1$ such that, for any $w^{0} \in \Omega \backslash \sigma_{1}$, there exists a neighborhood $U\left(w_{0}\right)={ }^{\prime} U\left(w^{0}\right) \times U_{n}\left(w^{0}\right)$ of w^{0} in which \hat{F} consists exactly of m separate holomorphic branches f^{1}, \ldots, f^{m}. If $\left(z, z^{\prime}\right) \in \tilde{F}$ and $\left(Q_{z} \cap U\left(w^{0}\right)\right) \ni w=\left({ }^{\prime} w,{ }^{\prime} w_{n}\right)$, then the functions $\left.\alpha_{j}=\alpha_{j}{ }^{\prime} w, \bar{z}, \bar{z}^{\prime}\right):=\rho^{\prime}\left(f^{j}\left({ }^{\prime} w, h\left({ }^{\prime} w, \bar{z}\right)\right), \bar{z}^{\prime}\right), j=1, \ldots, m$, satisfy the equations

$$
\begin{equation*}
\alpha_{j}=0 \tag{2.2}
\end{equation*}
$$

if $\left(z, z^{\prime}\right) \in \tilde{F}$ and $Q_{z} \cap U\left(w^{0}\right) \ni w$.
Conversely, if (2.2) holds for all $j=1, \ldots, m,^{\prime} w \in^{\prime} U\left(w^{0}\right)$, then

$$
\rho^{\prime}\left(\hat{F}\left(' w, h\left('^{\prime} w, \bar{z}\right)\right), \bar{z}^{\prime}\right)=0
$$

by analyticity for all ' $w \in '^{\prime} \Omega$ and all branches of \hat{F}.
Consider now the polynomial $P\left({ }^{\prime} w, \bar{z}\right)=t^{m}+a_{1} t^{m-1}+\cdots+a_{m}$, whose roots are exactly the α_{j} for $j=1, \ldots, m$. As symmetric polynomials of the α_{j}, the coefficients $a_{k}\left({ }^{\prime} w, \bar{z}, \bar{z}^{\prime}\right), k=1, \ldots, m$, are functions that are well-defined on $\left(^{\prime} \Omega \backslash \sigma_{1}\right) \times\left(V \backslash \sigma_{2}\right) \times U_{1}^{\prime}$, where $\sigma_{2}:=\left\{z \in V: Q_{z} \cap \Omega \subset \sigma_{1}\right\}$. Notice that they
are holomorphic in ' w and antiholomorphic in z, z^{\prime}. Furthermore, the set σ_{2} is analytic of dimension $\leq n-1$ (it is, in fact, even discrete). Thus the coefficients a_{k} may be continued to ' $\Omega \times V \times U_{1}^{\prime}$ in such a way that they remain holomorphic in ' w and antiholomorphic in z, z^{\prime}. The set \tilde{F} is now defined as

$$
\left\{\left(z, z^{\prime}\right) \in V \times U_{1}^{\prime}: a_{k}\left({ }^{\prime} w, \bar{z}, \bar{z}^{\prime}\right)=0 \forall k=1, \ldots, m, \forall^{\prime} w \in^{\prime} U\right\}
$$

Therefore, it is analytic.

References

[1] K. Diederich and S. Pinchuk, Regularity of continuous CR maps in arbitrary dimension, Michigan Math. J. 51 (2003), 111-140.
[2] ——, Analytic sets extending the graphs of holomorphic mappings, preprint, 2003.

