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1. Introduction

Let f be a polynomial automorphism of C
n. We denote by f̂ the natural exten-

sion of f to a meromorphic map in P
n. Let I + denote the indeterminacy set of

f̂ . Analogously, we denote by I− the indeterminacy set of f̂ −1. We say that f is
regular if f has degree greater than 1 and if I + ∩ I− = ∅.

In the case n = 2, the class of regular automorphisms consists of polynomial au-
tomorphisms with nontrivial dynamics—that is, finite compositions of generalized
Hénon maps (see e.g. [BS1; FM; FS]). In fact, regular polynomial automorphisms
can be considered as a natural generalization of complex Hénon maps to higher
dimensions. Higher-dimensional regular maps are for instance the so-called shift-
like automorphisms studied by Bedford and Pambuccian [BP]. For further exam-
ples we refer to Section 2. We point out that, unlike the two-dimensional case,
for n > 2 there exist polynomial automorphisms with nontrivial dynamics that are
not regular (see e.g. [CF]).

The notion of regular polynomial automorphisms was introduced by Sibony [Si],
who comprehensively studied these maps using, in particular, methods from pluri-
potential theory.

In this paper we study the dynamics of regular polynomial automorphisms from
a different point of view: We introduce the notion of hyperbolicity for a regular
polynomial automorphism f and study its dynamics. That is, we classify the or-
bits of f analogously to the case of complex Hénon maps in [BS1]. Finally, we
study the Hausdorff and box dimension of the Julia sets of f. We derive estimates
for these dimensions in the hyperbolic as well as in the nonhyperbolic case.

We will now describe our results in more detail.
Let f be a regular polynomial automorphism of C

n. We define K± = {p ∈C
n :

{f ±k(p) : k ∈ N} is bounded} and the filled-in Julia set by K = K+ ∩ K−.
Furthermore, we define the sets J ± = ∂K± and J = J + ∩ J−. The set J ± is
called the forward /backward Julia set, and J is the Julia set of f (see Section 2
for details).

We construct a filtration of C
n that has particular escape properties for the or-

bits of f (see Proposition 3.1). For n = 2, the existence of a filtration was already
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shown by Bedford and Smillie [BS1]. In this case it proved to be a useful tool for
analyzing the dynamics of f.

We apply our filtration to study hyperbolic maps. We say that f is hyperbolic
if its Julia set J is a hyperbolic set and the periodic points are dense in J. It turns
out that hyperbolicity implies that f is Axiom A (see Corollary 4.5). The latter
is the classical notion for hyperbolic diffeomorphisms. We obtain a complete de-
scription for the possibilities of the orbits in the case of a hyperbolic map f. The
following result is a consequence of Proposition 4.1 and Theorems 4.2 and 4.4.

Theorem 1.1. Let f be a hyperbolic regular polynomial automorphism of C
n,

and let p be a point in C
n. Then one of the following exclusive properties holds.

(i) There exists q ∈ J such that |f k(p)− f k(q)| → 0 as k → ∞.

(ii) There exists an attracting periodic point α of f such that |f k(p)−f k(α)| →
0 as k → ∞.

(iii) {f k(p) : k ∈N} converges to ∞ as k → ∞.

The inverse of f is also a regular polynomial automorphism; therefore, Theo-
rem 1.1 also holds for f −1. However, since f has constant Jacobian, attracting
periodic points can only exist either for f or for f −1. Theorem 1.1 implies that, in
order to understand the “complicated” dynamics of a hyperbolic map, it is suffi-
cient to understand the dynamics on its Julia set.

In the second part of this paper we derive estimates for the Hausdorff and box
dimension of the Julia sets. Let d be the degree of f ; then we denote by l−1 the di-
mension of I− (as an algebraic variety). We show that J carries the full entropy of
f, that is, htop(f |J ) = l log d (see Theorem 5.1), where htop denotes the topologi-
cal entropy. As a consequence, the upper box dimension of the Julia set is strictly
positive (see Corollary 5.6). On the other hand, if f is not volume-preserving then
the upper box dimension of K is strictly smaller than 2n (see Corollary 5.5).

It is a widely studied problem in one-dimensional complex dynamics to deter-
mine whether the Hausdorff dimension of the Julia set of a rational map is strictly
less than 2 (see [Ur] for an overview). We solve the analogous problem in the case
of hyperbolic regular polynomial automorphisms of C

n, n ≥ 2; namely, we show
that the Hausdorff dimension of J ± is strictly less than 2n. More precisely, we
derive an upper bound for the Hausdorff dimension of J ± that is given in terms of
topological pressure (see Theorem 5.13). This upper bound is strictly smaller than
2n. Our theorem improves a result of Bowen [Bo], who showed that J ± has zero
Lebesgue measure. It should be noted that, for n = 2, it is possible to construct
hyperbolic maps whose forward /backward Julia sets have Hausdorff dimension
arbitrarily close to 4 = 2n (see [Wo3]).

This paper is organized as follows. In Section 2 we present basic facts about
regular polynomial automorphisms of C

n. In Section 3 we construct a filtration
with particular escape properties for the orbits. Section 4 is devoted to the analy-
sis of hyperbolic maps. Finally, we study in Section 5 the Hausdorff and the box
dimension of the Julia sets.
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For n = 2 it is shown in [BS1] that hyperbolicity of J already implies that f is
a hyperbolic map; that is, J being hyperbolic implies the density of the periodic
points in J. In particular, this provides a weaker definition of a hyperbolic map
in the case n = 2. It would be interesting to know whether the analogous result
holds for n > 2. See also the remark at the end of Section 4.

Acknowledgment. We would like to thank the referee for carefully reading
the manuscript and for suggesting various improvements. This paper was written
while we were visiting the Center for Mathematical Analysis, Geometry, and Dy-
namical Systems of Instituto Superior Técnico in Lisbon, and we would like to
thank the Department of Mathematics for its hospitality.

2. Regular Polynomial Automorphisms

In this section we give an introduction to the dynamics of regular polynomial au-
tomorphisms of C

n. This class of maps was studied in detail by Sibony [Si]. We
refer to this article for proofs of the results presented here.

Let f be a polynomial automorphism of C
n, n ≥ 2. Then f admits an exten-

sion to a meromorphic map f̂ : P
n → P

n. Let π : C
n+1 → P

n be the canonical
projection and let F be the homogeneous polynomial map in C

n+1 corresponding
to f̂ (i.e., f̂ = π � F � π−1). Then I + = π � F −1(0) is the indeterminacy set of
f̂ . Analogously, I− denotes the indeterminacy set of f̂ −1. The sets I + and I− are
algebraic varieties in P

n of codimension at least 2 contained in the hypersurface
at infinity, which is denoted by H0.

We write f = (f1, . . . , fn). Let deg fi denote the polynomial degree of fi. Then
d = deg f = max{deg f1, . . . , deg fn} is the degree of f. A polynomial automor-
phism f of C

n is called regular if d > 1 and I + ∩ I− = ∅.
Throughout this paper, f will be a regular polynomial automorphism of C

n.

Note that the complex Jacobian detDf is constant in C
n. Therefore, we can re-

strict our considerations to the volume-decreasing case (|detDf | < 1) and to the
volume-preserving case (|detDf | = 1), as otherwise we simply consider f −1.

Examples of regular polynomial automorphisms include the well-known family
of generalized Hénon maps in C

2. Moreover, the shift-like polynomial automor-
phisms in C

n studied by Bedford and Pambuccian [BP] have the property that
a certain iterate is regular. Finally, certain classes of quadratic polynomial auto-
morphisms of C

3 studied by Fornæss and Wu [FW] contain concrete examples of
regular maps.

For a regular polynomial automorphism f of C
n, there exists an integer l > 0

such that (deg f )l = (deg f −1)n−l. Moreover, it follows that for every regular
polynomial automorphism we have dim I− = l − 1 and dim I + = n− l − 1.

Let K±, K, J ±, and J be defined as in Section 1. Then all of these are f -
invariant sets, and

K± = K± ∪ I±, (1)
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where K± denotes the closure in P
n. Although K± and J ± are closed and un-

bounded in C
n, the sets K and J are compact. If n = 2, then the set J ± is con-

nected (see [BS2]).
Furthermore, the distance between f k(p) and I− tends uniformly to zero on

compact subsets of C
n \ K+. On the other hand, the distance between f k(p)

and K tends uniformly to zero on compact subsets of K+, and the family {f k :
k ∈N} is equicontinuous in intK+, the interior of K+. The analogous properties
hold for f −1 and K−.

3. Filtration Properties

In this section we construct for a regular polynomial automorphism f a filtration
in C

n that exhibits particular escape properties for the orbits of f. Our approach
is motivated by the work of Bedford and Smillie [BS1, Sec. 2] in the case of gen-
eralized Hénon maps.

Proposition 3.1 (Filtration). Let f be a regular polynomial automorphism of
C

n. Then there exist a compact set V ⊂ C
n with K ⊂ intV and sets V +, V − ⊂

C
n such that C

n = V ∪V − ∪V + is a disjoint union and the following inclusions
hold:

(i) f(V −) ⊂ V −;
(ii) f(V − ∪ V ) ⊂ V − ∪ V ;

(iii) f −1(V +) ⊂ V +;
(iv) f −1(V + ∪ V ) ⊂ V + ∪ V.

Proof. Let V be a closed polydisk of sufficiently large radius such that K ⊂ intV.
Let V̂ + and V̂ − be open sets in P

n for which the following properties hold:

(a) I + ⊂ V̂ +, I− ⊂ V̂ −,

(b) f̂ −1(V̂ +) ⊂ V̂ +, f̂ (V̂ −) ⊂ V̂ −, (2)

(c) V̂ ± ∩V = ∅, V̂ ± ∩K∓ = ∅.
We note that property (b) can be satisfied, since I + is an attracting set for f̂ −1 and
I− is an attracting set for f̂ (see [Si, Prop. 2.2.6]). Also, V̂ ± can be chosen to
satisfy the second identity in (c) because of (1).

Let V ±
0 = V̂ ± ∩ C

n. To construct V + and V − we define

V +
k = f k(V +

0 ), V −
k = f −k(V −

0 ), (3)

where k ≥ 1 and, at each step, if V +
k ∩V −

k �= ∅ then we replace the set V −
0 with

f k(V −
k \V +

k ). To emphasize that V −
0 depends on the number of times this process

is applied, we use the notation V −
0 (k), where k is the number of iterations.

We also note that the shrinking of V −
0 (k) does not change the union of V +

k and
V −
k , and that V +

k and V −
k are disjoint for every k > 0. To prove the proposition

we will show that there exists an N > 0 such that C
n \V ⊂ V +

N ∪ V −
N . We will do

this in two steps.
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Claim 1. There exists N > 0 such that, for every p ∈C
n \V and every k ≥ N,

either f k(p)∈ V̂ − ∩ C
n or f −k(p)∈ V̂ + ∩ C

n.

In order to prove the claim, we consider a neighborhood U in P
n of the compact

set H0 \ (V̂ − ∪ V̂ +). We recall that H0 ⊂ P
n denotes the hypersurface at infin-

ity. Without loss of generality, we may assume that U ∩ I± = ∅ and U ∩V = ∅.
Furthermore, since K+ ∩H0 = I +, we may choose U such that U \ V̂ + ∩K+ =
∅. From f̂ (H0 \ I +) = I− and the uniform convergence of f k(p) to I− on com-
pact subsets of C

n \K+, we conclude that there exists N1 > 0 such that f̂ k(U) ⊂
V̂ − for k ≥ N1. In view of property (b) in (2), it follows that Claim 1 holds
for any point p ∈ (U ∪ V̂ + ∪ V̂ −) ∩ C

n and all N ≥ N1. We note that H0 ⊂
U ∪ V̂ + ∪ V̂ −.

We consider now the set D = C
n \ (U ∪ V̂ + ∪ V̂ − ∪ V ). Since K ⊂ intV, it

follows that K± is closed and, in view of (1), there exists an ε > 0 such that

K+
ε ∩K−

ε ⊂ V, (4)

where K±
ε denotes the ε-neighborhood of K±. We define the compact set D± =

D \K±
ε . Clearly D± ∩ K± = ∅, and from (4) we have D ⊂ D+ ∪ D−. From

the uniform convergence of f k(p) to I− on D−, we conclude that there exists an
N2 > 0 such that f k(p) ⊂ V̂ − for k ≥ N2 and p ∈D−. Analogously, f −k(p) ⊂
V̂ + for p ∈ D+ and for k ≥ N3 > 0. Combining all these considerations, we
conclude that Claim 1 holds for N = max(N1, N2, N3).

Claim 2. Let N be as in Claim 1. Then V −
N ∪ V +

N ∪ V = C
n.

We prove this claim by contradiction. We assume that there exists a point p ∈
C

n\(V∪V +
N ∪V −

N ). By Claim1, eitherf N(p)∈ V̂ − orf −N(p)∈ V̂ +. Iff −N(p)∈
V̂ + ∩ C

n = V +
0 then p ∈ f N(V +

0 ) = V +
N , which is a contradiction. Now we sup-

pose that f N(p)∈ V̂ −. If f N(p)∈V −
0 (N ) thenp ∈ f −N(V −

0 (N )) = V −
N ,which is

again a contradiction. The remaining case is f N(p)∈ (V̂ − ∩ C
n) \V −

0 (N ). Since
f N(p) is not contained in V −

0 (N ), it follows that f N−j(p) ∈ V +
N for some j ≤

N. But then the invariance of V +
N under f −1 implies that p ∈ V +

N . This proves
Claim 2.

We finally set V ± = V ±
N , where N is such that C

n \V ⊂ V +
N ∪ V −

N . We remark
that V − cannot be empty, because otherwise there would exist a neighborhood of
I− whose intersection with C

n is contained in V +. Then, since the closure of K−
contains I−, there exists a point p ∈ K− that is also contained in V +. By con-
struction, f −N(p)∈ V̂ +. But V̂ + ∩K− = ∅, and this contradicts the fact that K−
is an f -invariant set.

We redefine the set V by setting V = C
n \ (V + ∪ V −). This implies that

V,V +,V − are pairwise disjoint. Moreover,V is compact. Indeed, the union of V +
and V − is not changed by the shrinking and hence V + ∪ V − is open. We claim
that K ⊂ intV. To see this we note that, by continuity, for every p ∈K there exists
a neighborhood U ⊂ C

n of p such that f N(U) ∩ V̂ − = ∅ and f −N(U) ∩ V̂ + =
∅; this implies U ⊂ V.
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It follows immediately from the construction that f −1(V +) ⊂ V +, that is, in-
clusion (iii) holds. To obtain property (i), we first observe that it is sufficient to
show f(V −

0 (N )) ⊂ V −
0 (N ). Let p ∈V −

0 (N ), in particular, p /∈ f N(V +
N ). Using

the fact that f j(V +
N ) ⊂ f j+1(V +

N ), we obtain f(p) /∈ f N+1(V +
N ) ⊃ f N(V +

N ),

which implies f(p) ∈ V −
0 (N ) and so (i) holds. We now show property (ii). If

p ∈ V −, then f(p) ∈ V − by (i). Let now p ∈ V, and assume that f(p) ∈ V +.
It then follows from (iii) that p ∈ V +, a contradiction. Analogously, we obtain
property (iv).

Corollary 3.2. Let f be a regular polynomial automorphism of C
n, and let

the compact set V ⊂ C
n be defined as in Proposition 3.1. Then

f ±1(K± ∩V ) ⊂ K± ∩V,

f ±1(J ± ∩V ) ⊂ J ± ∩V.
(5)

Proof. Suppose p ∈ K+ ∩ V. Then, by Proposition 3.1, f(p) ∈ V or f(p) ∈
V −. We need only consider the case f(p)∈V −. It follows from the construction
that f N+1(p)∈V −

0 (N ) ⊂ V̂ −. On the other hand, K+ is an f -invariant set and
K+ ∩ V̂ − = ∅. This is a contradiction. Similarly, one can easily verify the other
cases. The proof of the second inclusion in (5) follows from the first inclusion and
the f -invariance of J ±.

Remark. We note that, for n = 2 (i.e., when f is a finite composition of gener-
alized Hénon mappings), V can be chosen to be a closed bidisk of a sufficiently
large radius R; moreover, V − = {(x, y)∈C

2 : |y| > R and |y| > |x|} and V + =
{(x, y)∈C

2 : |x| > R and |y| < |x|} (see [BS1]).

For a set X ⊂ C
n we define the stable and unstable sets Ws(X) and Wu(X) as

Ws(X) = {q ∈C
n : dist(f k(q), f k(X)) → 0 as k → ∞},

W u(X) = {q ∈C
n : dist(f −k(q), f −k(X)) → 0 as k → ∞}. (6)

Lemma 3.3. Let f be a regular polynomial automorphism of C
n. Then the fol-

lowing statements hold:

(i) Ws(K) = K+;
(ii) Wu(K) = K−;

(iii)
⋃

f k(V +) = C
n \K−;

(iv)
⋃

f −k(V −) = C
n \K+;

(v) if |detDf | = 1, then intK+ = intK− = intK;
(vi) if |detDf | < 1, then K− has zero Lebesgue measure (in particular, we have

intK− = ∅);
(vii) {f ±k : k ∈N} is a normal family on intK±.

Proof. The proof of inclusions (i) and (ii) is analogous to that in the case n = 2
(see [BS1]).

(iii) We first assume p ∈ C
n \ K−. Then f −k(p) converges to I + and so

f −k(p)∈V +
0 ⊂ V + for sufficiently large k. On the other hand, if p ∈⋃

f k(V +)
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then, by Proposition 3.1(i), there exists a k0 ∈ N such that f −k(p) ∈ V + for all
k ≥ k0. Therefore, f −k(p) cannot converge to K ⊂ intV. Hence p /∈ K−, and
property (iii) holds.

(iv) Suppose p ∈ C
n \ K+. Then f k(p) converge to I− as k → ∞. Let us

show that C
n \ K+ ⊂ ⋃

f −k(V −). Suppose on the contrary that f k(p) /∈ V −
for any k > 0. Then, since the orbit of p converges to I−, there exists a k0 >

0 such that f k(p) ∈ V + for all k > k0. Let N be as in Claim 1 of the proof of
Proposition 3.1, and let k > N be arbitrary. Then f k(p)∈V + implies f k−N(p)∈
V +

0 ; that is, all iterates of p stay in V +
0 . But V +

0 ∩ V̂ − = ∅ and therefore, since
V̂ − is a neighborhood of I−, this contradicts the fact that f k(p) converge to I−.
The opposite inclusion can be proven similarly to case (iii).

(v) Assume on the contrary that there exists a ballB = B(p, r) ⊂ intK+\intK.

Without loss of generality we may assumeB ⊂ intK+\K, in particular,B ⊂ C
n\

K−. Since f −k converges uniformly to I + on compact subsets of C
n \K−, there

exists a subsequence (kj )j∈N such that the sets f −k1(B), f −k2(B), f −k3(B), . . .

are pairwise disjoint. Using that f −1 is volume-preserving, we obtain that
vol(intK+) = ∞ (here “vol” denotes the Lebesgue measure in C

n). Thus there
exists an r > 0 such that vol(B(0, r) ∩ intK+) > vol(V ). By the uniform
convergence of f k on compact subsets of K+, there exists a k0 ∈ N such that
f k0(intK+ ∩ B(0, r)) ⊂ V. But this is a contradiction to vol(f k0(intK+ ∩
B(0, r))) = vol(intK+ ∩ B(0, r)) > vol(V ). Thus intK+ = intK holds. The
proof of the identity intK− = intK is analogous.

Property (vi) follows analogously to the case n = 2 (see [FM]). Finally, (vii)
follows from [Si, Prop. 2.2.7].

4. Hyperbolicity

For generalized Hénon maps in C
2, the concept of hyperbolicity was studied in

detail by Bedford and Smillie (see [BS1]). Using the filtration properties obtained
in Section 3, we generalize in this section some of the results of [BS1] to regular
polynomial automorphisms of C

n.

We first give some basic definitions and refer the reader to [KH] for details. Let
f be a regular polynomial automorphism of C

n. We say that a compact f -invariant
set(⊂ C

n is a hyperbolic set for f if there exists a continuousDf -invariant split-
ting of the tangent bundle T(C

n = Eu ⊕Es such that Df is uniformly expanding
on Eu and uniformly contracting on Es.

An important feature of hyperbolic sets is that we can associate with each point
p ∈( its local unstable /stable manifold W

u/s
ε (p). The local unstable /stable mani-

folds are complex manifolds of the same (complex) dimension as Eu/s
p . We denote

the (global) unstable /stable manifolds at a point p (see (6)) by Wu/s(p). It follows
from the work of Jonsson and Varolin [JV] that there exists a Borel setX ⊂ (with
µ(X) = 1 for every f -invariant Borel probability measure µ on ( such that, for
all p ∈X, the global unstable /stable manifolds Wu/s(p) are biholomorphic copies
of C

k, k = dimC E
u/s
p . Such a set X is also called a set of full probability. We
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call dimC E
u/s
p the unstable/stable index of ( at p. Note that the unstable /stable

index is locally constant. If ( is a hyperbolic set for f, we say that ( is locally
maximal if there exists a neighborhood U of ( such that every hyperbolic set of
f in U is contained in (. We say that an f -invariant set X has a local product
structure if for all p, q ∈X we have Ws(p) ∩Wu(q) ⊂ X. We now consider the
situation when J is a hyperbolic set for f.

Proposition 4.1. Let f be a regular polynomial automorphism of C
n, and sup-

pose that J is a hyperbolic set for f. Then the following statements hold:

(i) if p ∈ J, then Ws/u(p) ⊂ J ±;
(ii) the set J has a local product structure;

(iii) the set J is locally maximal, and Wu/s(J ) = ⋃
p∈J W u/s(p);

(iv) Ws/u(J ) ⊂ J ±.

Proof. (i) Without loss of generality, we show the inclusion only for Ws(p); the
proof for Wu(p) is analogous. Clearly, Ws(p) ⊂ K+. Suppose there exists a
point q ∈ Ws(p) ∩ intK+. Then, since the family {f k : k ∈ N} is normal in a
neighborhood of q, the derivatives of f k at q are bounded. On the other hand, by
extending the hyperbolic structure of f to a neighborhood of J, it follows that the
derivatives of f k at q are unbounded.

(ii) If p, q ∈ J, then by (i) we have Ws(p)∈ J + and Wu(q)∈ J−. Therefore,
the intersection is in J.

(iii) The local product structure combined with hyperbolicity implies that J is
locally maximal (see [Sh, Prop. 8.22]). The second statement is an application of
the shadowing lemma for locally maximal hyperbolic sets (see [Bo]).

Finally, (iv) follows from (i) and (iii).

Let C be a connected component of intK+. We say that C is periodic if there
exists an N ∈ N such that f N(C) = C. Otherwise we call C wandering. If α
is a periodic point such that for all p in a neighborhood of α we have f k(p) →
f k(α) as k → ∞, then we call α an attracting periodic point. Furthermore, C =
{p ∈ C

n : f k(p) → f k(α)} is a periodic connected component of intK+ and is
called the basin of attraction of α.

Theorem 4.2. Let f be a regular polynomial automorphism of C
n with

|detDf | ≤ 1. Suppose J is a hyperbolic set for f. Then the following hold:

(i) there are no wandering components in intK+;
(ii) each periodic component of intK+ is the basin of attraction of an attracting

periodic point;
(iii) there are at most finitely many basins of attraction.

The proof of Theorem 4.2 is analogous to that of Theorem 5.6 in [BS1]. We note
that the references to Propositions 5.1 and 5.2 in the proof of [BS1] should be re-
placed by references to Proposition 4.1 stated here.

Corollary 4.3. Let f be a regular polynomial automorphism of C
n. Assume

that J is hyperbolic and that |detDf | = 1. Then intK+ = intK− = intK = ∅.
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Proof. By Theorem 4.2, the interior of K+ is a finite union of basins of attrac-
tion; but since |detDf | = 1, it is impossible to have a basin of attraction. Hence
intK+ = ∅. Therefore, the corollary follows from Lemma 3.3(v).

We need the following definitions. Let X be a topological space and let T : X →
X be a continuous map. We call x ∈X a nonwandering point of T if, for every
neighborhood U of x, there exists a k ∈ N such that U ∩ T k(U) �= ∅. Otherwise
we call x wandering. The set of nonwandering points of T is called the nonwan-
dering set of T and is denoted by -(T ).

We say that a regular polynomial automorphism f of C
n is hyperbolic if J is a

hyperbolic set for f and the periodic points of f |J are dense in J. We note that
this definition of hyperbolicity is equivalent to J being hyperbolic and -(f |J ) =
J (see e.g. [KH]).

Theorem 4.4. Let f be a hyperbolic regular polynomial automorphism of C
n

with |detDf | ≤ 1. Then:

(i) Ws(J ) = J +;
(ii) Wu(J ) = J− \ {α1, . . . , αm}, where the αi are the attracting periodic points

of f ;
(iii) -(f ) = J ∪ {α1, . . . , αm}.
Proof. (i) To prove Ws(J ) = J + we first observe that, by Proposition 4.1(iv),
Ws(J ) ⊂ J +. To show the reverse inclusion we notice that Lemma 3.3(i) im-
plies that J + ⊂ Ws(K). If p ∈ J + then the iterates of p converge to K ∩ J + =
K− ∩ J +. To prove (i) we claim that K− ∩ J + = J− ∩ J + = J. In the case
|detDf | = 1, the claim follows from Lemma 3.3(v). For |detDf | < 1, the claim
follows from Lemma 3.3(vi).

(ii) Obviously every attracting period point belongs to intK+ and so Wu(J ) ⊂
J− \ {α1, . . . , αm} follows from Proposition 4.1(iv). In order to show the opposite
inclusion we consider p ∈ J− \ {α1, . . . , αm}. If p ∈C

n \K+, then the backward
orbit of p converges to K ∩ ∂(Cn \ K+) = K ∩ J +. Using the fact that J− is a
closed invariant set, we conclude that the backward orbit of p must converge to
J +∩J− = J. If p ∈ J +, then p ∈ J and there is nothing to prove. To complete the
proof of (ii) we must consider the case p ∈ intK+. By Theorem 4.2, there exists
an attracting periodic point αi such that p is contained in the basin of attraction
C of αi. Without loss of generality we assume that αi is an attracting fixed point
(i.e., that C is an f -invariant component). Let V be as in Proposition 3.1, and let
U ⊂ V ∩ C be an open neighborhood of αi such that f(Ū) ⊂ U. Such a set U
always exists because αi is an attracting fixed point. Obviously,

⋃
f −k(U) is an

exhaustion of C. Thus
⋃

f −k(U ∩ J−) is an exhaustion of C ∩ J−. Therefore,
since p ∈ K, we may conclude that the backward orbit of p cannot have a clus-
ter point in C and hence must converge to ∂C ⊂ J +. Thus p ∈ J− \ {α1, . . . , αm}
implies p ∈Wu(J ).

(iii) Evidently every periodic point of f belongs to the nonwandering set of f.
Since the nonwandering set is closed, it follows that -(f ) ⊃ J ∪ {α1, . . . , αm}.
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Let p ∈C
n be a nonwandering point for f. If p is not an attracting periodic orbit

then p can not belong to intK+, since otherwise Theorem 4.2 would imply that
its forward orbit converges to an attracting periodic orbit. On the other hand p /∈
C

n \K+, because in this case the forward orbit of p would converge to I−. Hence
p ∈ J +, and it follows from (i) that p /∈ J + \ J. This implies p ∈ J, which com-
pletes the proof.

We say that a diffeomorphism on a Riemannian manifold is Axiom A if its non-
wandering set is a hyperbolic set and the periodic points are dense in the nonwan-
dering set.

Corollary 4.5. Let f be a hyperbolic regular polynomial automorphism of C
n.

Then f is Axiom A.

Proof. This is a consequence of Theorem 4.4(iii) and the fact that every attract-
ing periodic point is an isolated hyperbolic set.

Remarks. 1. As noted in Section 1, if n = 2 and J is hyperbolic then the pe-
riodic points are dense in J (see [BS1]). This provides a weaker definition of
hyperbolic maps. We do not know whether the analogous result holds in the case
n > 2. However, there exist examples of diffeomorphisms of higher-dimensional
real manifolds with the property that the nonwandering set is a hyperbolic set, but
the periodic points are not dense in it (see [Da]).

2. It is shown in [MNTU, Thm. 9.3.14] that, when n = 2, hyperbolicity is
equivalent to Axiom A. We do not know whether the analogous result holds for
n > 2. The difficulty is proving that the Julia set of an Axiom A regular polyno-
mial map is a subset of the nonwandering set. This is shown in the case n = 2
using methods that are not available in higher dimensions.

5. Dimension Theory

In this section we study the Hausdorff dimension and box dimension of the Julia
sets of a regular polynomial automorphism of C

n.

We first prove a result about the entropy of f that is also of independent inter-
est. Namely, we show that the Julia set carries the full entropy of f. We then apply
this result to study the dimensions of the Julia sets.

For a continuous map T on a compact metric space X, we denote by htop(T )

the topological entropy of T (see [Wa] for details).

Theorem 5.1. Let f be regular polynomial automorphism of C
n, and assume

that I− has dimension l − 1. Then htop(f |J ) = l log d.

Proof. Without loss of generality we assume |detDf | ≤ 1. We claim that K \J ⊂
intK+. Indeed, we have K = (intK+ ∪ J +) ∩ (intK− ∪ J−). This implies

K \ J ⊂ intK+ ∪ intK−. (7)
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If |detDf | < 1 then, by Lemma 3.3(vi), intK− = ∅. Therefore, (7) implies
K \ J ⊂ intK+. On the other hand, if |detDf | = 1 then by Lemma 3.3(v) we
have intK+ = intK− = intK. Again by (7) we obtain K \ J ⊂ intK+.

Sibony observed in [Si] that htop(f |K) = l log d. Let δ > 0. It follows from
the variational principle (see e.g. [Wa]) that there exists an f -invariant probabil-
ity measure µ on K with hµ(f |K) > l log d − δ, where hµ(f |K) denotes the
measure-theoretic entropy of f |K with respect to µ. Let τ be an ergodic decom-
position of µ. This means that τ is a probability measure on the metrizable space
M of f -invariant probability measures on K that puts full measure on the subset
ME of ergodic measures. Furthermore,∫

M

∫
K

ϕ dν dτ(ν) =
∫
K

ϕ dµ (8)

for every ϕ ∈C(K,R). Since

hµ(f |K) =
∫

M
hν(f |K) dτ(ν), (9)

there exists a ν ∈ME such that hν(f |K) > l log d − δ.

Next we claim that ν(J ) = 1. If not, then ν(K \ J ) > 0. Since ν is ergodic,
this would imply ν(K \ J ) = 1 and ν(J ) = 0. By work of Brin and Katok [BK],
for ν-a.e. p ∈K (and thus in particular for ν-a.e. p ∈K \ J ) there exists the limit

hν(p) = lim
ε→0

lim
k→∞−1

k
log ν(B(p, ε, k)), (10)

where

B(p, ε, k) = {q ∈C
n : |f i(q)− f i(p)| < ε for i = 1, . . . , k − 1}. (11)

The number hν(p) (if it exists) is called the local entropy of ν at p. Furthermore,
the function p �→ hν(p) is ν integrable, and we have

hν(f |K) =
∫
K

hν(p) dν =
∫
K\J

hν(p) dν. (12)

The right-hand equality in (12) follows from ν(J ) = 0. Let now p ∈ K \ J be
such that the limit in (10) exists. In particular, p ∈ supp ν. Choose ε > 0 such that
B(p, ε) ⊂ intK+. It follows from Lemma 3.3(vii) that the derivatives of f k (k ∈
N) are bounded onB(p, ε). Applying the mean value theorem yields the existence
of ε ′ > 0 such that B(p, ε ′) ⊂ B(p, ε, k) for all k ∈ N. Hence ν(B(p, ε, k)) ≥
ν(B(p, ε ′)) > 0 for all k ∈N. Therefore, (10) implies hν(p) = 0 and by (12) we
obtain hν(f |K) = 0. This is a contradiction, so we must have ν(J ) = 1, which
implies that hν(f ) = hν |J(f ). Finally, since δ can be chosen arbitrarily small, the
variational principle yields htop(f |J ) = l log d.

The following result is a consequence of the proof of Theorem 5.1.

Corollary 5.2. Let f be a regular polynomial automorphism of C
n. Then

htop(f |K \ J ) = 0.
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We note that, in Corollary 5.2, htop denotes the entropy for maps on noncompact
spaces (see [Wa]).

5.1. Dimension for a General Map

We now consider the dimensions of the Julia sets without the assumption of
hyperbolicity.

Let f be a regular polynomial automorphism of C
n and let V ⊂ C

n be a com-
pact set with K ⊂ intV and f ±1(J ± ∩ V ) ⊂ J ± ∩ V (see Corollary 3.2). We
define

s±V = lim
k→∞

1

k
log

(
max{‖Df ±k(p)‖ : p ∈ J ± ∩V }). (13)

The submultiplicativity of the operator norm guarantees the existence of the limit
defining s±V . Since all norms in C

n are equivalent, the value of s±V is independent
of the norm. It follows from Theorem 5.1 (also using the variational principle)
that there exists an f -invariant probability measure on J with positive measure-
theoretic entropy. Therefore, Ruelle’s inequality implies that s±V is strictly positive.

Lemma 5.3. The value of s±V is independent of the choice of V.

Proof. It is shown in Lemma 3.3 that Ws(K) = K+ and Wu(K) = K−. There-
fore, the proof follows by a standard argument.

In view of Lemma 5.3 we set s± = s±V . Given a set A ⊂ C
n ∼= R

2n, we denote
by dimH A the Hausdorff dimension of A and (provided A is bounded) by dimB A

its upper box dimension (see [Ma] for details). Then dimH A ≤ dimB A holds for
an arbitrary set A, while the equality holds if A is a sufficiently regular set. We
now consider the volume-decreasing case (i.e., when |detDf | < 1). The follow-
ing theorem provides an upper bound for the dimension of K−.

Theorem 5.4. Let f be a volume-decreasing regular polynomial automorphism
of C

n. Assume that V is as in Proposition 3.1. Then

dimB K− ∩V ≤ 2n+ 2 log|detDf |
s−

< 2n. (14)

Proof. By Lemma 3.3(vi), K− = J−. Therefore, it is sufficient to show inequal-
ity (14) for J− ∩ V. Note that the real Jacobian of f −1 as a map of R

2n ∼= C
n is

equal to |detDf |−2. The result now follows immediately from [Wo2, Thm. 1.1].

Remark. Since Wu(K) = K−, we can define an exhaustion Vk = f k(V ∩K−)
of K−. This implies that the upper bound in inequality (14) provides also an upper
bound for the Hausdorff dimension of K−.

Corollary 5.5. Let f be a regular polynomial automorphism of C
n that is not

volume-preserving. Then dimB K < 2n.

Proof. If f is not volume-preserving, then either f or f −1 is volume-decreasing.
The result now follows immediately from Theorem 5.4.
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Remark. It should be noted that Corollary 5.5 does not hold without the assump-
tion that f is not volume-preserving. In fact, there exist volume-preserving regular
polynomial automorphisms with a Siegel ball, in which case K has a nonempty
interior.

As consequence of Theorem 5.1, we obtain that the upper box dimension of J is
strictly positive.

Corollary 5.6. Let f be a regular polynomial automorphism of C
n, and as-

sume that I− has dimension l − 1. Define

s± = lim
k→∞

1

k
log

(
max{‖Df ±k(p)‖ : p ∈ J }).

Then

dimB J ≥ max

{
l log d

s+
,
l log d

s−

}
. (15)

In particular, dimB J > 0.

Proof. We have htop(f |J ) = htop(f
−1|J ) = l log d. Therefore, inequality (15)

follows from [KH, Thm. 3.2.9] and a standard limit argument. Finally, s± > 0
follows analogously as the positivity of s±V (see (13)), and therefore dimB J > 0.

Next we give a lower bound for the Hausdorff dimension of J + in the case when
I− has dimension zero. For this we introduce the positive Green function

G+(p) = lim
k→∞

1

d k
log+|f k(p)|. (16)

We note that G+ is a well-defined Hölder-continuous function with K+ = {G+ =
0} (see [Si] for details).

Proposition 5.7. Let f be a regular polynomial automorphism of C
n. Assume

that I− has dimension zero and let s+ be as in (13). Then, for all s+0 > s+, the
positive Green function G+ is Hölder-continuous on compact subsets of C

n with
Hölder exponent (log d)/s+0 . Furthermore,

dimH J + ≥ 2n− 2 + log d

s+
> 2n− 2. (17)

Proof. Let s+0 > s+. Using the filtration properties (see Proposition 3.1), one can
show the Hölder continuity ofG+ on compact subsets of C

n with Hölder exponent
(log d)/s+0 using arguments analogous to those used by Fornæss and Sibony [FS]
in the case n = 2 (see also [Si]). By [Si, Prop. 2.2.10], the positive Green func-
tion G+ is pluriharmonic on C

n \ J +. Furthermore, the maximum principle for
pluriharmonic functions implies that G+ cannot be extended as a pluriharmonic
map to any neighborhood of any point of J +. Inequality (17) now follows by a
classical result of Carleson about the Hausdorff dimension of removable sets for
Hölder-continuous harmonic functions (see [Ca]).
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Remarks. (i) The analogous result holds for the Hausdorff dimension of J− if
I + is zero-dimensional.

(ii) We note that Proposition 5.7 is of interest only if intK+ = ∅, since other-
wise J + has topological dimension 2n− 1.

5.2. Dimension for Hyperbolic Maps

We now consider hyperbolic maps. It is well known that a locally maximal hy-
perbolic set, which carries positive topological entropy, has positive Hausdorff
dimension. For a hyperbolic regular automorphism f of C

n, the positivity of the
Hausdorff dimension of the Julia set can be shown (for instance) by the following
argument.

Let J = J1 ∪ · · · ∪ Jm be the decomposition of J into basic sets (see e.g. [Bo]
for details); we note that, when n = 2, the Julia set J is the unique basic set of f
that is not an attracting periodic orbit (see [BS1]). Since htop(f |J ) = l log d (see
Theorem 5.1), there exists an i ∈ {1, . . . , m} such that htop(f |Ji) = l log d. Here
l = dim I−+1. It is a well-known fact that there exists a unique f -invariant prob-
ability measure µi of maximal entropy for f |Ji (see e.g. [KH]). Moreover, µi is
ergodic. We define

s±i = lim
k→∞

1

k
log

(
max{‖Df ±k(p)‖ : p ∈ Ji}

)
. (18)

Applying [Y, Cor. 5.1] then yields

l log d

(
1

s+i
+ 1

s−i

)
≤ dimH µi ≤ dimH Ji ≤ dimH J, (19)

where dimH µi = inf{dimH A : µi(A) = 1} denotes the Hausdorff dimension of
the measure µi. Note that, in general, the Hausdorff dimension of an f -invariant
measure provides only a rough estimate of the Hausdorff dimension of the Julia
set. In fact, it was shown in [Wo3] that, for a generic hyperbolic polynomial auto-
morphism f of C

2, there exists an ε > 0 (which depends on f ) such that dimH ν <

dimH J − ε for all ergodic f -invariant probability measures ν.
Let f be a hyperbolic regular polynomial automorphism of C

n, let Ji ⊂ J be
a basic set of f, and let ϕ ∈ C(Ji,R). We denote by P(f |Ji, ϕ) the topological
pressure of ϕ with respect to f |Ji (see [KH] for the definition and details). We
consider the function φu = −log‖Df |Eu‖. Note that φu is Hölder-continuous;
see [Bo].

We now consider the case when the unstable index Ji is identically 1.

Theorem 5.8. Let f : C
n → C

n be a hyperbolic regular polynomial automor-
phism and let Ji ⊂ J be a basic set of f. Assume that the unstable index of
Ji is identically 1. Then t u = dimH W u

ε (p) ∩ Ji is independent of p ∈ Ji and
0 < tu < 2. Moreover, t u is given by the unique solution of

P(f |Ji, tφu) = 0. (20)
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Equation (20) is usually called the Bowen–Ruelle formula. We refer to t u as the
Hausdorff dimension of the unstable slice. Theorem 5.8 is a special case of [Pe,
Thm. 22.1]. In the case n = 2, Theorem 5.8 is due to Verjovsky and Wu [VW].
We note that in this situation the stable index of the basic set J is also identically
1, and we obtain the analogous result to Theorem 5.8 for the Hausdorff dimension
of the stable slice t s = dimH W s

ε (p)∩J. Moreover, dimH J = t u+ t s (see [Wo1]
and the references therein).

The following result is a version of [Wo1, Thm. 4.1]. The proof is analogous.

Theorem 5.9. Let f be a hyperbolic regular polynomial automorphism of C
n

and letJi ⊂ J be a basic set off . Assume that the unstable index ofJi is identically
1. Then dimH W s(Ji) = t u+2n−2. In particular, 2n− 2 < dimH W s(Ji) < 2n.

Let now A ⊂ C
k be an open set and let {fa : a ∈A} be a holomorphic family of

hyperbolic regular polynomial automorphisms of C
n. Let a0 ∈ A and let Ja0,i ⊂

Ja0 be a basic set of fa0 . Let U ⊂ C
n be a neighborhood of Ja0,i with the prop-

erty that, for all a ∈ A close enough to a0, fa has a basic set Ja,i ⊂ U such that
fa0 |Ja0,i is conjugate to fa|Ja,i . For p ∈ Ja,i we denote by t ua the Hausdorff di-
mension of Wu

ε (p) ∩ Ja,i . Recall that, by Theorem 5.8, t ua does not depend on p.

The following result can be proven analogously to the corresponding results in the
case n = 2 (see [VW; Wo1]).

Theorem 5.10. Assume that the unstable index of Ja,i is identically 1 in a neigh-
borhood of a0 ∈ A. Then the functions a �→ t ua and a �→ dimH W s(Ja,i ) are
real-analytic and plurisubharmonic in a neighborhood of a0 ∈A.

Remark. The corresponding versions of Theorems 5.8, 5.9, and 5.10 for the sta-
ble slices also hold—provided that the stable index is identically 1.

Let f be a hyperbolic regular polynomial automorphism of C
n and let Ji ⊂ J be

a basic set of f. We define ϕu/s : Ji → R by ϕu/s(p) = ∓log|λ(p)|, where λ(p)

denotes the Jacobian of the linear map Df ±1(p)|Eu/s
p . The following theorem is

the main result of this section.

Theorem 5.11. Let f be a hyperbolic regular polynomial automorphism of C
n,

and let Ji ⊂ J be a basic set of f. Define

Ws/u
ε (Ji) =

⋃
p∈Ji

W s/u
ε (p),

s± = lim
k→∞

1

k
log

(
max{‖Df ±k(p)‖ : p ∈ Ji}

)
.

Then

dimB W
s/u
ε (Ji) ≤ 2n+ P(f |Ji, ϕu/s )

s±
< 2n. (21)

Proof. We prove the result only for Ws
ε (Ji), as the proof for Wu

ε (Ji) is entirely
analogous. Since Ji ⊂ J, its unstable index must be at least 1, which implies
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s+ > 0. By Proposition 4.1, Ws
ε (Ji) ⊂ J +; in particular, Ws

ε (Ji) is not a neigh-
borhood of Ji. Therefore, we may conclude from [Bo, Prop. 3.10, Prop. 4.8,
Thm. 4.11] that P(f |Ji, ϕu) < 0. This gives the inequality on the right.

Let δ > 0. It follows by a simple continuity argument that there exist ε > 0 and
kδ ∈N such that for all p ∈B(W s

ε (Ji), ε) = {p ∈C
n : ∃q ∈Ws

ε (Ji), |p− q| < ε}
we have

‖Df kδ(p)‖ < exp(kδ(s
+ + δ)). (22)

From now on we consider the map g = f kδ . Note that Ji is also a basic set of
g. Evidently Ws

ε (Ji) is forward-invariant under g. It follows from the variational
principle that P(g|Ji, ϕu) = kδP(f |Ji, ϕu); moreover, s+g = kδ s

+
f . It is thus suf-

ficient to prove the left-hand side of inequality (21) for g. Let p ∈ Ji and k ∈ N.

We recall that

B(p, ε, k) = {q ∈C
n : |gi(p)− gi(q)| < ε, i = 0, . . . , k − 1} (23)

(see (11)), and we define B(Ji, ε, k) = ⋃
p∈Ji B(p, ε, k). Making ε smaller if nec-

essary, it follows from [Bo, Prop. 4.8] that

P(g|Ji, ϕu) = lim
k→∞

1

k
log

(
vol(B(Ji, 2ε, k))

)
. (24)

For simplicity we write b = P(g|Ji, ϕu). From (24) we obtain that if k is suffi-
ciently large then

vol(B(Ji, 2ε, k)) < exp(k(b + δ)). (25)

For all k ∈N, we define real numbers

rk = ε

exp(s+ + δ)k
(26)

and neighborhoodsBk = B(W s
ε (Ji), rk) ofWs

ε (Ji). Let q ∈Bk. Then there exists a
p ∈Ws

ε (Ji) with |p− q| < rk. An elementary induction argument in combination
with the mean-value theorem implies |gi(p)−gi(q)| < ε for all i ∈ {0, . . . , k−1}.
Since p is contained in the local stable manifold of size ε of a point in Ji, it follows
that q ∈B(Ji, 2ε, k). Hence Bk ⊂ B(Ji, 2ε, k). Therefore, (25) implies

vol(Bk) < exp(k(b + δ)) (27)

for sufficiently large k. Let us recall that, for t ∈ [0, 2n], the t-dimensional upper
Minkowski content of a bounded set A ⊂ C

n ∼= R
2n is defined by

M ∗t(A) = lim sup
ρ→0

vol(Aρ)

(2ρ)2n−t
, (28)

where Aρ = {p ∈C
n : ∃q ∈A : |p − q| ≤ ρ}. Let t ∈ [0, 2n] and ρk = rk/2 for

all k ∈N. Then we have
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M ∗t(W s
ε (Ji)) = lim sup

ρ→0

vol(W s
ε (Ji)ρ)

(2ρ)2n−t

≤ lim sup
k→∞

vol(W s
ε (Ji)ρk )

(2ρk+1)
2n−t

≤ lim sup
k→∞

vol(Bk)

(rk+1)
2n−t

≤ exp(s+ + δ)2n−t

ε2n−t
lim
k→∞(exp(s+ + δ)2n−t exp(b + δ))k. (29)

Let t > 2n+ (b + δ)/(s+ + δ). Then exp(s+ + δ)2n−t exp(b + δ) < 1. This im-
plies that M ∗t(W s

ε (Ji)) = 0; in particular, t ≥ dimB W
s
ε (Ji) (see [Ma]). Since δ

can be chosen arbitrarily small, the result follows.

Corollary 5.12. Let f : C
n → C

n be a hyperbolic regular polynomial auto-
morphism. Then dimB J < 2n.

Proof. By the spectral decomposition, J is the union of finitely many basic sets.
By Theorem 5.11, each of these basic sets has upper box dimension strictly smaller
than 2n, and the result follows.

Remark. We note that Corollary 5.12 is of interest only iff is volume-preserving,
because otherwise dimB J < 2n holds even without the assumption of hyperbol-
icity (see Corollary 5.5).

Theorem 5.13. Let f be a hyperbolic regular polynomial automorphism of C
n,

and let J1, . . . , Jm be the basic sets of f that are contained in J. For each i ∈
{1, . . . , m}, define

s±i = lim
k→∞

1

k
log

(
max{‖Df ±k(p)‖ : p ∈ Ji}

)
and b±i = P(f |Ji, ϕu/s ). Then

dimH J ± ≤ 2n+ max

{
b±i
s±i

}
< 2n. (30)

Proof. Without loss of generality we show the result only for J +. By Theorem 5.11
we have

dimB

( ⋃
p∈Ji

W s
ε (p)

)
≤ 2n+ b+i

s+i
< 2n (31)

for all i = 1, . . . , m. This implies

dimB

( m⋃
i=1

⋃
p∈Ji

W s
ε (p)

)
≤ 2n+ max

{
b+i
s+i

}
< 2n. (32)

Hence



648 Rasul Shafikov & Christ ian Wolf

dimH

( ⋃
p∈J

W s
ε (p)

)
≤ 2n+ max

{
b+i
s+i

}
< 2n. (33)

Because
Ws(p) =

⋃
k∈N

f −k(W s
ε (f

k(p))) (34)

for all p ∈ J, inequality (30) follows from Theorem 4.4(i), Proposition 4.1(iii),
and the fact that the Hausdorff dimension is countable union stable.

Remark. In the case n = 2, the result dimH J ± < 4 was already shown in
[Wo2]. However, the methods used in [Wo2] crucially depend on the fact that the
unstable /stable index of J is identically 1, and hence they do not apply to the case
n > 2.
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