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Brieskorn [4] has observed that, if we want to capture information regarding local
qualitative properties of complex analytic curves in C

2, we should not approach
them by an abstract form. This statement is justified by the following result.

Proposition 0.1. Any irreducible analytic curve in C
2 is homeomorphic to

(C, 0).

This result also justifies the following equivalence relation between germs of ana-
lytic subsets in C

d .

Definition 0.2. Let X and Y be analytic subsets of C
d with x ∈X and y ∈ Y.

The germ (X, x) is topologically equivalent to (Y, y) if there exists a homeomor-
phism F : (Cd , x)→ (Cd , y), such that F(X) = Y.
This equivalence relation is finer than the abstract approach in the following sense:
if (X, x) is topologically equivalent to (Y, y), then (X, x) is homeomorphic to
(Y, y). In fact, this approach is strictly finer than the abstract approach; for exam-
ple, the germ of a complex curve (X, 0) defined byX : z2 = w3 is homeomorphic
but is not topologically equivalent to (C, 0).

The topological equivalence of plane curves has been intensively studied since
the 1920s. The mathematicians K. Brauner, K. Kähler, W. Burau, and O. Zariski
are responsible for the solution of this problem. An excellent survey of the tech-
niques and related results can be found in [4] as well as in [10]. A complete solution
is the following theorem.

Theorem 0.3. Two germs of complex curves are topologically equivalent if and
only if there exists a bijection between their branches preserving the sequence of
characteristic exponents and the index of intersection of pairs of branches.

The next theorem was proved in [11].

Theorem 0.4 (F. Pham, B. Teissier). Let X and Y be germs of analytic plane
complex curves. Then there exists a meromorphic bi-Lipschitz map betweenX and
Y if only if X and Y are topologically equivalent.

Recall that Pham obtained this theorem as a consequence of the following conclu-
sion, obtained in [11]: The Lipschitz equisaturation of a family of hypersurfaces
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implies the topological triviality of this family. The reader interested in the Lip-
schitz saturation theory can find more information in [6; 11; 12].

Because spatial curves are not hypersurfaces, we cannot obtain (as a conse-
quence of the conclusions of Pham) an analogous result to Theorem 0.4 for the
case of spatial curves. In the face of these results, from the viewpoint of metric
theory it is natural to ask:

(∗) When does there exist a bi-Lipschitz map between X and Y ?

The problem of classification of complex algebraic sets modulo bi-Lipschitz
homeomorphisms was studied by T. Mostowski. He proved that the family of
all complex algebraic sets of complexity bounded by some number k has a finite
number of bi-Lipschitz equivalence classes (see [8]). This result was extended by
A. Parusinski for semialgebraic sets (see [9]).

In [2], we classify the germs of semialgebraic sets of real dimension 1, equipped
with the induced Euclidean metric, modulo bi-Lipschitz homeomorphisms. In [1],
L. Birbrair classifies the germs of semialgebraic sets of real dimension 2, equipped
with the length metric, modulo bi-Lipschitz homeomorphisms. Birbrair pointed
out the difficulty of obtaining a classification of the same germs when considering
the induced metric.

Here we present a theorem that, with respect to question (∗), is an improved
version of Theorem 0.4—because it is obvious that the class of bi-Lipschitz sub-
analytic maps contains the class of bi-Lipschitz meromorphic maps.

Theorem 0.5. Let X and Y be germs of analytic complex curves in C
n. If there

exists a bi-Lipschitz subanalytic map between X and Y, then X and Y are topo-
logically equivalent. Morever, the converse is true if and only if n = 2.

Our main approach is to consider the so-called test arcs. The bi-Lipschitz invari-
ants of algebraic curves are expressed in terms of order of contact of some test
arcs. It is valuable to observe that the class of germs that we consider here is not
formed by germs normally embedded in R

4 (cf. [3]) and hence our result does not
follow as a consequence of the results presented in [1].

I would like to thank Maria Ruas for very useful discussions as well as Lev Bir-
brair, Felipe Cano, and an anonymous referee for valuable suggestions.

1. Hölder Semicomplex and Test Arcs

Notation. Let f and g be nonnegative functions. We write f � g if for some
constant C we have f ≤ Cg. Also, f ≈ g if and only if f � g and g � f. If f
and g are germs of functions on (X, x0), we write f � g if g−1(0) ⊂ f −1(0) and
limx→x0 [f(x)/g(x)] = 0.

Given a germ of a semianalytic subset (X, x) of real dimension 1 in Euclidean
space that is equipped with the induced Euclidean metric, the following number
is defined in [2] for each pair of half-branches Xi and Xj of (X, x):
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shij (X, x) = ordr [dist(Xi ∩ Sr(x),Xj ∩ Sr(x))].
The data shij (X, x) are called the Hölder semicomplex of (X, x).

Theorem 1.1. Let (X, x) and (Y, y) be germs of subsets in Euclidean spaces
that are semianalytic spaces of real dimension 1 and equipped with the respective
induced Euclidean metrics and with real half-branches X = ⋃

i∈I Xi and Y =⋃
i∈J Xj . Then there exists F : (X, x) → (Y, y) bi-Lipschitz if and only if there

exists a bijection φ : I → J such that

shij (X, x) = shφ(i)φ(j)(X, y)

for each pair i �= j ∈ I.
We appeal to Theorem 1.1 of [2] because it clarifies the metric behavior of germs
of semianalytic sets of real dimension 1 that are equipped with the induced metric.
Our notion of test arcs demands this clarification.

Definition 1.2. A test arc is a germ of a semianalytic set of real dimension 1,
with the induced metric and with only one real half-branch.

Lemma 1.3. Let (�1, x) and (�2, x) be test arcs and let F : (�1 ∪ �2, x) → R
p

be a germ of a subanalytic map such that its restriction to �i consists of germs of
a Lipschitz map, i = 1, 2. If

|F(x1(r))− F(x2(r))| � |x1(r)− x2(r)|,
where xi(r) = Sr(x) ∩ �i, then F is the germ of a Lipschitz map.

Proof. Let us admit all the hypotheses of the lemma, where xi(r) = Sr(x) ∩ �i,
and assume that the conclusion is false. Then, by the curve selection lemma, we
can find analytic curves q1, q2 : [0, δ)→ � such that qi(0) = 0 with qi(s)∈�i for
all s and for i = 1, 2 and such that

|F(q1(r))− F(q2(r))| � |q1(r)− q2(r)|.
We can suppose |q1(s)| ≥ |q2(s)| for all s. If not, then by analyticity we would
have a contradiction with one of the hypotheses of the lemma. Taking a reparame-
terization if necessary, we can assume that |q1(s)| and |q2(s)| are fractional power
series and |q1(s)| ≥ |q2(s)| = s; that is, q2(s) = x2(s) for all s. Thus, using the
hypotheses of the lemma, we have

|q1(s)− q2(s)| � |F(q1(s))− F(x1(s))| + |F(x1(s))− F(q2(s))|
� |q1(s)− x1(s)| + |x1(s)− q2(s)|.

By the order comparison lemma (see [2]) we have that

|x1(s)− q2(s)| � |q1(s)− q2(s)|.
Therefore,

|q1(s)− q2(s)| � |q1(s)− x1(s)|.
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The triangle inequality then yields the following contradiction:

|q1(s)− q2(s)| ≈ |q1(s)− x1(s)|.

2. On Irreducible Plane Curves

Let (C, 0) be a germ of an irreducible analytic curve in C
2 (branch). We can as-

sume that (C, 0) lies in the following normal form:{
x = t m,
y = t n + a2 t

n2 + · · ·,
where m is the multiplicity of (C, 0), m does not divide the number n, and y(t)∈
C{t}. The fractional power series y(x1/m) is known as Newton–Puiseux parame-
terization of (C, 0), and all the other Newton–Puiseux parameterizations of (C, 0)
are obtained from y(x1/m) via x1/m �→ wx1/m where w is an mth root of the unit.
We denote by β(C) the sequence of characteristic exponents of (C, 0).

Example 2.1. Let C : w2 = z3 and D : w2 = z5. Then there exists no germ of
the subanalytic bi-Lipschitz map F : (C, 0)→ (D, 0).

Proof. Let $1, $2, $3, $4 be the following real half-branches in D:

$1 = {(r, r 5/2) : r ≥ 0}, $2 = {(ri, r 5/2eiπ/4) : r ≥ 0},
$3 = {(r,−r 5/2) : r ≥ 0}, $4 = {(−ri, r 5/2ei3π/4) : r ≥ 0}.

Let

�k(r) = (re iγk(r), r 3/2ei3γk(r)/2)∈ Sr(0) ∩ F($k), k = 1, 2, 3, 4.

From Theorem 1.1,
‖�1(r)− �3(r)‖ ≈ r 5/2.

Therefore, we can choose γ1 and γ3 such that

lim
r→0
(γ1(r)− γ3(r)) = 4kπ, k = 0 or 1.

We suppose that
lim
r→0
(γ1(r)− γ3(r)) = 0.

In this case, one of the following alternatives occurs:

lim
r→0
(γ1(r)− γ2(r)) = 0; or lim

r→0
(γ1(r)− γ4(r)) = 0.

We now suppose
lim
r→0
(γ1(r)− γ2(r)) = 0.

In particular,
‖�1(r)− �2(r)‖ � r.

Write δk(r) = F −1(�k(r)) for k = 1, 2. Then we have

δ1(r) = (f(r), f(r)5/2) and δ2(r) = (g(r)i, g(r)5/2eiπ/4),
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where
|f(r)| ≈ |g(r)| ≈ r.

Therefore,
‖δ1(r)− δ2(r)‖ � |f(r)− ig(r)| ≈ r.

On the other hand, since F is bi-Lipschitz, we have

‖δ1(r)− δ2(r)‖ ≈ ‖�1(r)− �2(r)‖,
which is a contradiction.

The other cases follow by an analogous argument.

Theorem 2.2. Let (C, 0) and (C̃, 0) be two germs of analytic branches in C
2.

There exists a germ of the subanalytic bi-Lipschitz map F : (C, 0)→ (C̃, 0) if and
only if β(C) = β(C̃).
In what follows, we analyze the metric behavior of pairs of test arcs.

Let (C, 0) be an analytic branch in C
2 with multiplicity m and Puiseux charac-

teristic pairs (m1, n1), . . . , (mg, ng). Let �1, �2 be test arcs in (C, 0) given by

�j(r) = (re iαj (r), y(r1/meiαj (r)/m))∈ Sr(0) ∩ �j, j = 1, 2,

where y(x1/m) is a Newton–Puiseux parameterization of (C, 0) and α1, α2 are
angle functions. We write g(r) = ‖�1(r)−�2(r)‖ and h(r) = r‖eiα1(r) − eiα2(r)‖.
Lemma 2.3. If

1

2π
lim
r→0
(α1(r)− α2(r)) = k ∈ Z,

then ordr (g)= min{ordr (h),mj/(n1 · · · nj )}, where j = min{i : (k/n1 · · · ni) /∈Z}.
Proof. It is enough to observe the following formulas:

y(x1/m) = aβ1x
m1/n1 + aβ1+e1x

(m1+1)/n1 + · · · + aβ1+k1e1x
(m1+k1)/n1

+ aβ2x
m2/n1n2 + aβ2+e2 x

(m2+1)/n1n2 + · · · + aβq xmq/(n1n2···nq )

+ aβq+eq x(mq+1)/(n1n2···nq ) + · · ·
+ aβg xmg/(n1n2···ng) + aβg+1x

(mg+1)/(n1n2···ng) + · · · .
Moreover, since aβj+lej �= 0 and since

|aβj+lej (re iα1(r))(mj+l )/(n1n2···nj ) − aβj+lej (re iα2(r))(mj+l )/(n1n2···nj )|
is equal to

|aβj+lej |r(mj+l )/(n1n2···nj )|eiα1(r)(mj+l )/(n1n2···nj ) − eiα2(r)(mj+l )/(n1n2···nj )|,
we have that

ordr |aβj+lej (re iα1(r))(mj+l )/(n1n2···nj ) − aβj+lej (re iα2(r))(mj+l )/(n1n2···nj )|
is equal to
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mj + l
n1n2 · · · nj + ordr |eiα1(r)(mj+l )/(n1n2···nj ) − eiα2(r)(mj+l )/(n1n2···nj )|.

In fact, if k/(n1n2 · · · nj )∈ Z then

ordr |eiα1(r)(mj+l )/(n1n2···nj ) − eiα2(r)(mj+l )/(n1n2···nj )| = ordr |eiα1(r) − eiα2(r)|.
Hence, in this case we have

ordr |aβj+lej (re iα1(r))(mj+l )/(n1n2···nj ) − aβj+lej (re iα2(r))(mj+l )/(n1n2···nj )| > ordr (h).

On the other hand, if k/(n1n2 · · · nj ) /∈ Z, then

ordr |eiα1(r)mj/(n1n2···nj ) − eiα2(r)mj/(n1n2···nj )| = 0.

As a result, in this case,

ordr |aβj (re iα1(r))mj/(n1n2···nj ) − aβj (re iα2(r))mj/(n1n2···nj )| = mj

n1 · · · nj .

We have therefore shown that ordr (g) = min{ordr (h),mj/(n1 · · · nj )}, where
j = min{i : k/(n1 · · · ni) /∈ Z}.
Clearly, if

1

2π
lim
r→0
(α1(r)− α2(r)) /∈ Z,

then ordr (g) = 1.
Let us suppose that β(C) = β(C̃). We claim that F : (C, 0) → (C̃, 0) defined

by
F(t m, y(t)) = (t m, z(t))

is the germ of a subanalytic bi-Lipschitz map, where y(x1/m) and z(x1/m) are
Newton–Puiseux parameterizations of (C, 0) and (C̃, 0), respectively. In fact,
using the curve selection lemma, it is enough to prove that F is bi-Lipschitz on
every pair of test arcs; this follows at once from Lemma 2.3. We note that the Lip-
schitz constants of F depend continuously on the coefficients of the characteristic
terms of y(x1/m) and z(x1/m).

Conversely, we suppose that F : (C, 0) → (C̃, 0) is the germ of a subanalytic
bi-Lipschitz map. Let n = multiplicity(C, 0) and ñ = multiplicity(C̃, 0).

Lemma 2.4. Let $1 and $2 be test arcs in (C, 0) given by

$j(r) = (re iσj (r), y(r1/ne iσj (r)/n))∈ Sr(0) ∩$j, j = 1, 2.

Let �1 = F($1) and �2 = F($2) be test arcs in (C̃, 0) given by

�j(r) = (re iγj (r), z(r1/ñe iγj (r)/ñ))∈ Sr(0) ∩$j, j = 1, 2.

Then
1

2π
lim
r→0
(σ1(r)− σ2(r))∈ nZ

if and only if
1

2π
lim
r→0
(γ1(r)− γ2(r))∈ ñZ.
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Proof. Assume that the conclusion is false. Without loss of generality, let us sup-
pose that

lim
r→0
(σ1(r)− σ2(r)) = 0;

that is,
lim
r→0

σ1(r) = σ1 = lim
r→0

σ2(r)

and σ1(r) ≤ σ2(r) for all r. Since

lim
r→0

γ1(r) = γ1, lim
r→0

γ2(r) = γ2, and
1

2π
(γ1 − γ2) /∈ ñZ,

we have γ1(r) < γ3 ≤ γ2(r) < γ4 ≤ γ1(r)+ 2πñ such that 1
2π (γi − γ3) /∈ Z and

1
2π (γi − γ4) /∈ Z for i = 1, 2.

Now, let �3 and �4 be the test arcs given by:

�j(r) = (re iγj, z(r1/ñe iγj/ñ)), j = 3, 4,

and let σ − F −1(�3) and $4 = F −1(�4) be the test arcs given by

$j(r) = (re iσj (r), z(r1/ne iσj (r)/n)), j = 3, 4.

Then
lim
r→0

σ3(r) = σ1 or lim
r→0

σ4(r) = σ1,

but this is a contradiction because F is bi-Lipschitz.

Proposition 2.5. n = ñ.
Proof. Let us assume that n > ñ. Consider αj = 2jπ (j = 0, . . . , n− 1) and $j
the arc test in (C, 0) given by

$j(r) = (re iαj, y(r1/ne iαj/n))∈ Sr(0) ∩$j, j = 0, . . . , n− 1.

Let $̃j = F($j ) be given by

$̃j(r) = (re iσj (r), y(r1/ne iσj (r)/n))∈ Sr(0) ∩ $̃j, j = 0, . . . , n− 1,

with σ0(r) ≤ · · · ≤ σn−1(r) ≤ σ0(r)+ 2ñπ. Then, by Lemma 2.4,

1

2π
lim
r→0
(σn−1(r)− σ0(r)) /∈ ñZ.

By the pigeonhole principle, there exists a j such that

lim
r→0
(σj+1(r)− σj(r)) = 0.

We use again Lemma 2.4 to get a contradiction.

Consider (m1, n1), . . . , (mg, ng) the characteristic pairs of (C, 0), and let (p1, q1),

. . . , (pg̃, qg̃) be the characteristic pairs of (C̃, 0). It is valuable to observe that
n1 · · · ng = n = q1 · · · qg̃ (cf. Lemma 2.4).

Proposition 2.6. mg = pg̃.
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Proof. Let us assume by way of contradiction thatmg > pg̃. Let �0, �1 be the test
arcs in (C, 0) given by

�0(r) = (r, y(r1/n)), �1(r) = (r, y(r1/ne i2n1···ng−1π/n)).

Clearly, we have

ordr‖�0(r)− �1(r)‖ = mg

n
.

We consider $j = F(�j ), j = 0,1, as test arcs in (C̃, 0) given by

$j(r) = (re iαj (r), z(r1/ne iαj (r)/n))∈ Sr(0) ∩$j, j = 0,1.

SinceF is bi-Lipschitz, it follows that ordr‖$0(r)−$1(r)‖ = mg/n. Therefore,
from Lemma 2.3 we have

1

2nπ
lim
r→0
(α0(r)− α1(r))∈ Z

and, by Lemma 2.4,
1

2nπ
lim
r→0
(γ0(r)− γ1(r))∈ Z.

On the other hand,

1

2nπ
lim
r→0
(γ0(r)− γ1(r)) = n1 · · · ng−1

n
/∈ Z.

Proposition 2.7. ng = qg̃.
Proof. Let ng > qg̃, let γj = 2jn1 · · · ng−1π (j = 1, . . . , ng), and let �j be the
test arc in (C, 0) given by

�j(r) = (r, y(r1/ne i2jn1···ng−1π/n))∈ Sr(0) ∩ �j, j = 1, . . . , ng.

Clearly,
ordr‖�j(r)− �j+1(r)‖ > 1.

Now consider $j = F(�j ), j = 1, . . . , ng, as test arcs in (C̃, 0) given by

$j(r) = (re iσj (r), z(r1/ne iσj (r)/n))∈ Sr(0) ∩$j, j = 1, . . . , ng,

with σ0(r) ≤ · · · ≤ σn−1(r) ≤ σ0(r)+ 2nπ.
We have ng > qg̃ and ordr‖�j(r)−�j+1(r)‖ > 1. Then, by the pigeonhole prin-

ciple there exists a j such that

lim
r→0
(σj(r)− σj+1(r)) = 0.

Now, we observe that the last equation contradicts Lemma 2.4.

Note that the foregoing argument can also be used to show that g = g̃ and ni =
qi for all i. In fact, we proved already that the following equalities hold:

m(C) = n = m(D); mg = pg̃ and ng = qg̃.
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We again assume by contradiction that ng−1 > qg̃−1. We take ng−1ng points
in the interval [2n1 · · · ng−2π, 2nπ]—namely, γj = 2jn1 · · · ng−2π for j =
1, . . . , ng−1ng, and we let �1, . . . , �ng−1ng be test arcs in (C, 0) given by

�j(r) = (r, y(r1/ne iγj/n))∈ Sr(0) ∩ �j, j = 1, . . . , ng−1ng.

Let $j = F(�j ) be the test arc in (C̃, 0) given by

$j(r) = (re iσj (r), z(r1/ne iσj (r)/n))∈ Sr(0) ∩$j, j = 1, . . . , ng−1ng.

By Lemma 2.3 we have ordr‖�j(r)−�j+1(r)‖ > 1, and by the pigeonhole prin-
ciple it follows that there exists a j such that

lim
r→0
(σj+1(r)− σj(r)) = 0.

Again, this contradicts Lemma 2.4. We use induction to show that g = g̃ and ni =
qi for all i.

To conclude the proof of Theorem 2.2, it is enough to show thatmi = pi for all
i. For this purpose, we take j = min{i : mi �= pi}. We already know that j < g;
we claim that j > 1. Let us assume thatm1 > p1, and let �0, �1 be the test arcs in
(C, 0) given by

�0(r) = (r, y(r1/n)), �1(r) = (r, y(r1/ne2iπ/n)).

Since ordr‖�0(r)− �1(r)‖ = m1/n1, we can make use of Lemma 2.3 to obtain

1

2π
lim
r→0
(σ1(r)− σ1(r))∈ n1Z,

where σj(r) is such that $j = F(�j ); that is,

$j(r) = (re iσj (r), z(r1/ne iσj (r)/n))∈ Sr(0) ∩$j, j = 0,1.

We know it is not possible for the previous limit to be an integer multiple of n.
Hence, for each r > 0 small,

σ0(r) ≤ σ2(r) ≤ σ1(r) where σ2(r) = σ0(r)+ 2π.

Let $2 be the test arc in (C̃, 0) given by

$2(r) = (re iσ2(r), z(r1/ne iσ2(r)/n))∈ Sr(0) ∩$2.

Then sh($0 ∪ $2, 0) > 1. It follows from Theorem 1.1 that sh(�0 ∪ �2, 0) > 1,
where �2 is the test arc �2 = F −1(�2) in (C, 0) given by

�2(r) = (re iγ2(r), y(r1/ne iγ2(r)/n))∈ Sr(0) ∩ �2

with 0 ≤ γ2(r) ≤ 2π. Since sh(�0 ∪ �2, 0) > 1 and 0 ≤ γ2(r) ≤ 2π, we must
have

lim
r→0

γ2(r) = 0 or 2π.

But that is in conflict with
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1

2π
lim
r→0
(α2(0)− α0(r)) /∈ nZ and

1

2π
lim
r→0
(α1(0)− α2(r)) /∈ nZ.

We can finally conclude that j > 1.
Now, let us assume by contradiction thatmj > pj . Consider γ0 = 2n1 · · · nj−1π

and γ1 = 2γ0 as well as �i, the test arcs in (C, 0) given by

�i(r) = (r, y(r1/ne iγi/n))∈ Sr(0) ∩ �i, i = 0,1.

Let $i = F(�i) be the test arcs in (C̃, 0) given by

$i(r) = (re iσi(r), z(r1/ne iσi(r)/n))∈ Sr(0) ∩$i, i = 0,1.

Since ‖�1(r)− �0(r)‖ = mj/(n1 · · · nj ), we can use Lemma 2.3 to obtain

1

2π
lim
r→0
(σ1(r)− σ0(r))∈ n1 · · · njZ.

On the other hand, we know that

1

2π
lim
r→0
(σ1(r)− σ0(r)) /∈ nZ.

As a result, for each r > 0 small, we have the inequalities

σ0(r) ≤ σ2(r) ≤ σ1(r) where σ2(r) = σ0(r)+ 2n1 · · · nj−1π.

Clearly,

sh($0 ∪$2) = pj

n1 · · · nj = sh($1 ∪$2)

and therefore
sh(�0 ∪ �2) = pj

n1 · · · nj = sh(�1 ∪ �2),

where �2 = F −1($2). Hence, if

�2(r) = (re iγ2(r), y(r1/ne iγ2(r)/n))∈ Sr(0) ∩ �2,

then
1

2π
lim
r→0
(γi(r)− γ2(r))∈ Z

and n1 · · · nj−1 divide this integer. Otherwise, by Lemma 2.3 we would instead
have

pj

n1 · · · nj = sh(�i ∪ �2)

= min

{
ordr r|eiγi(r) − eiγ2(r)|, mj−1

n1 · · · nj−1

}

= pj−1

n1 · · · nj−1

for i = 0,1, which is false.
Now, since γ0(r) ≤ γ2(r) ≤ γ1(r) and |γ0(r) − γ1(r)| = 2n1 · · · nj−1π, we

must have
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lim
r→0
(γ2(r)− γ1(r)) = 0 or lim

r→0
(γ2(r)− γ0(r)) = 0.

In either case, we get a contradiction.
Thus, the proof of Theorem 2.2 is complete.

3. On Reducible Plane Curves

Let (C, 0) be the germ of an analytic complex curve in C
2 that is endowed with

the induced Euclidean metric R
4 and with branches C = ⋃

i∈I Ci. Let mi be the
multiplicity of (Ci, 0) for i ∈ I. For each pair i �= j ∈ I, by analogy with the real
case, we denote

shij (C) = ordr
(
dist(Ci ∩ Sr(0), Cj ∩ Sr(0))

)
.

Consider also

coinc(Ci, Cj ) = max{ordx[yk(x
1/mi )− zl(x1/mj )] | 1 ≤ k ≤ mi, 1 ≤ l ≤ mj},

where {yk(x1/mi )}mik=1 is the set of the Newton–Puiseux parameterization of Ci and
{zl(x1/mj )}mjl=1 is the set of the Newton–Puiseux parameterization of Cj . The num-
ber coinc(Ci, Cj ) is known as coincidence between Ci and Cj .

Lemma 3.1.
shij (C) = coinc(Ci, Cj ) for all i �= j ∈ I.

Proof. Let �i, �j be test arcs in Ci ∪ Cj given by

�k(r) = (r, ỹk(r1/mk ))∈�k ∩ Sr(0), k = i, j,
where ỹi(x1/mi ) and ỹj (x1/mj ) are (respectively) the Newton–Puiseux parameteri-
zation of Ci and Cj such that

coinc(Ci, Cj ) = ordx[ỹi(x
1/mi )− ỹj (x1/mj )].

Then

dist(Ci ∩ Sr(0), Cj ∩ Sr(0)) ≤ ‖�i(r)− �j(r)‖ = |ỹi(r1/mi )− ỹj (r1/mj )|.
Therefore, shij (C) ≥ coinc(Ci, Cj ).

On the other hand, we have

ỹk(x
1/mk ) = h(x1/mk )+ gk(x1/mk ), k = i, j,

with

ordx[gi(x
1/mi )− gj(x1/mj )] = min{ordx gi(x

1/mi ), ordx gj(x
1/mj )}.

Let �i ⊂ Ci and �j ⊂ Cj be test arcs such that

dist(Ci ∩ Sr(0), Cj ∩ Sr(0)) = dist(�i ∩ Sr(0), �j ∩ Sr(0)),
and let

�k(r) = (re iγk(r), ỹk(r1/mke iγk(r)/mk ))∈ Sr(0) ∩ �k, k = i, j.



604 Alexandre Fernandes

Now, since

ordr r|eiγi(r) − eiγj (r)| ≤ ordr |h(r1/mie iγi(r)/mi )− h(r1/mje iγj (r)/mj )|,
we have

ordr‖�i(r)− �j(r)‖ ≤ min{ordr gi(r
1/mie iγi(r)/mi ), ordr gj(r

1/mje iγj (r)/mj )}
= coinc(Ci, Cj );

that is, shij (C) ≤ coinc(Ci, Cj ). The result follows.

Let (C, 0) ⊂ (Cd , 0) be a germ of a (reduced) analytic space curve, and let
p : C

d → C2 be a linear projection. We say that p is general for C at 0 if
it has the following property: For any sequence of couples of points (ai, bi) ∈
(C \{0})× (C \{0}) tending to 0, the limit direction of the secant line aibi (for any
subsequence) is not contained in the kernel of p. Our next theorem is the topolog-
ical analogue of Zariski’s result (see [13, p. 888]) for the bi-Lipschitz approach.

Theorem 3.2. Let (X, 0) and (X̃, 0) be analytic complex curves in C
2 with

branches X = ⋃
i∈I Xi and X̃ = ⋃

j∈J X̃j . Then the following conditions are
equivalent.

(1) There exists a germ of the subanalytic bi-Lipschitz map F : (X, 0)→ (X̃, 0).
(2) There exists a bijection σ : I → J such that β(Xi) = β(X̃σ(i)) for all i ∈ I

and such that coinc(Xi,Xj ) = coinc(X̃σ(i), X̃σ(j)) for all i �= j ∈ I.
(3) There exists a bijection σ : I → J such that β(Xi) = β(X̃σ(i)) for all i ∈

I and such that (Xi,Xj )0 = (X̃σ(i), X̃σ(j))0 for all i �= j ∈ I, where (·, ·)0
denotes the intersection multiplicity at 0.

(4) (X, 0) is topologically equivalent to (X̃, 0).
(5) There exists an integer d, a germ of the curve (C, 0) ⊂ (Cd , 0), and two lin-

ear projections p, p̃ : C
d → C, both general forC at 0 and such that p(C) =

X and p̃(C) = X̃.
Proof. (1)⇒ (2) Suppose that F : (X, 0) → (X̃, 0) is the germ of a subanalytic
bi-Lipschitz map. Since (X, 0) and (X̃, 0) are homeomorphic, we can assume I =
J and F(Xi) = X̃i for all i ∈ I. It follows from Theorem 2.2 that β(Xi) = β(X̃i)
for all i ∈ I.

Now, we let i �= j ∈ I and show that shij (X) = shij (X̃). For this purpose, we
take �1, �2 as test arcs in X such that �i ⊂ Xi (i = 1, 2) and

dist(Xi ∩ Sr(0),Xj ∩ Sr(0)) = dist(�i ∩ Sr(0), �j ∩ Sr(0)).
We observe that F(�1), F(�2) are test arcs in X̃ such that F(�i) ⊂ X̃i (i = 1, 2).
Hence, we have

dist(X̃i ∩ Sr(0), X̃j ∩ Sr(0)) ≤ dist(F(�i) ∩ Sr(0), F(�j ) ∩ Sr(0)).
Now, since F is the germ of a bi-Lipschitz map, we can use Theorem 1.1 to obtain
the relation
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dist(�i ∩ Sr(0), �j ∩ Sr(0)) ≈ dist(F(�i) ∩ Sr(0), F(�j ) ∩ Sr(0)).
Then

shij (X) ≥ shij (X̃).

Analogously, we show that

shij (X) ≤ shij (X̃)

and hence shij (X) = shij (X̃). Therefore, by Lemma 3.1, we may conclude that
coinc(Xi,Xj ) = coinc(X̃i, X̃j ).
(2)⇒ (3) Let us assume that I = J and β(Xi) = β(X̃i) for all i ∈ I and

that coinc(Xi,Xj ) = coinc(X̃i, X̃j ) for all i �= j ∈ I. Then we have (Xi,Xj )0 =
(X̃i, X̃j )0 for all i �= j ∈ I (cf. [7, Prop. 2.4, pp. 106–107).
(3)⇒ (4) See Theorem 0.3.
(4)⇒ (5) See [13, p. 888].
(5)⇒ (6) Assume that there exist an integer d, a germ of the curve (C, 0) ⊂

(Cd , 0), and two linear projections p, p̃ : C
d → C, both general for C at 0 and

such that p(C) = X and p̃(C) = X̃. Then p̃ � p−1 : (X, 0) → (X̃, 0) is a germ
of a subanalytic bi-Lipschitz map.

Theorem 3.2 is not true for spatial curves. In fact, let

X : x = t 6, y = t14, z = t 39;
X̃ : x = t 6, y = t14 + t17, z = t 39.

Then (X, 0) is topologically equivalent to (X̃, 0), yet a germ of the subanalytic
bi-Lipschitz map F : (X, 0) → (X̃, 0) does not exist. However, we still can say
something about spatial curves.

Lemma 3.3. Let (X, 0) be an analytic complex curve in C
n (n ≥ 3), and let

p : C
n → C

2 be a linear projection that is general for X at 0. Let C
2 × C

n−2 be
a decomposition of C

n and let (x, y) be coordinates such that p(x, y) = x. Then
there exists a germ of the subanalytic bi-Lipschitz map / : (Cn, 0) → (Cn, 0)
such that /(X) = p(X) × {0}. In particular, (X, 0) is topologically equivalent
to (p(X)× {0}, 0) in C

n.

Proof. It is enough to prove this for the case n = 3. Since p is general for X at
0, X is the graph of the subanalytic Lipschitz function f : p(X) ⊂ C

2 → C.

Let F : C
2 → C be a subanalytic Lipschitz extension of f. Then / : (C3, 0) →

(C3, 0) as defined by /(x, y) = (x, y − F(x)) is the germ of a subanalytic bi-
Lipschitz homeomorphism such that /(X) = p(X)× {0}.
Corollary 3.4. Let (X, 0) and (X̃, 0) be analytic complex curves in C

n. If there
exists a germ of the subanalytic bilipschitz map F : (X, 0)→ (X̃, 0), then (X, 0)
is topologically equivalent to (X̃, 0) in C

n.
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