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µ(z)-Homeomorphisms in the Plane

Chen Zhiguo

0. Introduction

In this paper we consider the concept ofµ(z)-homeomorphisms, which are the nat-
ural generalization ofK-quasiconformal mappings. We establish an existence and
uniqueness theorem of µ(z)-homeomorphic solutions of the Beltrami equation,

fz̄(z) = µ(z)fz(z), (0.1)

where µ(z) < 1 a.e. and ‖µ‖∞ = 1.
The theory of quasiconformal mappings in the complex plane is well developed

and plays important roles in study of Teichmüller spaces [8], Riemann surfaces
[13], Fuchsian groups and complex dynamic systems [22], and more.

The analytic definition of quasiconformality was first presented in a 1938 paper
of Morrey [17]. He studied homeomorphic solutions of the Beltrami equation in
the case whereµ(z) is a measurable function defined almost everywhere in a plane
domain and satisfies

‖µ‖∞ ≤ k < 1. (0.2)

Definition 1. A topological mapping f of a region � is K-quasiconformal if:

(i) f is absolutely continuous on almost all lines (ACL) in �; and
(ii) |fz̄| ≤ k|fz| a.e., where k = K−1

K+1.

The classical result on equation (0.1) is that there exists a homeomorphic solution
that is aK-quasiconformal mapping and unique up to a conformal mapping under
condition (0.2).

The condition (0.2), on which most properties of quasiconformal mappings are
based, is essential and important in the theory of quasiconformal mappings. A
natural and interesting problem arises: What happens when assumption (0.2) is
dropped? This is the starting point of the present paper.

Many mathematicians have been interested in the more general case where
|µ(z)| < 1 almost everywhere yet possibly ‖µ‖∞ = 1. In 1968, Lehto treated the
case of the plane with following two additional assumptions on µ(z).

(L1) The modulus of µ is bounded away from 1 on every compact subset of
C − E, where C denotes the complex plane and E is a closed set in C that
is of σ -finite linear measure.
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(L2) For any complex z and 0 < r1 < r2 <∞, the integral∫ r2

r1

(
1 + 2π

∫ 2π

0

|1 − e−2iθµ(z+ re iθ )|2
1 − |µ(z+ re iθ )|2 dθ

)−1
dr

r

is strictly positive and tends to ∞ as r1 → 0 or r2 → ∞.
Under these conditions, Lehto [14] presented an existence theorem of homeo-

morphic solutions. However, he did not touch the uniqueness then. For properties
of these homeomorphisms, we refer to [4], [5], and [6].

In 1988, David [7] studied the problem in quite a different way and obtained the
existence and uniqueness theorems provided that

(D) there exist constant α > 0 and C > 0 such that, for any ε > 0 sufficiently
small,

measure{z : |µ(z)| > 1 − ε} ≤ Ce−α/ε.
Tukia [23] as well as Ryazanov and Potyemkin [19] have studied the compact-

ness property of David class. More recently, Petersen and Zakeri [18] use some
property of the family of David class to study complex dynamics.

For about ten years, the connections or differences between conditions of Lehto’s
and of David’s were not clear; it is Brakalova and Jenkins who first showed the
differences between them. In [3] they proved the existence of a homeomorphic
solution to the Beltrami equation under weaker conditions than that of David’s.
These conditions are of the following form:

(A1)
∫∫
B

F

(
1

1 − |µ(z)|
)
dx dy < �B,

where B is a bounded measurable set, �B > 0 is a constant depending on B, and
F(x) = exp[x/(1 + log x)] for x ≥ 1; and

(A2 )
∫∫

|z|<R
1

1 − |µ| dx dy = O(R2), R → ∞.

In 2001, Iwaniec and Martin [12] studied the Beltrami equation in the case where
µ(z) satisfies

(IM) exp
D(z)

1 + logD(z)
∈Lp

for some positive p. They obtained fine results both in existence and uniqueness
of homeomorphic solutions (see [12] for more details). The relationships among
these conditions may be listed as follows.

(R1) Condition (D) �⇒ (A1) and (A2), but not vice versa.
(R2) Condition (IM) �⇒ condition (L2), but not vice versa.
(R3) (A1) and (A2) �⇒ condition (L2), but not vice versa.
(R4) Condition (D) ✚✚✚�⇒ condition (L1).

From our previous discussion, the restriction of compactness on the exceptional
set E in (L1) seems stringent and unnecessary for the existence of homeomorphic
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solutions to the Beltrami equation. In the meantime, condition (L2) is the weakest
and is essential in the study of homeomorphic solutions to equation (0.1).

Much inspired by [3], [7], [12], and [14], this paper shall establish the existence
and uniqueness theorems of µ(z)-homeomorphic solutions of the Beltrami equa-
tion by removing (L1) and retaining (L2) as the weakest condition. This will be
done in Section 1.

As a natural generalization of quasiconformal mappings, we give the definition
of µ(z)-homeomorphism.

Definition 2. A topological mapping f of a region� is µ(z)-homeomorphic if

(I) f is ACL in � and
(II) fz̄(z) = µ(z)fz(z),
where µ(z) is a measurable function defined a.e. in � and |µ(z)| < 1.

By definition, David class and Brakalova–Jenkins class belong to the family of
µ(z)-homeomorphisms.

1. µ(z)-Homeomorphic Solutions

In this section, we discuss theµ(z)-homeomorphic solutions of the Beltrami equa-
tion in the complex plane C. Let µ(z) be a measurable function in C. Define the
dilatation function D(z) as

D(z) =
{ 1+|µ(z)|

1−|µ(z)| , z /∈E,
∞, z∈E,

(1.0)

where E is the exceptional set of measure zero. Define the linear integral mean
dilatation function as

D∗(z, r) = 1

2π

∫ 2π

0
D(z+ re iθ ) dθ.

Lemma 1 [16]. Let B be a ring domain that separates the points a1, b1 from the
points a2, b2. If s(ai, bi) ≥ η (i = 1, 2), then

modB ≤ π2

2η2
, (1.1)

where s is the spherical metric and modB is the module of the ring domain B,
which is actually defined by extremal length.

For more details about module and extremal length, see [1] and [16].

Lemma 2 [13]. Let fn(z) with normalization fn(ai) = ai (i = 1, 2, 3, n =
1, 2, . . . ) be a sequence of quasiconformal mappings of the extended plane that
converges uniformly toward a limit function f(z). If, for every annulus A, the
numbers mod fn(A) are bounded away from zero, then f is a homeomorphism.

The following lemma is due to Lemmas 4 and 5 in [3].
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Lemma 3. Let fn denote that quasiconformal mappings of the plane onto itself
with complex dilatation µn satisfying |µn(z)| ≤ |µ(z)| ≤ 1 and limn→∞ µn(z) =
µ(z) a.e. Suppose that the functions fn converge uniformly on any compact sub-
set of the plane to a function f. IfD(z) is locally in Lλ for some λ > 1, then f(z)
satisfies the Beltrami equation a.e. and its derivatives belong locally to Lq when
q ≤ 2λ

1+λ .

Now we establish the following existence theorem.

Theorem 1. Assume that the function µ(z) is measurable in the complex plane
and that |µ(z)| < 1 almost everywhere. Suppose that, for some λ > 1 and any
z∈ C, the following statements hold:

(B1) D(z) is locally in Lλ(C);
(B2)

∫ r2
r1

dr
rD∗(z,r) tends to ∞ as r1 → 0 or r2 → ∞.

Then there exists aµ(z)-homeomorphism fµ(z) of C solving the Beltrami equation
(0.1), and its derivatives ∂

∂z
fµ(z) and ∂

∂z̄
fµ(z) belong locally to Lq when q ≤ 2λ

1+λ .

Proof. Define

µn(z) =
{
µ(z), |µ(z)| ≤ 1 − 1

n
,

0, |µ(z)| > 1 − 1
n
.

(1.2)

From the theory of quasiconformal mappings, there exist quasiconformal map-
pings fn of the plane onto itself with complex dilatations µn(z) (n = 1, 2, . . . ).
We require that the fn(z) be normalized by the conditions fn(ai) = ai, i = 1, 2, 3
(a1 = 0, a2 = 1, a3 = ∞).

We first show that the family {fn} is equicontinuous with respect to the spherical
metric on any compact subset of the plane. Choose an arbitrary finite z0 and then
a number , > 0 so small that at least two of the points ai lie outside of the disk
{z : |z− z0| ≤ ,}. Without loss of generality, we may assume that the two points
are a1 and a2. Fixing , > 0, we consider the annulus Aδ = {z : δ < |z − z0| <
,}. If z1 is an arbitrary point such that |z1 − z0| < δ, then fn(Aδ) separates the
points fn(z0) and fn(z1) from the points a1 and ∞. According to Lemma 1, we
have

mod fn(Aδ) ≤ π2

2η2
, (1.3)

where η = min{s(a1, a2), s(fn(z0), fn(z1))}.
For every n ∈ N, we have that fn is n-quasiconformal. In view of a result in

[20], it follows that

mod fn(Aδ) ≥
∫ ,

δ

dr

rD∗
n(z, r)

. (1.4)

From the definition of D∗ and (1.2), it is obvious that

D∗
n(z, r) ≤ D∗(z, r). (1.5)

Combining (1.3), (1.4), and (1.5), we obtain
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∫ ,

δ

dr

rD∗(z, r)
≤ mod fn(Aδ) ≤ π2

2η2
. (1.6)

Rearrangement then yields

η ≤ π
(∫ ,

δ

dr

rD∗(z, r)

)−1/2

. (1.7)

By assumption (B2), the right side of (1.7) tends to 0 as δ → 0 independently of
n. This implies the equicontinuity of the family {fn} at the point z0.

An obvious modification of this reasoning yields the result for z = ∞. In this
case, use is made of the hypothesis that the integral tends to infinity when ρ →
∞. By Arzela–Ascoli’s theorem, there exists a subsequence fnj that converges
uniformly to a function fµ(z) in the spherical metric in the whole extended plane.

We next show that f is a homeomorphism of the whole plane. Let A = {z :
r1 < |z− z0| < r2}. Using again the left-hand inequality of (1.6), we have

mod fn(A) ≥
∫ r2

r1

dr

rD∗(z, r)
. (1.8)

We obtain that mod fn(A) are bounded away from zero. Thus, by Lemma 2, fµ is
a homeomorphism of the whole plane.

Note that the limit function fµ(z) satisfies the conditions of Lemma 3. Hence
fµ(z) solves the Beltrami equation, and its derivatives belong to Lqloc(C) when
q ≤ 2λ

1+λ . This concludes our proof of the theorem.

Theorem 2. Let µ(z) and fµ(z) be as in Theorem 1. If h(z) is another µ(z)-
homeomorphic solution to the Beltrami equation and if its derivatives belong lo-
cally to L2, then

h(z) = afµ(z)+ b,
where a and b are constants and a �= 0.

Proof. Let ζ = h(z), w = fµ(z), and g be the inverse of fµ. Then, by local in-
tegrability of D(z), we can prove that g is ACL and that gw is locally in L2 as in
[10, Prop. 3]. According to [16, Chap. III, Thm. 6.1], g is locally absolutely con-
tinuous in the w-plane. That is,

|g(B)| =
∫∫
B

Jg(w) dσw,

where B is a Borel set in the w-plane. This implies that g maps null sets onto null
sets. Since h and g have partial derivatives locally in L2, it follows that h � g is
absolutely continuous in the sense of Tonelli [16, p. 143] and that, a.e.,

(h � g)w = hz(g(w))gw(w)+ hz̄(g(w))ḡw. (1.9)

Let E be the exceptional set in the z-plane that is of zero measure, and set:

F = {z | fµ is not differentiable or does not satisfy (0.1) at z};
G = {w | g is not differentiable at w};
H = {z | h is not differentiable or does not satisfy (0.1) at z}.
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For convenience, we use χ to denote E ∪ F ∪H. When w /∈ fµ(χ) ∪G,
µh�g(w) = µh − µf

1 − µhµf · ∂fµ/∂z
∂fµ/∂z̄

= 0.

When w ∈ fµ(χ), there are two cases as follows.

Case 1: fµ(χ) is of zero measure. Then µh�g(w) = 0 a.e. This, together with
the ACL property of h � g, implies that h � g is conformal.

Case 2: fµ(χ) is of positive measure. Then, by [16, Chap. III, Lemma 2.1],

0 =
∫∫
χ

1 + |µ(z)|2
1 − |µ(z)|2 =

∫∫
fµ(χ)

1 + |µ(g(w))|2
1 − |µ(g(w))|2 Jg(w) dσw

=
∫∫
fµ(χ)

(|gw(w)|2 + |gw(w)|2) dσw,

where Jg(w) is the Jacobian of g.
Therefore, gw = 0 and gw = 0 a.e. on fµ(χ). From (1.9) we then have that

µh�g(w) = 0 a.e. on fµ(χ); hence, it holds almost everywhere on the w-plane.
Thus, h � g is 1-quasiconformal and actually is conformal on the w-plane. As a
result,

h � g(w) = aw + b,
where a and b are constants and a �= 0. The proof is complete.

2. Subfamily of µ(z)-Homeomorphisms, MMM(λ,∗)

In this section, we discuss properties of the family where µ(z) satisfies conditions
(B1) and (B2). Set

M(λ, ∗) = {fµ | fµ are µ(z)-homeomorphisms and µ satisfies (B1) and (B2)}.
Proposition1. The Brakalova–Jenkins class is a subfamily of M(λ, ∗). In other
words, conditions (A1) and (A2) imply (B1) and (B2), but not vice versa.

Proof.

Step 1: (A1) �⇒ (B1). Let q(z) = 1
1−|µ(z)| . For λ > 1, there exists a constant

q0 such that, when q(z) > q0,

q λ(z) < exp
q(z)

1 + log q(z)
. (2.1)

Therefore, by (2.1) and condition (A1),∫∫
B

qλ(z) dx dy =
∫∫
B(q(z)>q0 )

q λ(z) dx dy +
∫∫
B(q(z)≤q0 )

q λ(z) dx dy

<

∫∫
B(q(z)>q0 )

exp
q(z)

1 + log q(z)
dx dy + qλ0 |B|

< �(B)+ qλ0 |B| < +∞.
Since Dλ(z) ≤ 2λq λ(z), it follows that Dλ(z) is locally integrable.
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Step 2: (A1) and (A2) �⇒ (B2). This can be found in the process of the proofs
in Proposition 1 and Proposition 3 in [3].

Step 3: An example. Let µ(z) satisfy the following condition:

1 + |µ(z)|
1 − |µ(z)| =

{
log 1

|z| , e−(n+1/2) ≤ |z| ≤ e−n,
|z|−p, e−(n+1) < |z| ≤ e−(n+1/2),

(2.2)

where 1< p < 2/λ.
It is not difficult to show that µ(z) satisfies (B1) and (B2). Now, we prove that

µ(z) in (2.2) does not satisfy (A1). In fact,∫∫
8

exp
q(z)

1 + log q(z)
dx dy >

∞∑
n=1

∫ 2π

0

∫ e−(n+1/2)

e−(n+1)
r · exp

q(re iθ )

1 + log q(re iθ )
dr dθ

>

∞∑
n=1

∫ e−(n+1/2)

e−(n+1)
r · exp

1
2 r

−p

1 + log 1
2 r

−p dr

>

∞∑
n=n0

∫ e−(n+1/2)

e−(n+1)
r · r−2 dr

=
∞∑
n=n0

log
en+1

en+1/2
= ∞,

where n0 is large enough. This finishes the proof.

Remark. The proof of (R2) is analogous to the process just described. There-
fore, the results given here are relatively general.

Proposition 2. The two conditions in M(λ, ∗) are independent of each other.

Proof. First, we show ifD(z) (or µ(z)) satisfies (B1) then it does not have to sat-
isfy (B2). LetD(z) = |z|−1. Obviously,D(z) satisfies (B1) as long as λ < 2, but
it does not satisfy (B2).

Second, ifD(z) satisfies (B2) then it does not have to satisfy (B1). This will be
shown by the following example. Set

D(z) =




−log|z|, e−(n+1/2) < |z| ≤ e−n,
|z|−3, e−(n+1) < |z| ≤ e−(n+1/2),

1, elsewhere,

where n∈ N.

The origin O is the exceptional set. Now,∫ 1

0

dr

rD∗(r)
>

∞∑
n=1

∫ e−n

e−(n+1/2)

−dr
r log r

=
∞∑
n=1

log

(
1 + 1

2n

)
= +∞.
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Let λ > 1. We will show thatDλ(z) is not integrable in the unit disk8. In fact,∫∫
8

Dλ(z) dx dy > 2π
∞∑
n=1

∫ e−(n+1/2)

e−(n+1)
r−3λ+1 dr

> 2π
∞∑
n=1

∫ e−(n+1/2)

e−(n+1)
r−2 dr

= 2π
∞∑
n=1

(en+1 − en+1/2) = +∞.

Hence, D(z) satisfies (B2) but does not satisfy (B1).

Proposition 3. The family M(λ, ∗) is convex. That is, for any k1 ≥ 0 and k2 ≥
0 (k1 + k2 = 1), if µ1(z) and µ2(z) satisfy (B1) and (B2) then

µ(z) = k1µ1(z)+ k2µ2(z)

also satisfies (B1) and (B2).

Proof. First, for any z∈ C we have∫ R

ε

dr

rD∗(z, r)
=

∫ R

ε

2π dr

r
∫ 2π

0
1+|µ(z+re iθ )|
1−|µ(z+re iθ )| dθ

≥
∫ R

ε

π dr

r
∫ 2π

0
1

1−|k1µ1+k2µ2| dθ
.

Without loss of generality, we assume that k1 ≥ 1
2 . Then∫ R

ε

π dr

r
∫ 2π

0
1

1−|k1µ1+k2µ2| dθ
≥

∫ R

ε

π dr

r
∫ 2π

0
1

k1(1−|µ1|) dθ

≥ k1

∫ R

ε

π dr

r
∫ 2π

0
1

1−|µ1| dθ
→ ∞

as ε → 0 or as R → ∞.
Second, for any λ > 1 and 0 ≤ x < 1, the function

η(x) =
(

1 + x
1 − x

)λ
is convex. Therefore,

Dλ(z) ≤
(

1 + (k1|µ1(z)| + k2|µ2(z)|)
1 − (k1|µ1(z)| + k2|µ2(z)|)

)λ
≤ k1D

λ
1 (z)+ k2D

λ
2(z).

Hence Dλ(z) is also locally integrable.
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The foregoing discussion shows that µ(z) satisfies (B1) and (B2), which com-
pletes the proof.
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