A Uniqueness Property for H^{∞} on Coverings of Projective Manifolds

ALEXANDER BRUDNYI

1. Formulation of the Result

1.1

Let *M* be a complex projective manifold of dimension $n \ge 2$ with a Kähler form ω , and let *L* be a positive line bundle on *M* with canonical connection ∇ and curvature Θ in a hermitian metric *h*. Let *C* be the common zero locus of holomorphic sections $s_1, \ldots, s_k, k < n$, of *L* over *M*, which (in a trivialization) can be completed to a set of local coordinates at each point *C*. Then *C* is a (possibly disconnected) *k*-dimensional submanifold of *M*, which will be referred to as an *L*-submanifold of *M*. Let $\pi : Y_G \to M$ be a regular covering of *M* with a transformation group *G*, and let $X_G = \pi^{-1}(C)$. We denote the pullbacks to Y_G of ω and Θ by the same letters.

EXAMPLE 1.1. If *L* is very ample, then it is the pullback of the hyperplane bundle by an embedding of *M* into some projective space \mathbb{CP}^N . Further, zero loci of holomorphic sections of *L* are hyperplane sections of *M*. By Bertini's theorem, the generic linear subspace of codimension n - k (k < n) intersects *M* transversely in a smooth manifold *C* of dimension k, and by the Lefschetz hyperplane theorem, *C* is connected and the induced homomorphism $\pi_1(C) \rightarrow \pi_1(M)$ of fundamental groups is surjective. Hence, in this case $X_G \subset Y_G$ is a connected submanifold.

Let dist(\cdot , \cdot) be the distance on Y_G induced by ω and let $\delta(x) := \text{dist}(x, o)$ for some fixed $o \in Y_G$. By a result of Napier [N], there is a smooth function τ on Y_G such that:

(A) $c_1\delta \le \tau \le c_2\delta + c_3$ for some $c_1, c_2, c_3 > 0$; (B) $d\tau$ is bounded; and (C) $i\partial\bar{\partial}\tau$ is bounded.

Furthermore, by (A) and since the curvature of Y_G is bounded below, there is c > 0 such that $e^{-c\tau}$ is integrable on Y_G . Then $e^{-c\tau}$ is also integrable on X_G . We set

$$A := \frac{cc_2}{c_1}.\tag{1.1}$$

Received May 1, 2002. Revision received January 9, 2003. Research supported in part by NSERC.

Let *L* be a positive line bundle on *M* with curvature Θ satisfying (in the sense of Nakano)

$$\Theta > i\partial\partial(A\tau). \tag{1.2}$$

Consider the covering $X_G := \pi^{-1}(C) \subset Y_G$ of an *L*-submanifold $C \subset M$. Let $H^{\infty}(Y_G)$ and $H^{\infty}(X_G)$ be the Banach spaces of bounded holomorphic functions on Y_G and X_G in the corresponding supremum norms.

THEOREM 1.2. The map $\rho: H^{\infty}(Y_G) \to H^{\infty}(X_G), f \mapsto f|_{X_G}$, is an isometry.

This result answers a question posed in the introduction to [L].

1.2

The main application of Theorem 1.2 is in the area of the corona problem. Let Xbe a complex manifold and let $H^{\infty}(X)$ be the Banach algebra (in the supremum norm) of bounded holomorphic functions on X. Then the maximal ideal space $\mathcal{M} = \mathcal{M}(H^{\infty}(X))$ is the set of all nontrivial linear multiplicative functionals on $H^{\infty}(X)$. The norm of any $\phi \in \mathcal{M}$ is ≤ 1 and so \mathcal{M} is embedded into the unit ball of the dual space $(H^{\infty}(X))^*$. Thus \mathcal{M} is a compact Hausdorff space in the weak-* topology induced by $(H^{\infty}(X))^*$ (i.e., the *Gelfand topology*). Furthermore, there is a continuous map $i: X \to \mathcal{M}$ taking $x \in X$ to the evaluation homomorphism $f \mapsto f(x)$. This map is an embedding if $H^{\infty}(X)$ separates points of X. The complement to the closure of i(X) in \mathcal{M} is called the *corona*. The *corona problem* is to determine those X for which the corona is empty. For example, according to Carleson's celebrated corona theorem [C], this is true if X is the open unit disk $\mathbb{D} \subset$ C. Also there are nonplanar Riemann surfaces for which the corona is nontrivial (see e.g. [BD; G; JM] and references therein). The general problem for planar domains is still open, as is the problem in several variables for the ball and polydisk. In [L, Thm. 2.1] Lárusson discovered simplest examples of Riemann surfaces with big corona. Namely, he proved that if $Y_G \subset \mathbb{C}^n$ is a bounded domain and if $X_G \subset$ Y_G is a Riemann surface satisfying the assumptions of Theorem 1.2, then the natural map $i: X_G \hookrightarrow \mathcal{M}(H^{\infty}(X_G))$ extends to an embedding $Y_G \hookrightarrow \mathcal{M}(H^{\infty}(X_G))$. The next statement extends his result and produces many examples of nonplanar Riemann surfaces with big corona.

COROLLARY 1.3. Under the assumptions of Theorem 1.2, the transpose map $\rho^* \colon \mathcal{M}(H^{\infty}(X_G)) \to \mathcal{M}(H^{\infty}(Y_G)), \phi \mapsto \phi \circ \rho$, is a homeomorphism.

This follows from the fact that $\rho: H^{\infty}(Y_G) \to H^{\infty}(X_G)$ is an isometry of Banach algebras.

EXAMPLE 1.4. (1) (The references for this example are in [L, Sec. 4].) Let M be a projective manifold covered by the unit ball $\mathbb{B} \subset \mathbb{C}^n$ with a positive line bundle L of curvature Θ , and let $X \subset \mathbb{B}$ be the preimage of an L-submanifold $C \subset M$. Let δ be the distance from the origin in the Bergman metric of \mathbb{B} . By ω we denote

the Kähler form of the Bergman metric. It was shown in [L, Sec. 4] that there is a nonnegative function τ on \mathbb{B} such that $i\partial \bar{\partial} \tau = \omega$, $d\tau$ is bounded, and

$$\sqrt{n+1\delta} \le \tau \le \sqrt{n+1}\delta + (n+1)\log 2.$$

Moreover,

$$\int_{\mathbb{B}} e^{-c\tau} \omega^n < \infty \quad \text{if and only if} \quad c > \frac{2n}{n+1}.$$

Applying Theorem 1.2 (with $c_2 = c_1 = \sqrt{n+1}$), we obtain that $\rho: H^{\infty}(\mathbb{B}) \to H^{\infty}(X)$ is an isometry if $\Theta > \frac{2n}{n+1}\omega$. This holds for instance if $L = K^{\otimes m}$ with $m \ge 2$, where K is the canonical bundle of M.

(2) Let *S* be a compact complex curve of genus $g \ge 2$ and let \mathbb{CT} be a onedimensional complex torus. Consider an *L*-curve *C* in $M := S \times \mathbb{CT}$ with a very ample *L* satisfying the assumptions of Theorem 1.2. Let $\pi : \mathbb{D} \times \mathbb{C} \to M$ be the universal covering. Then Theorem 1.2 is valid for the connected curve X := $\pi^{-1}(C) \subset \mathbb{D} \times \mathbb{C}$. This implies that any $f \in H^{\infty}(X)$ is constant on each $S_y :=$ $(\{y\} \times \mathbb{C}) \cap X, y \in \mathbb{D}$. Note that S_y is the union of the orbits of some $z_{iy} \in X, i =$ $1, \ldots, k$, under the natural action of the group $\pi_1(\mathbb{CT}) (\cong \mathbb{Z} \oplus \mathbb{Z})$ on $\mathbb{D} \times \mathbb{C}$.

2. Proof of Theorem 1.2

2.1

As in Section 1, let $X_G \subset Y_G$ be the covering of an *L*-submanifold $C \subset M$. Consider a function $\phi: Y_G \to \mathbb{R}$ such that $d\phi$ is bounded; that is,

$$|\phi(x) - \phi(y)| \le a \cdot \operatorname{dist}(x, y)$$
 for some $a > 0$.

By $\mathcal{O}_{\phi}(X_G)$ we denote the vector space of holomorphic functions on X_G such that $|f|^2 e^{-\phi}$ is integrable on X_G with respect to the volume form of the induced Kähler metric on X_G . This is a Hilbert space with respect to the inner product

$$(f,g)\mapsto \int_{X_G} f\bar{g}e^{-\phi}\omega^k.$$

We define $\mathcal{O}_{\phi}(Y_G)$ similarly, and by $|\cdot|_{\phi, X_G}$ and $|\cdot|_{\phi, Y_G}$ we denote the corresponding norms. It was shown in [L] that the restriction determines a continuous linear map

$$\rho: \mathcal{O}_{\phi}(Y_G) \to \mathcal{O}_{\phi}(X_G), \quad f \mapsto f|_{X_G}.$$

The following remarkable result was proved by Lárusson [L, Thm. 1.2].

THEOREM 2.1. Suppose

$$\Theta \ge i\partial\partial\phi + \varepsilon\omega$$

for some $\varepsilon > 0$. Then ρ is an isomorphism.

Now assume that the curvature Θ of an *L*-submanifold $C \subset M$ satisfies (1.2). Then Lárusson's theorem holds for coverings $X_G := \pi^{-1}(C) \subset Y_G$ of *C* with $\phi := A\tau$ and with $\phi := c\tau$ (because $A \ge c$). 2.2

We fix a fundamental compact *K* of the action of *G* on *Y_G*, that is, *Y_G* = $\bigcup_{g \in G} g(K)$. Consider finite covers $\mathcal{U} = (U_i)$ and $\mathcal{V} = (V_j)$ of *K* by compact coordinate polydisks such that each *V_j* belongs to the interior of some *U_{ij}*.

LEMMA 2.2. Let f be a holomorphic function defined in an open neighborhood O of $\bigcup_i U_i$. Assume that

$$\int_O |f|^2 \omega^n = B < \infty.$$

Then there is a constant b > 0 (depending on \mathcal{U} and \mathcal{V} only) such that

$$\max_{k} |f| \le b\sqrt{B}.\tag{2.1}$$

The proof of the lemma is a consequence of the following facts:

- (a) after the identification of U_{i_j} with the closed unit polydisk D and of V_j with a compact subset $D_j \subset D$, the volume form ω^n restricted to each U_{i_j} is equivalent to the Euclidean volume form $do := dz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_n$;
- (b) the Bergman inequality (see [GR, Chap. 6, Thm. 1.3])

$$\max_{D_j} |f| \leq \frac{\left(\sqrt{n}\,\right)^n}{\left(\sqrt{\pi}\,d\right)^n} \cdot \left(\int_D |f|^2\,do\right)^{1/2},$$

where *d* is the Euclidean distance from D_i to the boundary of *D*.

We leave the details to the reader.

Now recall that dist(\cdot , \cdot) is the distance on Y_G in the metric induced by ω and that $\delta(x) := \text{dist}(x, o)$. Since ω is invariant with respect to the action of G, we also have dist(g(x), g(y)) = dist(x, y) for any $g \in G$. From inequalities (A) for τ and the triangle inequality for the distance, we obtain

$$\tau(g(x)) \ge c_1 \operatorname{dist}(g(x), o) \ge c_1[\operatorname{dist}(g(x), g(o)) - \operatorname{dist}(g(o), o)]$$

= $c_1[\operatorname{dist}(x, o) - \operatorname{dist}(g(o), o)]$
 $\ge (c_1/c_2)\tau(x) - (c_1c_3/c_2) - c_1\delta(g(o)).$ (2.2)

Further, if $x \in K$ then

$$a_1 \le \tau(x) \le a_2$$
 for some $a_1, a_2 > 0.$ (2.3)

By $|\cdot|_{\infty,X_G}$ and $|\cdot|_{\infty,Y_G}$ we shall denote the corresponding H^{∞} -norms. Let $f \in H^{\infty}(X_G)$. Then $f \in \mathcal{O}_{A\tau}(X_G) \cap \mathcal{O}_{c\tau}(X_G)$, and there exists an $a_3 > 0$ such that

$$\max\{|f|_{A\tau, X_G}, |f|_{c\tau, X_G}\} \le a_3 \sup_{X_G} |f| := a_3 |f|_{\infty, X_G}.$$

(Note that any expression of the form $\max\{|f|_{A\tau,.}, |f|_{c\tau,.}\}$ is in fact equal to $|f|_{c\tau,.}$) By Theorem 2.1, there is a unique $\tilde{f} \in \mathcal{O}_{A\tau}(Y_G) \cap \mathcal{O}_{c\tau}(Y_G)$ such that $\tilde{f}|_{X_G} = f$ and

$$\max\{|\tilde{f}|_{A\tau,Y_G}, |\tilde{f}|_{c\tau,Y_G}\} \le a_4 \max\{|f|_{A\tau,X_G}, |f|_{c\tau,X_G}\} \text{ for some } a_4 > 0.$$

Combining these inequalities with (2.3) and (2.1) yields

$$\max_{K}|f| \le a_5|f|_{\infty, X_G},$$

with some $a_5 > 0$ depending on X_G , Y_G only. Now, for a fixed $g \in G$ consider $(g^*f)(z) := f(g(z))$. As before, there exists a unique function $\tilde{f}_g \in \mathcal{O}_{A\tau}(Y_G) \cap \mathcal{O}_{c\tau}(Y_G)$, $\tilde{f}_g|_{X_G} = g^*f$, such that

$$\max_{K} |f_g| \le a_5 |f|_{\infty, X_G}$$

However, according to (2.2) and (1.1), the function $(g^*\tilde{f})(z) := \tilde{f}(g(z))$ belongs to $\mathcal{O}_{A\tau}(Y_G)$ and $(g^*\tilde{f} - \tilde{f}_g)|_{X_G} \equiv 0$. Thus by Theorem 2.1 we have $\tilde{f}_g = g^*\tilde{f}$. Since *K* is the fundamental compact, the inequality just displayed implies for each \tilde{f}_g that

$$|f|_{\infty,Y_G} \le a_5 |f|_{\infty,X_G}.$$
 (2.4)

We will now prove that $a_5 = 1$, which gives the required statement. Indeed, the same arguments as before show that, for any integer $n \ge 1$, the function $(\tilde{f})^n$ is the unique extension of f^n satisfying (2.4):

$$|(\tilde{f})^n|_{\infty,Y_G} \le a_5 |f^n|_{\infty,X_G}.$$

Thus

$$|\tilde{f}|_{\infty,Y_G} \leq \lim_{n \to \infty} (a_5)^{1/n} |f|_{\infty,X_G} = |f|_{\infty,X_G}.$$

The proof of the theorem is complete.

References

- [BD] D. E. Barrett and J. Diller, A new construction of Riemann surfaces with corona, J. Geom. Anal. 8 (1998), 341–347.
 - [C] L. Carleson, Interpolations of bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559.
 - [G] T. W. Gamelin, Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Ser., 32, Cambridge Univ. Press, Cambridge, U.K., 1978.
- [GR] H. Grauert and R. Remmert, *Theorie der Steinschen R\u00e4uume*, Springer-Verlag, Berlin, 1977.
- [JM] P. Jones and D. Marshall, Critical points of Green's functions, harmonic measure and the corona problem, Ark. Mat. 23 (1985), 281–314.
 - [L] F. Lárusson, Holomorphic functions of slow growth on nested covering spaces of compact manifolds, Canad. J. Math. 52 (2000), 982–998.
 - [N] T. Napier, Convexity properties of coverings of smooth projective varieties, Math. Ann. 286 (1990), 433–479.

Department of Mathematics and Statistics University of Calgary Calgary, Alberta Canada

albru@math.ucalgary.ca