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Mdobius Transformations, the Carathéodory Metric,
and the Objects of Complex Analysis and
Potential Theory in Multiply Connected Domains

STEVEN R. BELL

1. Introduction

Let f, denote the Riemann mapping function associated to a pama simply
connected planar domaflh # C. Everyone knows thaf; is the solution to an ex-
tremal problem; it is the holomorphic mapof Q2 into the unit disc such that(b)
is real and as large as possible. Everyone knows also that all the fnaps be
expressed in terms of a single Riemann nfa@ssociated to a poiate 2 via

Ja(2) — fa(b)

1— fu(@) fu(®)
where the unimodular constahis given by
Lo B

| f2(b)]
In this paper, | shall prove that solutions to the analogous extremal problems on
a finitely multiply connected domain in the plane, the Ahlfors mappings, can be
expressed in terms of justofixed Ahlfors mappings. Many similarities with for-
mula(1.1) in thesimply connected case will become apparent, and | will explore
some of the algebraic objects that present themselves. A by-product of these con-
siderations will be that the infinitesimal Carathéodory metric on a multiply con-
nected domain is simply a rational combination of two Ahlfors maps times one of
their derivatives. | will explain an outlook that reveals a natural way to view the
extremal functions involved in the definition of the Carathéodory metric “off the
diagonal” in such a way that they extend®ox €2, where2 is the double of2.

I will also investigate the complexity of the classical Green’s function and
Bergman kernel associated to a multiply connected domain. In particular, it is
proved in Section 6 that & is a finitely connected domain in the plane such that
no boundary component is a point, then there exist two Ahlfors nfa@sd f,
associated t® such that the Bergman kernel f@ris given by

Flw) F12) ( . —>
Kw,2) = 2 A i) Hi (D) ).
CET A rw @) ,;21 HEREITE

() =2 (1.1)
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where the functiong7; are rational combinations of the two Ahlfors mafysand

f». Future avenues of research include the problem of extending these results to
finite Riemann surfaces and the problem of determining the way in which the ra-
tional functions that arise in these formulas depend on the domain.

2. The Smooth Case

To get started, we shall assume tkiats a bounded:-connected domain in the
plane withC*°-smooth boundary consisting efnonintersecting curves. (Later,
we shall consider generatconnected domains such that no boundary component
is a point.) LetS(z, w) denote the SzegKernel associated @ (see [3] or [8] for
definitions and standard terminology in what follows).

Fix apointa in Q so thatthe: —1 zeroesuy, ..., a,_10f S(z, a) inthez-variable
are distinct simple zeroes. (That such pointsrm an open dense subsetafvas
proved in [2].) Letag be equal ta:. It was proved in [4, Thm. 3.1] that the Saeg”
kernel can be expressed in terms of the 1 functions of one variable§(z, a),
fu(2), andS(z,a;),i =1, ...,n — 1, via the formula

1 n—1
S(z, = iiS(z,a;)S(w, a;), 2.1
(z,w) 1-— fa(Z)fa(w) ,',jzzocj (G andt a]) ( )

where f,(z) denotes the Ahlfors map associated o, a) and where the coeffi-
cientsc;; are given as the coefficients of the inverse matrix tosthe n matrix
[S(aj, ar)]. A similar formula for the Garabedian kernel was proved in [5],

) |
L(z,w) = m WZ:OCUS(L a;)L(w, a;), (2.2)

where the constants; are the same as the constants in (2.1).

Given a pointw € 2, the Ahlfors mapf,, associated to the pai€2, w) is a
proper holomorphic mapping @& onto the unit disc. It is an-to-one mapping
(counting multiplicities), it extends to be > (Q), and it maps each boundary
curve of 2 one-to-one onto the unit circle. Furthermoyg,(w) = 0, and f,, is
the unique function mapping into the unit disc maximizing the quantity,, (w)|
with f; (w) > 0. The Ahlfors map is related to the Szegérnel and Garabedian
kernel via

S(z, w)

fw(z) = L(Z, LU)

(2.3)

(see [3, p- 49)]).
When equations (2.1) and (2.2) are substituted into (2.3), we obtain the mon-
strosity

fuD) = fuw)  XiiocS(z,a)Sw, a))
faw) A= fu(2) fa)) Y771 g i S(z, a) L(w, a;)

fw(Z) =
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Next, divide the numerator and the denominator of the second quotient in this ex-
pression byS(z, a)S(w, a) and multiply the whole thing by one in the form of
S(w, a)/S(w, a) to obtain

fo@ = fuw) [ Ei5kocs e S, a)/Sw, @)\ 5w, a)
fa(w)(l fa(z)fa(w)) le OcijSS((ZZZ))L(w,aj)/S(w,a) S(wva).

It is not hard to show thaf, (z) and quotients of the formi(z, a;)/S(z, a) and
L(z,a;)/S(z,a) extend to the doubl& of Q as meromorphic functions (see [7,
p. 6]). Since the argument is quick and simple, we give it here.R(ej denote
the antiholomorphic reflection function @i that maps into the reflected copy
of Q2. Note thatf,(z) is equal to 1f,(z) on b2, which is equal to Af,(R(z))
there. Hence, the holomorphic functigin(z) on €2 and the meromorphic function
1/f.(R(z)) on the complement &® in <2 both extend continuously up 2 and
have the same values there. Herfgextends meromorphically to the double. Sim-
ilar reasoning can be applied to the quotients as follows. The Garabedian kernel
is related to the Szegkernel via the identity

Jw(z) =

}L(Z, a)T(z) = S(a,z) for zebQ anda € Q, (2.4)
i

where T(z) denotes the complex number of unit modulus pointing in the tan-
gent direction at € b2 chosen so thatl'(z) represents an inward-pointing nor-
mal vector to the boundary. Henc&z, a;)/S(z, a) is equal to the conjugate of
L(z,a;)/L(z,a) on the boundary, and the same reasoning used previously for
f2 shows thatS(z, a;)/S(z, a) extends to the double meromorphically. Similarly
L(z,a;)/S(z, a) is equal to the conjugate 61z, a;)/L(z, a) on the boundary, and
this shows thal(z, a;)/S(z, a) extends to the double meromorphically.

It is proved in [6] that it is possible to choose a second Ahlfors miapo that
f. and f, generate the field of meromorphic functions@n(Such a pair is called
a primitive pair; see [1] and [9]). Hence, we have now shown that there exists a
rational function orC® such that

Jw(2) = AMw)R(fa(2), f5(2), faw), fr(w), fa(w), fr(w)),  (2.5)
whereA (w) is the unimodular function given by
AMw) = S(w, a)/S(w, a).

This formula is reminiscent of the formula for the Riemann maps mentioned at the
beginning of this paper. It now becomes irresistible to drop the fagtoy from
equation (2.5) and to define a functiétiz, w) via

F(z, w) = fu(2)/Mw).

Let us call this function thalternatively normalized Ahlfors maginder this nor-
malization, the map — F(z, w) has a derivative ab with extremal modulus;
however, the argument of the derivativedgsrgi (w) there instead of zero. This
family of extremal maps has the astonishing feature that it extends in a unique way
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to 2 x Q2 as a complex rational function ¢f (z), f,(z), andf, (w), f»(w), fa(w),

f»(w). Furthermore, this extension is meromorphig and real-analytic im. One

might also glimpse some semblance of an analogue of a Mdbius function in these
deliberations, and we shall come back to this point later in the paper.

Another important consequence of formula (2.5) is that the infinitesimal Cara-
théodory metric can be expressed in terms of two Ahlfors maps. Infact, itis shown
in [6, p. 344] that the quotient,(z)/f,(z) extends to be meromorphic on the dou-
ble of 2 and is therefore a rational combinationfz) and f,(z). Hence, if we
differentiate (2.5) with respect to and take the modulus of the expression, we
obtain that £, (z)| is given by| f/(z)| times the modulus of a rational function of
[a(@), f5(2)s faw), fo(w), fu(w), and f,(w). Now, if we setw = z, we may
conclude that the infinitesimal Carathéodory metric is givem @y |dz|, where

p(2) = [ FUDNO(fa(2), fo(2)s fu(2), f(D))];

hereQ is a rational function or€ 4.

Many questions present themselves at this point. The preceding formula for the
infinitesimal Carathéodory metric almost looks exact. Might there exist special
multiply connected domains where the Carathéodory metric could be computed
as easily as itis in the unit disk? Another natural question to ask is whether or not
similar formulas hold for finite Riemann surfaces. Ahlfors mappings are available
in this setting, but the relationship between these maps and the kernel functions
used in the proof in the planar case are not as straightforward. New methods of
proof would have to be discovered.

3. The Nonsmooth Case

Suppose tha® is merely am-connected domain in the plane such that no bound-
ary component is a point. It is well known that there is a biholomorphic mapping
¢ that map<2 one-to-one onto a bounded domatry in the plane with smooth
real-analytic boundary. The standard construction yields a dofgaithat is a
bounded:-connected domain witlt' *°-smooth boundary whose boundary con-
sists ofn nonintersecting simple closed real analytic curves. Let subscriptor super-
scripta indicate that a kernel function or mapping is associatef? fo kernels
without sub- or superscripts are associate@ tdt is well known that the function

¢’ has a single-valued holomorphic square rootd(see [3, p. 43]). We define
the Szegkernel and Garabedian kernel associateg toa the natural transfor-
mation formulas,

S(z,w) = V¢'(2) Sa(p(2), ¢(w)) /' (w)
L(z,w) = v¢'(2) La(¢(2), ¢ (w))v/@'(w).

The Ahlfors map associated to a point 2 is defined to be the solution to the
extremal problemf},: @ — D;(0) with f;(b) > 0 and maximal. Itis easy to see
that Ahlfors maps satisfy

and
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F5(2) = Af i (@(2)

for some unimodular constaht and it follows thatf,(z) is a proper holomorphic
mapping ofQ2 onto D1(0). It also follows thatf,(z) is given byS(z, b)/L(z, b)

just as in the smooth case. Now it is easy to see that all quotients appearing in the
proofs of results in Section 2 are invariant ungemand the proofs carry over line

for line. We may now state the following theorem.

TueoreM 3.1. Suppose tha® is ann-connected domain in the plane such that no
boundary component is a point. Then there exist two paiatsds in 2 such that
the alternatively normalized Ahlfors md{z, w) associated t&2 is a complex ra-
tional function off,(z), f5(z), and f,(w), f»(w), f.(w), f»(w). Furthermore,
the family of Ahlfors mappings is given by form{@a5)and the infinitesimal Car-
athéodory metric is given by(z)|dz|, where

P(2) = £ (fu(2), £5(2), fu(2), fr(2))];
here Q is a rational function orC*.

4. What Is a Mobius Transformation?

Here is one way to “invent” Mobius transformations. Letz) denote an irre-
ducible polynomial of one variable with no zeroes in the unit disc—that is,
p(z) = z—bwhere|b| > 1. Notice thatp(1/7) is equal top(z) on the unit circle.
Let g(z) denote the polynomial obtained by multiplying the conjugate @f'z)
by the power ot needed to clear the poles in the unit disc (ig€z) = 1 — zb).
Sincelq(z)| = |zp(1/2)|, it follows that|g(z)| = |p(z)| on the unit circle. No-
tice thatg (z)/p(z) is a Mobius transformation (lét = 1/a to make it look more
standard).

It is shown in [6] that every proper holomorphic mapping of a smooth
connected domai® onto the unit disk can be expressed as a rational combi-
nation of two Ahlfors mapg, and f, associated to points andb in Q. Itis an
interesting problem to determine just exactly which rational functions arise in this
manner, and it is tempting to call some of these rational functions Mdbius trans-
formations. Here is one way to construct such a rational function APetenote
the unit bidisc. Letp(z, w) denote an irreducible polynomial of two variables
with no zeroes in the closure @f2. Notice thatp(1/z, 1/w) is equal top(z, w)
on the distinguished boundary af. SupposeV is the degree op(z, w) in z and
that M is the degree inw. Let ¢(z, w) be the polynomial given by w™ times
the conjugate op(1/z, 1/w). Sinceg(z, w) andp(z, w) have the same modulus
on the distinguished boundary of and sincgz¥w"| = 1 there, it follows that
the modulus of;(z, w)/p(z, w) is also one there. Thus, if it is not constant, then
q(fa(2), fr(w))/p(f.(2), fr(w)) is a proper holomorphic mapping &fonto the
unit disc.

More generally, the same construction can be carried optf w) is an ir-
reducible polynomial orC? that does not vanish on the portion of the curve

et
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7 (fa(2), fr(2)) inside the closed unit bidisc. Can any proper map fram
to the unit disc be expressed in a similar manner, perhaps as some kind of combi-
nation of these basic maps?

5. The Poisson Kernel Extends Nicely to the Double

Of course, the Poisson kernel extends to the double by simple reflection. Here we
show that it extends nicely in both variables and in terms of some special functions
with geometric meaning.

Assume thaf2 is a boundea-connected domain in the plane witl¥°-smooth
boundary consisting of nonintersecting curves. Let, ..., v,_; denote the inner
curves and ley, denote the outer curve.

The classical Poisson kernel fér is related to the normal derivative of the
Green’s function via

1 9
p(z,w) = ——G(z,w), z€R, web,
21 Ony,

where(d/dn,,) denotes the normal derivative in thevariable. It is a standard
fact that we may rewrite this last formula (see [3, pp. 134-136]) in the form

p(z, w) = —l—iG(z, w)T(w).
7T 0w

Itis provedin[4, p. 1367] (see also [7, p. 12] for an easier proof) that the derivative

of the Green’s functiol;, (z, w) := %G(z, w) is given by

n—1
Gz w) = 7 2D | N ) — ay ), (5.)
S(z,2) e

where the functions;(z) are given by

1S(w, 2)|?
A7) = L a2 B
j(2) L;eyj S(z.2) ds,

the functionsw;(z) are the harmonic measure functions, and the functigrase
a basis for the linear spaf’ of the functionsF;’ := 2(dw;/dz) normalized so that

Skj:/ uj(w) dw.
Y

We now show that the principal teri# %) in the expression fo6, (z, w)

has the interesting property that it extends to the doubfe wf the z variable as

a real-analytic function that is a rational combination of two Ahlfors mafs)

and f;(z) and their conjugates. Indeed, if we substitute equations (2.1) and (2.2)
into this expression, we obtain that

S(w, z)L(w, 2)

S(Z, Z) = Tl(Z» U))TZ(Z, 'LU), (52)

where



Mobius Transformations 357

_ A= £ ful2)
(faw) = fu(2)A— fu(w) fu(2))

Tl(Z, w)

and
(X1 ko ciSw, a8z a)) (X} Loy Sw. aL(z. a)))

Yo S(z.an Sz, aj)
The first term extends to the double as a real-analytic function beggudees.
If we divide the numerator and denominator of the second termsby, a)|?,
we observe that the numerator is a linear combination of functions that are given
as products of.(z, a,)/S(z, a) times the conjugate of(z, a,,)/S(z, a) times
S(w, az)S(w, ar). As mentioned previously, the functiod%z, a,,)/S(z, a) and
L(z,a,)/S(z, a) extend meromorphically to the double and hence can be expressed
as rational functions of two Ahlfors map$(z) and f,(z). The denominator is a
linear combination of functions given as the producL¢f, a,)/S(z, a) times the
conjugate ofS(z, a,,)/S(z, a). Hence it has these properties, too, inthariable.

We have shown that, for fixed, the function ofz given by S(w, z) L(w, 7)/
S(z, z) is a rational combination of two Ahlfors map%(z) and f,(z) and their
conjugates.

We now claim that functions of the form

S(w, ag)S(w, ap)/f,(w)

extend meromorphically to the double @f Indeed, since identity (2.4) yields
thatS(w, a,)S(w, ax) T (w) is equal to the conjugate efL(w, a,) L(w, ax) T (w)

for w in the boundary and sincE(w) f,(w)/f,(w) is equal to the conjugate of
—T(w) f)(w)/fa(w), we may use similar reasoning to that in [5, p. 202] and
divide these two expressions to see thab, a,)S(w, ar) fa(w)/f,(w) extends
meromorphically to the double. Singg(w) extends to the double, the claim is
proved. Now, if we were to divide the large expression on the right-hand side of
(5.2) for S(w, z) L(w, z)/S(z, z) by f,(w), we would deduce that

S(w, z)L(w, z)
fiw)S(z,2)
is a rational combination of the two functiosis(w), f;,(w) and the four functions

fa(2) and f,(z) and their conjugates.
Itis proved in [7] that there exist — 1 pointsw; in  such that the functions

(wk(2) — Ak (2))
are linear combinations of functions pbf the form
S(wj, 2)L(wj, z)
S(z,z2)

The functionG,, (z, w;) is harmonicine onQ —{w;} and vanishes on the boundary.
Hence, it extends to the double as a harmonic function with two singular points.
The functionS(wyj, z) L (wj, 2)/5(z, z) has been shown to extend to the double.

Tz(Z, w) =

Gw(Za wj) -7
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SinceFj/(w)T(w) is equal to the conjugate efFj’(w)T(w) on the boundary, the
same reasoning used previously yields that functions of the form

F/(w)/f)(w)

extend meromorphically to the double @f We may now state tha¥, (z, w) is
given asf,(w) times a rational combination of the two functiofigw), f(w)
and the four functiong; (z) andf,(z) and their conjugates, plus a linear combina-
tion of the functionsG,, (z, w;) times rational combinations of, (w) and fj, (w).

In symbols,

Gu(z, w) = fi(w)Ro(fa(w), fr(w), fu(2), f5(2), fa(2), fo(2))
n—1
+ £1w) Y Gulz w) R (fa(w), fo(w)),
j=1
where the functionskg and R; are rational. All the functions that constitute
Gy (z, w) extend nicely to the double excefif(w).
The results of this section can be generalized tmnnected domains with non-
smooth boundaries in the same way as in Section 3, but we shall not do this here.

6. Linearizing the Green'’s Function and Bergman Kernel

In the simply connected case, the Green’s function is related to a Riemann map
f(2) by the simple formula

G(z,w)=1In M
1-f(2) f(w)
In the multiply connected setting, the Green’s function is also related to Ahlfors
maps, but it is not clear if the Green’s function can be expressed naturally in terms
of maps. We saw some tantalizing evidence in the previous section that there might
be such an expression. In this section, | give some further evidence that leads me to
believe that such an expression may exist. This evidence fits nicely into the subject
matter of this paper because a genuine Mdébius transformation is a key ingredient.
Suppose tha® is a multiply connected domain withi*°-smooth boundary, and
let f(z) denote an Ahlfors map associated(f2, a) that has simple zeroes. Let
L(z, w) denote the function

In f(2) — f(w) _
1- f(2) f(w)

We want to investigate the boundary behavior of the quotigat w)/L(z, w) as
z andw are both allowed to approach the boundary. First assume that fixed
point in 2 and letw approach the boundary. Both the numerator and the denomi-
nator extend” *°-smoothly inw to the boundary, and the Hopf lemma reveals that
both terms vanish to first order along the boundary. Hence, the quotient extends
C*°-smoothly up to the boundary in and the limit is given (by L'H6pital’s rule)
as the quotient of the normal derivativigg on,,) in the w variable. Recall that
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9
G(z,w) = —2iGy(z, w)T(w).
anw
Since/ is also a real-valued harmonic function that vanishes on the boundary, the
same reasoning that yields this identity can be applied to the normal derivative of
L(z, w) to obtain

(e w) = 2L, )Ty = — T WA= S@OTW
I i(f(w) — f(2)A— f(2) f(w))
Notice the similarity of this expression withy(z, w) in formula (5.2). We may
now divide these two normal derivatives and use (5.1) and (5.2) to obtain that
(3/0n,)G(z, w) _ if(2)
(0/3n,)L(z, w) — f'(w)

T2(z, w) + T3(z, w),

where
(Z?,;iocijS(Wai)S(Z’aj))(Z?,;ioCijS(W,Cli)L(Z,aj))
To(z. w) = - =0 v
Yo S(z.anS(z, ap)
and
_i(fw) = f)A- F@Of@) .
T3(z, w) = A= FOP ;zn(wj(z) — A (2)uj(w).

Although this formula is painful to look at, a moment of suffering reveals that the
right-hand side can be written as a sum of simple terms to yield that

(8/0n,)G (2, w)

SIS T 3 (@) hy(w), (6.1)
(8/8n11))£(z’ w) f

where all functiong:; extend to the double as real analytic functions and all func-
tions z;(w) extend to the double as meromorphic functions. (Note that here we
have used the fact, proved earlier, thgtf’ extends to the double as a meromor-
phic function.) | view this formula as a linearization or polarization of the Poisson
kernel. | take this opportunity to state a theorem.

THEOREM 6.1. Suppose thaf2 is a bounded finitely connected domain in the
plane withC*°-smooth boundary. Then the Green'’s function associatézigat-
isfies an identity of the form
d ad
.-Gz, w) = - L(z, w) quj(z)hj(w),

where eaclu; extends to be real analytic on the double@fand eachr; extends
to be meromorphic on the double 6.

We note that we have proved this identity wheis in 2 andw is in the bound-
ary of @, but since the functions af in the expression are all meromorphic, the
identity extends to hold for alb in €.
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We now continue to deal with equation (6.1). We assumeuthiatback in the
boundary, and we let thevariable tend to a boundary point other thato obtain

(0%/0n.0n,)G(z, w) _ (0%/020w)G(z, w) _ if(2)
02/0n,0n,)L(z, w)  (0%/0z0w)L(z, w)  f'(w)
whereT,(z, w) is as before andy(z, w) is given by

T2(z, w) + Ty(z, w),

. . 1_— n—1
Tate. wy = (@) f(zf)/)((w : ISR,
. j=1

herev;(z) is equal to the limit ofr (w;(z) — A;(z))/A— | f(2)|?) asz tends to the
boundary. Sinc€d?/8z0w)G (z, w) is equal tok (w, z) and(9%/9z0w)L(z, w) is
equal to L
f'(w) f'(2)
A- fw) f)*
we deduce that

J'(w) f'(z) ( )
Kw,))=—"-—— () H; s
D= T iy Z, o)

where the sum is finite and each functififi(w) extends to be meromorphic on
the double of©2. We may assume that this sum has been collapsed so that the
functionsH; (w) are linearly independent g2. We can now exploit the hermitian
property of the Bergman kernel to easily deduce thavjHenctions are actually
linear combinations of the conjugates of tHg Hence, we have proved that

f'w) f@) (ZN —)
K > e — )\. H H .
D= A g | g

We have shown only that this identity holds on the boundary, but it is clear that
it extends to the inside of the domain because all the functions that appear in the
identity are meromorphic. The fact (proved in [6]) that the field of meromorphic
functions on the double is generated by two Ahlfors maps now enables us to state
that the functiondgd; are rational combinations of two Ahlfors maps. We have op-
erated under the assumption tifahas smooth boundary. Finally, § does not

have smooth boundary, we can map to a domain with smooth boundary and use
the fact that the terms in the expression ¢z, w) transform under biholomor-

phic mappings to obtain the following theorem.

THEOREM 6.2. Suppose thaf2 is a finitely connected domain in the plane such
that no boundary component is a point. Then there exist two peiatglb in
such that the Bergman kernel associatetts given by

flw) f1(2) ( al —)
K(w,z) = B i Hy(w) He(2) ).
w,Z 1— fa(w)fa(Z))z j,kZ=1 jk (W) Hi (2
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where the functiond?; are rational combinations of the two Ahlfors mays
and f, and where the. ;; are constants.

There are many interesting questions that present themselves at this point. The ra-
tional functions that appear in the formula in Theorem 6.2 most likely satisfy an
invariance property under biholomorphic mappings and have algebraic geometric
significance. The functiors; have many interesting properties. | wonder if they
might be expressible as rational combinations of two Ahlfors maps and their con-
jugates. | also wonder if the Green’s function can be shown to have similar finite
complexity to all the other kernel functions that have been studied in this paper,
modulo some logarithmic expressions. Itis also a safe bet that many of the results
in this paper extend to the case of finite Riemann surfaces. | leave these investi-
gations for the future.
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