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1. Introduction

The analytic definition of quasiconformality declares that a homeomorphismf

between domains� and�′ in Rn, n ≥ 2, is quasiconformal iff ∈W 1,n
loc (�,�

′)
and there exists a constantK such that

|Df(x)|n ≤ KJf (x) a.e. in�.

Because the Jacobian of any homeomorphismf ∈ W 1,1
loc (�,�

′) is locally inte-
grable, the regularity assumption onf in this definition can naturally be relaxed
to f ∈ W 1,1

loc (�,�
′). There has been considerable interest recently in so-called

µ-homeomorphisms that form a natural generalization of the concept of a quasi-
conformal mapping in dimension 2. To be more precise, we consider homeomor-
phismsf ∈W 1,1

loc (�,�
′) such that

|Df(x)|2 ≤ K(x)Jf (x) a.e. in� (1)

with K(x) ≥ 1 and exp(λK) ∈ L1
loc(�) for someλ > 0. A class of mappings

equivalent to this was introduced by David in [2] and further studied in [17; 18].
David considered the Beltrami equation

∂̄f (z) = µ(z)∂f(z)
and essentially showed that a homeomorphic solutionf ∈W 1,1

loc (�,�
′) exists (in

the planar case) when|µ(z)| ≤ 1 almost everywhere and

exp

(
C

1+ |µ(z)|
1− |µ(z)|

)
∈L1

loc(�)

for someC > 0; for this generality see [18]. These mappings in fact belong to⋂
p<2W

1,p
loc (�,�

′); they are differentiable a.e. and preserve the null sets for the
2-dimensional Lebesgue measure. These conclusions hold with 2 replaced byn

in any dimension for mappings with an exponentially integrable distortion in the
sense of (1); see [13; 14].
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Quasiconformal mappings can alternatively be defined using metric quantities:
Let� and�′ be domains inRn and letf : �→ �′ be a homeomorphism. Recall
thatf is then either sense-preserving or sense-reversing; throughout this paper,
we will assume that all the homeomorphisms we deal with are sense-preserving.
Then the two distortion functions off that are of interest to us at a pointx ∈� are

Hf (x) = lim sup
r→0

Hf (x, r) (2)

and
hf (x) = lim inf

r→0
Hf (x, r), (3)

where

Hf (x, r) = Lf (x, r)

lf (x, r)

and

Lf (x, r) := sup{|f(x)− f(y)| : |x − y| ≤ r},
lf (x, r) := inf{|f(x)− f(y)| : |x − y| ≥ r}.

By |x − y| we denote the Euclidean distance betweenx andy. Now f is quasi-
conformal if and only if the distortionHf is uniformly bounded—that is, iff

Hf (x) ≤ H <∞ for all x ∈�. (4)

According to a result by Gehring [3, Thm. 8], the uniform boundedness ofHf can
be relaxed to the requirement thatHf (x) <∞ outside a setE of σ -finite (n−1)-
dimensional measure andHf (x) ≤ H a.e. with respect to the Lebesgue measure.
It has recently been observed that, first of all,Hf in (4) can be replaced withhf .
For this result, which quickly found applications in complex dynamics, see [7].
Second, we established in [11] a version of the result of Gehring’s by showing that
it suffices to assume thathf (x) ≤ H outside a set ofσ -finite (n − 1)-measure.
This result was partially motivated by the need for tools of this type in complex
dynamics (see [4]).

In the case ofµ-homeomorphisms—or, more generally, homeomorphismsf ∈
W

1,1
loc (�,�

′) that satisfy (1) with some suitably well-integrableK—there is no real
hope of obtaining a metric definition that would characterize the class of mappings
in question. Indeed, the size condition on the exceptional set in the metric defini-
tion cannot be relaxed even in the quasiconformal setting; moreover, under integra-
bility conditions onK, we know thatHf can well be infinite in a set of dimension
larger thann− 1. Thus the best one can hope for is a sufficient metric condition.
Again, the quest for such a condition is partially motivated by complex dynamics;
µ-homeomorphisms appear naturally in conjugation problems (see [5; 6]). Ac-
cording to a result of Kallunki and Martio [12], in the planar case, a homeomor-
phismf : � → �′ for whichHf ∈ Lploc(�) for somep > 2 andHf (x) < ∞
outside a set ofσ -finite length indeed belongs toW 1,1

loc (�,�
′) and is differentiable

a.e. See also [18] for a related result. For simplicity and for the relevance to com-
plex dynamics, here and in the sequel we mostly concentrate on the planar case. In
this paper we establish new results in terms ofhf . They rely on our first theorem,
which gives control on the distortion of shapes by means of integrals ofhf .
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Theorem 1.1. Let f be a homeomorphism between domains�,�′ ⊂ R2 such
that hf (x) <∞ outside a setE of σ -finite length andhf ∈L2

loc(�). Then

Lf (x, r) ≤ lf (x, r)exp

(
C

∫
B(x,2r)

h2
f (y) dy

)
(5)

for eachx ∈ � and everyr > 0 such thatB(x,2r) ⊂ �. The constantC is an
absolute constant. In particular,f is differentiable almost everywhere.

By theσ -finite length of a set we mean that the set has a countable cover by sets
of finite Hausdorff 1-measure.

As an immediate consequence of this theorem and its higher-dimensional ana-
log (given in Section 4), we obtain the following corollary, which gives a full
extension of the result of Gehring’s discussed previously; see Theorem 1.3. It is
an improvement on our main result in [11].

Corollary 1.2. Let�,�′ ⊂ Rn be domains and suppose thatf : � → �′ is
a homeomorphism. Suppose that there exist a setE of σ -finite (n − 1)-measure
and a constantH such thathf (x) <∞ outsideE in � and

hf (x) ≤ H
almost everywhere in�. Thenf is quasiconformal.

We close this introduction with a regularity result that gives a sufficient metric
condition for a mapping to be aµ-homeomorphism.

Theorem 1.3. Let f be a homeomorphism between domains�,�′ ⊂ R2 such
thathf (x) <∞ outside a setE of σ -finite length. There is an absolute constant
C ′ such that

exp(C ′h2
f )∈L1

loc(�)

implies thatf ∈W 1,2
loc (�,�

′) and that(1) holds withexp(C ′K2)∈L1
loc(�).

Notice that we obtain a stronger conclusion than simply the exponential integrabil-
ity of the distortion and also that the asserted regularity of the mapping is stronger
than one would expect. The regularity will be deduced from [8] and [9]. It would
be interesting to know if the exponential integrability ofhf could already guaran-
tee that the mapping belongs toW 1,1

loc (�,�
′).

The paper is organized as follows. In Section 2 we prove Theorem1.1, and
Section 3 is devoted to the proof of Theorem 1.3. The last section contains the
formulation and the outline of the proof of Theorem 1.1 inRn.

2. The Local Quasisymmetry Condition

In this section we prove Theorem1.1.

Proof of Theorem1.1. If inequality (5) holds, then

Hf (x) = lim sup
r→0

Lf (x, r)

lf (x, r)
<∞ for a.e.x ∈�.
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This guarantees the differentiability off almost everywhere, owing to the Rade-
macher–Stepanov theorem (see e.g. [12]).

The proof of inequality (5) is somewhat technical. The argument is an improve-
ment on the techniques in [7] and [11]; for the convenience of the reader we will
repeat even the part of the original reasoning from [7] that need not be altered.

First fix x0 ∈� andr > 0 withB(x0,2r) ⊂ �. We can assume that

Lf (x0, r) > 3lf (x0, r).

Let 1≤ p < 2 andε > 0. Define

A = B̄(f(x0), L) \ B(f(x0), l ),

whereL = Lf (x0, r) andl = lf (x0, r). For eachk = 0,1,2, . . . , write

Ak = {y ∈ f −1(A) ∩ B(x0,2r) : 2k ≤ hf (y) < 2k+1}.
The setAk is a Borel set,f −1(A)∩B(x0,2r) \E =⋃k Ak, and for everyk there
exist openUk such thatAk ⊂ Uk and

|Uk| ≤ |Ak| + ε

(22p/(2−p))k
.

Here|A| denotes the Lebesgue measure of a setA. Fix k. Now, for everyy ∈Ak,
there is ary > 0 such that

(i) 0 < ry <
1
10 min{d(f −1(B̄(f(x0), l )), f

−1(R2 \ B(f(x0), L))),

d(y, ∂B(x0,2r))},
(ii) diam(fBy) < 2−j0−3L,

(iii) Hf (y, ry) < 2k+1, and
(iv) By ⊂ Uk.
HereBy = B(y, ry) andj0 is the least positive integer with 2−j0L < l.

We have obtained a family of ballsBy that satisfy conditions (i) and (ii) and
such that, ify ∈ Ak, thenBy satisfies condition (iii) fork. By the Besicovitch
covering theorem we may find balls̄B1, B̄2, . . . from ballsB̄(y, ry), so that

f −1(A) ∩ B(x0,2r) \ E ⊂
⋃
j

B̄j ⊂ B(x0,2r)

and
∑

j χB̄j (x) ≤ C(2) for everyx ∈R2. Here and in what follows, notation like
C(2) indicates that this constant will depend on the dimension when the argument
is extended to cover the higher-dimensional setting. For these balls, we know that

|fB̄j | ≤ C(2)diam(fB̄j )
2

and, whenyj ∈Ak (hereyj is the center ofB̄j ),

|fB̄j | ≥ C(2)diam(fB̄j )2

22(2k+1)2
.

Let us define

ρ(x) =
(

log
L

l

)−1∑
j

diam(fB̄j )

d(fBj, f(x0))

1

diam(Bj )
χ2Bj (x).

The functionρ is measurable because it is a countable sum of simple functions.
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The next step is to estimate theLp-norm, 1≤ p < 2, of ρ. In the planar case we
can simply takep = 1, but in higher dimensions an exponentn−1< p < n will
be needed. We thus write this proof for generalp so that the extension to higher
dimensions becomes transparent (cf. Section 4).

By a general estimate onLp-norms of weighted sums of characteristic func-
tions, theLp-norms(1≤ p < 2) of ρ are comparable to the corresponding norms
of the function where the characteristic functionsχ2Bj are replaced withχBj (cf.
[1]). Thus, knowing that

∑
χBj ≤ C(2), we arrive at the estimate∫

Rn
ρ(x)p dx ≤ C(2, p)

(
log

L

l

)−p∑
j

(
diam(fB̄j )

d(fBj, f(x0))

1

diam(Bj )

)p
|Bj |.

Using Hölder’s inequality and the fact that diam(fBj )2 ≤ C(2)|fBj |(2k+1)2 when
yj ∈Ak, we thus obtain∫

Rn
ρ(x)p dx ≤ C(2, p)

(
log

L

l

)−p(∑
j

|fBj |
d(fBj, f(x0))2

)p/2

×
(∑

k

∑
yj∈Ak

(2k)2p/(2−p) diam(Bj )
2

)(2−p)/2

.

Regrouping the balls depending on their distance fromf(x0) and then using the
estimate

∑
χBi ≤ C(2), it is easy to see that∑

j

|fBj |
d(fBj, f(x0))2

≤ C(2) log
L

l
.

The approximation of the second term is a little bit trickier. First observe that
diam(Bj )2 ≤ C(2)|Bj | = C(2)(|Bj ∩ Ak| + |Bj \ Ak|). The double sum over the
|Bj ∩ Ak|-terms can be estimated by the integral ofh

2p/(2−p)
f and the double sum

over the|Bj \ Ak|-terms turns out to be no more than a constant timesε, because⋃
yj∈Ak Bj ⊂ Uk and|Uk| ≤ |Ak| + ε/(22p/(2−p))k. Therefore,∑

k

∑
yj∈Ak

(2k)2p/(2−p) diam(Bj )
2 ≤ C(2)

(∫
B(x0,2r)

hf (x)
2p/(2−p) dx + ε

)
.

Becauseε was arbitrary, we conclude that∫
Rn
ρ(x)p dx ≤ C(2, p)

(
log

L

l

)−p/2(∫
B(x0,2r)

hf (x)
2p/(2−p) dx

)(2−p)/2

.

In the following we will actually choosep = 1.
Our next goal is to find a lower bound on the integral ofρ. For this, defineF1=

f −1(B̄(f(x0), l )) andF2 = f −1(R2 \ B(f(x0), L)) ∩ B(x0,2r). Take a point
y ∈ F1 ∩ S(x0, r). By applying an auxiliary rotation, we may assume thaty =
x0 + (r,0). Consider the line segmentsJt parallel to the imaginary axis through
the pointsx0 + (t, 0), 0 ≤ t ≤ r, that join two points ofS(x0,2r). Assume first
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that
∫
Jt
ρ ≥ 1

2000 for eacht in a setA⊂ [0, r] with m(A) > r/2. Herem refers to
the Lebesgue measure on the line. Then it follows from the Fubini theorem that∫

B(x0,2r)
ρ ≥ r

4000
.

Suppose then that
∫
Jt
ρ ≤ 1

2000 for eacht in a setA with m(A) > r/2. Now
m({0 ≤ t ≤ r : E ∩ Jt is uncountable}) = 0, andm({r ≤ s ≤ 2r : E ∩ S(x0, s)

is uncountable}) = 0 becauseE hasσ -finite length (cf. [19, 30.16]).
Take a radiusr < s < 2r and a numbert ∈A such that bothE ∩ S(x0, s) and

E∩Jt are countable. Pick the ballsV1, V2, . . . from the ballsB̄1, B̄2, . . . for which
Vi ∩ S(x0, s) 6= ∅ or Vi ∩ Jt 6= ∅. Write γ = Jt ∪ S(x0, s). Then the connected
setγ intersects bothF1 andF2 and thusf(γ ) is a connected set that intersects
bothB̄(f(x0), l ) andR2 \B(f(x0), L). Moreover, the setsf(Vi) coverf(γ ) up
to a countable set.

Now ∫
γ

ρ ≥ 1

2

(
log

L

l

)−1∑
i

diam(fVi)

d(fVi, f(x0))
.

If f(Vi) touches the annulusAj = B(f(x0),2j+1l ) \ B(f(x0),2jl ), j = 0, . . . ,
j0 − 1, thend(fVi, f(x0)) ≤ 2j+1l, and because the connected setsf(Vi) cover
f(γ ) up to a countable set,∫

γ

ρ ≥
(

log
L

l

)−1 j0−1∑
j=0

1

4
≥ 1

1000
.

Becauset ∈A, we have ∫
Jt

ρ ≤ 1

2000
and it follows that ∫

S(x0,s)

ρ ≥ 1

2000
.

From this estimate and using the Fubini theorem, we obtain that∫
B(x0,2r)

ρ(x) ≥
∫ 2r

r

(∫
S(y,s)

ρ

)
ds ≥ 1

2000
r.

Thus, in both cases we have the estimate∫
B(x0,2r)

ρ(x) dx ≥ Cr.

Combining now the lower bound with the upper bound, we finally have (with the
choicep = 1) that

C(2)r ≤ C(2)
(

log
L

l

)−1/2(∫
B(x0,2r)

hf (x)
2 dx

)1/2

.

This gives the claim.
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3. A Metric Condition for µ-Homeomorphisms

In this section we will prove Theorem 1.3. For the proof we need two lemmas, the
first of which is a version (tailored for our setting) of the standard absolute conti-
nuity result for quasiconformal mappings.

Lemma 3.1. Letf be a homeomorphism between domains�,�′ ⊂ R2 such that

Lf (x, r) ≤ lf (x, r)ϕ(x) wheneverB(x,2r) ⊂ �, (6)

whereϕ ∈ L2
loc(�). Thenf is absolutely continuous on almost all lines parallel

to the coordinate axes.

Proof. LetQ ⊂⊂ � be an open 2-interval and suppose thatQ = I × J, where
I = ]a, b[ ∈R1 andJ = ]c, d [ ⊂ R1. For each Borel setE ⊂ I we setη(E) =
|f(E × J )|. Thenη is a finite Borel measure inI and hence, by the Radon–
Nikodym theorem, it has a finite derivativeη ′(y) for almost everyy ∈ I. Choose
y ∈ I such that (i)η ′(y) exists and (ii)ϕ ∈L2({y} × J ). The latter is possible be-
cause of the Fubini theorem. We will prove thatf is absolutely continuous on the
segment{y} × J, which will prove the theorem.

Define J ′ = {y} × J. Now let F ⊂ J ′ be compact. We wish to estimate
H1(fF ). Choose 0< ε < dist(F, ∂J )/4 andt > 0. Let 0< δ1 ≤ 1 be the num-
ber given by [19, Lemma31.1] for the setF. We will soon state what this lemma
gives us. Chooseδ2 such that, if 0< r < δ2, then|f(x) − f(z)| < t whenever
x, z ∈Q and|x − z| ≤ 2r. Denoteδ = min{δ1, δ2, ε}. Choose 0< r < δ. Now
[19, Lemma31.1] gives a covering41, . . . ,4p of F with intervals inJ ′ such that
(i) diam(4i ) = r for 1 ≤ i ≤ p, (ii) each point ofJ ′ belongs to at most two
different4i, and (iii) each4̄i is contained in theε-neighborhood ofF in J ′.

Now, becauseϕ ∈L2(J ′), there are pointsxi ∈ 4̄i such that

ϕ(xi) ≤ 2 inf
x∈4̄i

ϕ(x) <∞. (7)

SetAi = B2(xi, r). Now4i ⊂ Ai andAi ⊂ B̄1(y, r)×J. Because diam(fAi) < t
we have thatH1

t(fF ) ≤
∑

diam(fAi) ≤ 2
∑
Li, whereLi = Lf (xi, r). Denote

similarly li = lf (xi, r). Using (6), we obtain the estimate

H1
t(fF )

2 ≤ 22

(∑
i

Li

)2

≤ 22

(∑
i

liϕ(xi)

)2

= 22

r

(
x
∑
i

lir
1/2ϕ(xi)

)2

;

notice thatB(xi,2r) ⊂ �. By Hölder’s inequality we further conclude that

H1
t(fF )

2 ≤ 22

�2r

∑
i

|f(Ai)|
∑
i

rϕ2(xi),
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where�2 = |B2(0,1)|. Because no point belongs to more than two of the sets
Ai, it follows that

∑|fAi | ≤ 10η(B1(y, r)). Since the pointsxi satisfy (7), we
arrive at

H1
t(fF )

2 ≤ 10 · 22

�2

η(B1(y, r))

r

(∫
F+ε

ϕ2(x) dx

)
.

HereF + ε is theε-neighborhood ofF in J ′. Letting firstr → 0 and thenδ1→ 0
and finallyε→ 0 andt → 0, we deduce that

H1(fF )2 ≤ C(2)η ′(y)
(∫

F

ϕ2(x) dx

)
.

The absolute continuity off on J ′ follows from this estimate; see [19, Lemma
30.9].

Lemma 3.2. Letu be a nonnegative function such that

exp(C ′u)∈L1
loc(�), (8)

and letp > 1. Then, for each compact setF ⊂ �,
exp(εC ′M(χFu))∈Lploc(�), (9)

whereε depends only onp and whereM is the usual Hardy–Littlewood maximal
operator.

The proof of this lemma is a simple computation based on (a) the fact that the
Hardy–Littlewood maximal operator is bounded fromLq toLq when 1< q <∞
and (b) the expansion of the exponential function as a power series. Indeed,∫

R2
(Mv)q dx ≤ C

∫
R2
|v|q dx

wheneverq ≥ 2, whereC = c2qq/(q − 1) for c an absolute constant; see [15].
Moreover, ∫

E

Mv dx ≤
(∫

E

(Mv)2 dx

)1/2

|E|1/2

by Hölder’s inequality. Thus the claim follows from the power series expansion

exp(pεC ′M(χFu)) =
∑
k

(pεC ′M(χFu))k

k!
.

Proof of Theorem 1.3.From Theorem 1.1 we have thatf is differentiable almost
everywhere. Next we would like to show thatf is absolutely continuous on lines.
For this it is enough to show thatf is absolutely continuous on lines in every
squareQ ⊂⊂ �. Fix such a squareQ. Now, if r < 1

2 dist(Q, ∂�) andx ∈Q then
inequality (5) gives that
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Lf (x, r) ≤ lf (x, r)exp(CM(χQh
2
f )(x)).

Lemma 3.2 shows that exp(CM(χQh2
f )(x)) ∈ L2

loc(�) when the constantC ′ is
chosen correctly. By Lemma 3.1, we see thatf is absolutely continuous on almost
all lines parallel to the coordinate axes.

The next goal in our proof is to check thatf ∈W 1,1
loc (�,�

′). Becausef is ab-
solutely continuous on almost all lines parallel to the coordinate axes, it suffices to
show that|Df | ∈L1

loc(�). HereDf is the matrix obtained from the partial deriva-
tives of the coordinate mappings, and it exists at a.e. point of�. Now, for a.e.
x ∈�, it follows thatf is differentiable,Df(x) exists, andhf (x) <∞. Fix such
a pointx. Becausef was assumed to be sense-preserving, the Jacobian determi-
nantJf (x) must be nonnegative. IfJf (x) > 0, then clearly

|Df(x)|2 ≤ hf (x)Jf (x). (10)

On the other hand, ifJf (x) = 0, then elementary linear algebra shows that
min|e|=1|Df(x)e| = 0. From the assumptionhf (x) < ∞ it then follows that
Df(x) must be the zero matrix. Thus (10) holds for a.e.x ∈ �. Because the Ja-
cobian of each a.e. differentiable homeomorphism is locally integrable (cf. [16,
p. 360]), we thus conclude from (10) and our integrability assumption onhf that
|Df | is locally integrable—in fact, locallyp-integrable for anyp < 2.

We are left to show thatf ∈ W 1,2
loc (�,�

′). By the previous paragraph,f ∈
W

1,1
loc (�,�

′), Jf ∈L1
loc(�), and

|Df(x)|2 ≤ K(x)Jf (x)
a.e., whereK = hf satisfies exp(C ′K2) ∈L1

loc(�). Then exp(λK) ∈L1
loc(�) for

everyλ > 0 and so [8] (or the main theorem in [9]) gives us the desired regularity.

4. The Higher-Dimensional Setting

The higher-dimensional setting is somewhat more technical. Corollary 1.2 is an
immediate consequence of the following result.

Theorem 4.1. Let f be a homeomorphism between domains�,�′ ⊂ Rn such
that hf (x) < ∞ outside a setE of σ -finite (n − 1)-measure andhf ∈Lp∗loc(�),

with somen− 1< p < n. Herep∗ = pn/(n− p). Then

Lf (x, r) ≤ lf (x, r) exp

((
C(n, p)

∫
B(x,2r)

h
p∗
f (y) dy

) 1
p∗

n

n−1
)

(11)

for everyx ∈� and eachr > 0 such thatB(x,2r) ⊂ �. In particular, f is dif-
ferentiable almost everywhere.

Proof. The first part of the proof is the same as the beginning of the proof of
Theorem1.1. Wesimply replace the number 2 there withn. We then end up with
the estimate
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Rn
ρp(y) dy ≤ C(n, p)

(
log

L

l

)(p/n)(1−n)(∫
B(x0,2r)

hf (x)
np/(n−p) dx

)(n−p)/n
.

The claim follows from this inequality, provided we can find a suitable lower
bound on thep-integral ofρ. Such an estimate is obtained by a simple modifica-
tion of the reasoning in [11] (Lemma 2.1 there holds withn replaced byp when
p > n−1, and in Lemma 2.3 there the setEb is not needed). Explicitly, we have
the lower bound ∫

Rn
ρp(y) dy ≥ C(n, p)r n−p;

see [10, Lemma 2.6]. By combining these two facts, the claim follows.
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