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Reinhardt Domains and Toric Models

Meng-Kiat Chuah

1. Introduction

This article is motivated by the construction of unitary representations of the torus,
based on Kähler structures on strictly pseudoconvex Reinhardt domains. LetT be
the compactn-torus. In the language of geometric quantization [7], the “classical”
picture is aT-manifoldX along with aT-invariant symplectic formω, while the
“quantum” picture is a unitaryT-representationH. The process of transforming
(X, ω) to H = Hω is calledgeometric quantization.If Hω contains every irre-
ducibleT-representation exactly once, it is called amodel. This terminology is
due originally to I. M. Gelfand and A. Zelevinski [4], who construct models of the
classical groups. SinceT is a torus, we also call it atoric model.A space where
T acts naturally is the Reinhardt domainX ⊂ Cn, since(z1, . . . , zn) ∈X implies
that(e iθ1z1, . . . , e

iθnzn)∈X. Consider the setting(X, ω),whereω is aT-invariant
Kähler form on the Reinhardt domainX. The central issue of this article is:When
does(X, ω) provide a toric modelHω?

We shall describe the Kähler structuresω, constructHω, and show that the con-
ditions forHω to be a toric model are closely related to the convergence of the
integrals ∫

x∈�
e−F(x)+λx dV, λ∈Zn.

Here� ⊂ Rn is a strictly convex domain,F ∈C∞(�) a strictly convex function,
anddV the Lebesgue measure. This integral will be our major concern. We now
outline our projects in better detail.

We restrict our consideration to strictly pseudoconvex Reinhardt domainsX

with freeT-action. FreeT-action implies that if(z1, . . . , zn) ∈X thenzi 6= 0 for
all i. By the exponential map and normalization 2π ∼ 1, it follows thatT andX
have the following convenient descriptions:

T = Rn/Zn, X = {x +√−1y : x ∈�, y ∈ T }, (1.1)

where� ⊂ Rn is a domain. Note thatX = � + √−1T . TheT-action onX is
given by addition ony ∈Rn/Zn in (1.1). Weshall see in Section 2 that strict pseudo-
convexity ofX leads to nice convexity properties of�. From now on,X, T,�
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shall always be as given in(1.1). Thepresent article deals with arbitrary strictly
convex domain�, which extends the special case� = Rn studied in [3].

In Section 3 we study the HamiltonianT-invariant Kähler formsω on X as
well as their quantization (cf. [5; 7]). They have the expressionω = √−1∂∂̄F
(Theorem 3.1), where∂, ∂̄ are the Dolbeault operators onX. ThenF, being aT-
invariant function onX, is nothing other than a function on�. We show thatF ∈
C∞(�) is strictly convex, meaning its Hessian matrix is always positive definite.
This allows us to apply the convex analysis developed in Section 2. The Kähler
form ω can be associated to a (topologically trivial) line bundleL overX, and
L is equipped with a connection whose curvature isω. From the connection, we
obtain the notion of holomorphic sections onL . The line bundle also carries a nat-
ural Hermitian structure〈·, ·〉. By (1.1),X has a natural measure obtained from the
Lebesgue measure of� and the Haar measure ofT . We letdV denote the natural
measure onX or�. A holomorphic sections of L is said to besquare-integrableif∫

X

〈s, s〉 dV <∞. (1.2)

The Hilbert space of square-integrable holomorphic sections is denoted byHω,

and these sections constitute a unitaryT-representation.
We now set up miscellaneous notation and terminology needed to formulate the

main theorem of this article. Aray is a subset of� of the form

R = {p + tv : t > 0} ∩� (1.3)

for somep ∈� andv ∈Rn. Herep is called theinitial point ofR. Let (θ, r) be the
polar coordinates centered atp ∈�, whereθ ∈ Sn−1 andr measures the distance
from p. Then the Lebesgue measure on� is

dV = r n−1dr dθ.

So we shall be interested in the measurer n−1dr on a ray with initial pointp.
The epigraphof F ∈ C∞(�) consists of the points above the graph ofF.

Namely,
epi(F ) = {(x, y)∈�× R : y > F(x)} ⊂ Rn × R. (1.4)

The gradient functionF ′ : �→ Rn is injective whenF is strictly convex. Let1
be the image ofF ′. In fact,

F ′ : �→ 1, F ′(x) =
(
∂F

∂xi
(x)

)
i

is a diffeomorphism, owing to the inverse function theorem. Here1 may not
be convex. Boundary pointsq of 1 that make1 nonconvex are calledconcave
points; namely,

q = tr + (1− t)s for some r, s ∈1, 0< t < 1. (1.5)

The rest of the boundary points are said to be nonconcave. Clearly1 is (geo-
metrically) convex if and only if its boundary consists entirely of nonconcave
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points. With this notation and terminology in hand, we present our main theorem
as follows.

Main Theorem. Letω be aT-invariant Kähler form onX, so thatω = √−1∂∂̄F
andF ∈C∞(�) is strictly convex. The following conditions are equivalent:

(A) Hω is a toric model;
(B)

∫
R
e−F(r)+λrr n−1dr <∞ for all raysR ⊂ � and all λ∈Zn;

(C) if L ⊂ Rn × R is a nonvertical line, thenL ∩ epi(F ) is bounded;
(D) F ′ maps every unbounded subset of� to an unbounded subset of1;
(E) if {qi} ⊂ 1 converges to a nonconcave point, then{(F ′)−1(qi)} is bounded.

Conditions (B), (C), (D), and (E) are studied in Section 4, 5, 6, and 7, respectively.
Condition (B) says that the study ofF ∈C∞(�) can be reduced to the restriction
of F to the rays, which are 1-dimensional objects. Condition (C) follows the same
spirit, since a nonvertical line is simply the graph of a 1-variable function. Condi-
tion (D) says that(F ′)−1 sends bounded subsets of1 to bounded subsets of�, so
obviously (D) implies (E). Therefore, the equivalence of (D) and (E) means that,
in the study of boundedness property of(F ′)−1(U), we can ignore the concave
limit points ofU.

Concerning the sizes of� and1, conditions (C) and (D) say that a smaller
� or a bigger1 increases the likelihood ofHω to be a toric model. In partic-
ular, if � is bounded then (C) says thatHω is always a toric model. Also, (D)
says that if1 = Rn thenHω is always a toric model. The compromise where
both� and1 have maximal size is reached in [3]: If� = Rn, thenHω is a toric
model if and only if1 = Rn. This can be recovered from (D), since a diffeo-
morphismRn→ 1maps every unbounded set to an unbounded set if and only if
1 = Rn.

In Section 8, we provide several examples of strictly convex functions to demon-
strate the equivalent conditions of the main theorem. Finally, in Section 9, we dis-
cuss the Bergman kernelK(z,w) [8, Sec. 1] of the Kähler manifold(X, ω),where
ω = √−1∂∂̄F. We eliminate the coefficientL and identifyHω with the Bergman
spaceH of holomorphic functions onX that are square-integrable with respect to
the measuree−F dV (Proposition 9.1). In Theorem 9.2, we show that ifHω is a
toric model then the Bergman kernel ofH is

K(z,w) =
∑
λ∈Zn

eλ(z+w̄)∫
x∈� e2λx−F(x) dV

. (1.6)

2. Notions of Convexity

In this section, we recall some familiar notions of convexity for sets and functions
and also gather some properties to be used later. Recall that our strictly pseudocon-
vex Reinhardt domainX = � +√−1T is as given by (1.1). Thesymbol∂ shall
denote boundary (as well as partial derivative—there is no confusion), and the
“bar” sign shall denote closure. For example,�̄\� = ∂� because� is open. The
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boundaries ofX and� are related by∂X = ∂�+√−1T . Pickz = x +√−1y ∈
∂X, so thatx ∈ ∂� andy ∈ T . The real tangent space ofz at ∂X is of real dimen-
sion 2n−1. It contains a codimension-1 linear subspaceT C

z (∂X) ⊂ Cn, which is
stable under multiplication by

√−1. This is the complex tangent space ofz, and
dimC T

C
z (∂X) = n− 1. SinceX is strictly pseudoconvex, there exists a defining

functionτ for X (see e.g. [8]) such that the Levi form
(
∂2τ
∂zi∂z̄j

(z)
)
ij

is Hermitian

positive definite onT C
z (∂X). The real tangent spaceT R

x (∂�) ⊂ Rn of x ∈ ∂�
has real dimensionn − 1. We say that� is strictly convexif there exists a defin-
ing functionρ for � such that, for allx ∈ ∂�, the Hessian matrix

(
∂2ρ

∂xi∂xj
(x)
)
ij

is
positive definite onT R

x (∂�).

Proposition 2.1. The Reinhardt domainX is strictly pseudoconvex if and only
if the domain� is strictly convex.

Proof. Let ρ be a defining function for�. Then it extends to a defining function
ρ̃ for X by ρ̃(z) = ρ(x) for all z = x +√−1y. Since ∂ρ̃

∂yi
= 0, we obtain

∂2ρ̃

∂zi∂z̄j
(z) = 1

4

∂2ρ

∂xi∂xj
(x). (2.1)

For z = x +√−1y ∈ ∂X, we have

T C
z (∂X) = T R

x (∂�)+
√−1T R

x (∂�). (2.2)

From (2.1) and (2.2), it follows that
(
∂2ρ̃

∂zi ∂z̄j
(z)
)
ij

is Hermitian positive definite on
T C
z (∂X) if and only if

(
∂2ρ

∂xi∂xj
(x)
)
ij

is positive definite onT R
x (∂�). The proposi-

tion follows.

The classical notion of convexity (i.e., a line segment joining two points) is called
“geometric” convexity to distinguish it from the analytic notion of convexity used
above. A subsetA ⊂ Rn is said to be geometrically convex ifp, q ∈ A implies
tp + (1− t)q ∈A for all 0< t < 1. In particular, ifA satisfies

p, q ∈ Ā H⇒ tp + (1− t)q ∈ Ā\∂A for all 0< t < 1, (2.3)

then we say thatA is geometrically strictly convex. For example, the unit disk
is geometrically strictly convex whereas the square inR2 is merely geometrically
convex.

If a domain� is strictly convex then it is geometrically strictly convex [8, Sec. 3].
Therefore, by Proposition 2.1, we obtain the following corollary.

Corollary 2.2. LetX = �+√−1T be a strictly pseudoconvex Reinhardt do-
main. Then� is geometrically strictly convex.

We next consider the strictly convex functions. Let� be strictly convex. A smooth
functionF : �→ R is said to be strictly convex if its Hessian matrix is positive
definite everywhere on�. Strictly convex functions have either 0 or 1 critical
point, and the critical point (if it exists) is a global minimum.
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Proposition 2.3. If F ∈ C∞(�) is strictly convex, thenF −1(−∞, m] is geo-
metrically convex.

Proof. Let r, s ∈F −1(−∞, m] ∈�, and letq lie betweenr ands. LetL be the line
joining r ands. Since the restricted functionF |L∩� is strictly convex and since
q, r, s ∈ L ∩ �, it follows thatF(q) < max{F(r), F(s)}. Soq ∈ F −1(−∞, m),
which implies thatF −1(−∞, m] is geometrically convex. The proposition follows.

In Proposition 2.3,F −1(−∞, m] is in fact geometricallystrictly convex. With
strictness in the statement, the proof needs to be modified to letr, s be in the clo-
sure ofF −1(−∞, m] relative toRn. Nevertheless, for the purpose of applications
in later sections, we only needF −1(−∞, m] to be geometrically convex.

Another feature of the strictly convex functionF is that its epigraph (1.4)
is geometrically strictly convex. The converse fails, and a counter-example is
F(x) = x4. Since epi(F ) ⊂ � × R is geometrically strictly convex, it follows
thatL ∩ epi(F ) is connected wheneverL ⊂ Rn × R is a line. As indicated in
condition (C) of the main theorem, the boundedness property ofL ∩ epi(F ) de-
termines whetherHω is a toric model. We shall take up this topic in Section 5.

Given a strictly convex function, its restriction to a line is also strictly convex.
For this reason, it is helpful to study strictly convex functions of one variable. Let
−∞ < a < b ≤ ∞. We say thatF : [a, b) → R is strictly convex if it extends
to a smooth function on(a − ε, b) and ifF ′′(x) > 0 for all x > a. The following
results will be useful later.

Lemma 2.4. Let F : [a, b) → R be a strictly convex function, and letn ∈
{0,1,2, . . .}. The following conditions are equivalent:

(i)
∫ b
a
e−F(x)xn dx diverges;

(ii) b = ∞ andF is strictly decreasing.

Proof. Suppose that condition (ii) holds. Thene−Fxn is strictly increasing forx >
0, so its integral diverges.

Conversely, suppose that condition (ii) fails. Then eitherb <∞ or F ′(c) ≥ 0
for somec ∈ [a, b). If b <∞ thenF (being strictly convex) does not tend to−∞
nearb. That is,F is bounded below on [a, b) and hencee−Fxn is bounded above
on [a, b). Hence the integral ofe−Fxn converges. Ifb = ∞ but F ′(c) ≥ 0 for
somec, thenF ′(x) > 0 for all x > c becauseF ′ is increasing. In particular, 0<
m < F ′(d ) for somem andd. Thus, for allx > d,

F(d )+m(x − d ) < F(x).

Since 0< m, we have∫ ∞
d

e−F(x)xn dx <
∫ ∞
d

e−F(d )−m(x−d )xn dx <∞.
Once again (i) fails. This proves the lemma.

We write l.u.b.F ′ to denote the least upper bound ofF ′. In the event thatF ′ is not
bounded above, l.u.b.F ′ = ∞. The lemma leads to the following corollary.
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Corollary 2.5. Let a ∈R, let F : [a,∞)→ R be strictly convex, and letn ∈
{0,1,2, . . .}. Then

∫ ∞
a
e−F(x)+cxxn dx <∞ if and only ifc < l.u.b.F ′.

Proof. The proof is a simple computation:∫ ∞
a

e−F(x)+cxxn dx <∞
⇐⇒ F(x)− cx is increasing for somex (by Lemma 2.4)

⇐⇒ F ′(x)− c > 0 for somex

⇐⇒ c < l.u.b.F ′.

This proves the corollary.

Let� ⊂ Rn be strictly convex, and fixp ∈�. Let (θ, r) be the polar coordinates
centered atp, whereθ ∈ Sn−1 andr measures the distance fromp. Recall from
(1.3) that the rays with initial pointp are of the form{p + tv : t > 0} ∩ �. By
the polar coordinates, we can parameterize these rays byθ ∈ Sn−1, denoted byRθ
accordingly. Letd(θ) = |Rθ | ∈ (0,∞] denote the length of the rayRθ . Namely,
d(θ) is the distance betweenp and the boundary∂� in theθ -direction. Intuitively
we expectd to vary continuously with the angleθ, and this is made precise in the
next proposition. We say thatK ⊂ S n−1 is a compact neighborhood ofφ ∈ Sn−1

if K is compact andφ lies in the interior ofK.

Proposition 2.6. Let� ⊂ Rn be strictly convex, and fixp ∈�. For θ ∈ Sn−1,

let d(θ) = |Rθ | ∈ (0,∞] be as given previously. Ifd(φ) < ∞, thenφ has a
compact neighborhoodK ⊂ Sn−1 such thatd(θ) < ∞ for all θ ∈ K and d is
continuous onK.

Proof. Let c = |Rφ| <∞. Suppose that there exists a sequence{φi} ⊂ Sn−1 con-
verging toφ and that|Rφi | = ∞. Using the polar coordinates(θ, r) centered atp,
we have that(φi, r) ∈ � for all r > 0. Then(φi, r) → (φ, r) ∈ �̄ for all r > 0.
In particular,(φ, c), (φ, c+ 2)∈ �̄. Since� is strictly convex, by (2.3) it follows
that(φ, c+1)∈�. This contradictsc = |Rφ|, so|Rθ | <∞ for all θ sufficiently
nearφ. There exists an open setU ⊂ S n−1 containingφ such that|Rθ | < ∞ for
all θ ∈U. LetK be a compact set satisfyingK ⊂ U, and letφ lie in the interior of
K. Thend(θ) <∞ for all θ ∈K.

It remains to show thatd is continuous onK. Pick τ ∈ K. Let {τi} ⊂ K be a
sequence that converges toτ. Writed(τi) = ci <∞ andd(τ) = c <∞. To com-
plete the proof, we need to show thatci → c. Suppose otherwise. Then, taking
a subsequence of{ci} if necessary, eitherci < c − ε for someε > 0 and alli, or
c+ε < ci for someε > 0 and alli. We show that both cases lead to contradiction.

Case 1:ci < c− ε for someε > 0 and all i. Since 0< ci < c− ε, there exists
a subsequence, still denoted by{ci}, such thatci → b for someb. Then(τi, ci)→
(τ, b). But (τi, ci) ∈ ∂� and∂� is closed, so(τ, b) ∈ ∂�. Sinceb < c, this con-
tradicts|Rτ | = c.
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Case 2:c + ε < ci for someε > 0 and all i. For all x ≤ c + ε, we have
(τi, x)∈� and so(τi, x)→ (τ, x)∈ �̄. In particular(τ, c), (τ, c+ ε)∈ �̄. Since
� is strictly convex, by (2.3) this implies that

(
τ, c + ε

2

) ∈ �. This contradicts
|Rτ | = c.
By contradictions in both cases, we conclude thatci → c. Sod(τi)→ d(τ); that
is, d is continuous atτ. Becauseτ ∈K is arbitrary, the proposition follows.

3. Geometric Quantization

In this section, we studyT-invariant Kähler formsω on the Reinhardt domainX
and construct the corresponding unitaryT-representationsHω.

An interesting class ofω consists of those for which theT-action is Hamiltonian
[6, Sec. 26]. In this caseω has moment map8 : X→ Rn, whereRn is regarded
as the Lie algebra ofT as well as its dual space. The next theorem shows that
this condition is equivalent toω = √−1∂∂̄F for someF. We shall always use the
coordinatesz = x +√−1y onX as introduced in(1.1).

Theorem 3.1. Let ω be aT-invariant Kähler form onX. The following condi-
tions are equivalent:

(i) ω = dβ for some real1-formβ;
(ii) ω = √−1∂∂̄F for some real-valued functionF ;

(iii) theT-action preservingω is Hamiltonian.

Proof. We first show that (i) implies (ii), so suppose thatω = dβ. Sinceβ is real,
we can writeβ = α+ ᾱ,whereα is a(0,1)-form onX. Thenω = dβ = dα+dᾱ.
But sinceω is of type(1,1), ∂̄α = ∂ᾱ = 0. Hence

ω = ∂α + ∂̄ ᾱ. (3.1)

We claim that
α = ∂̄f (3.2)

for some complex-valued functionf. Write α =∑ i hidz̄i, wherehi(z) = hi(x)
by T-invariance. Then

0= ∂̄α =
∑
ij

∂hi

∂z̄j
dz̄j ∧ dz̄i = 1

2

∑
ij

∂hi

∂xj
dz̄j ∧ dz̄i .

Hence∂hi
∂xj
= ∂hj

∂xi
for all i 6= j. Equivalently,γ = 2

∑
i hi(x)dxi is a closed1-form

on�. Since� is strictly convex, its de Rham cohomology satisfiesH1(�) = 0.
Soγ = df for somef, namely 2hi = ∂f

∂xi
. Extendf toX byT-invariance, and let

hi = 1
2
∂f

∂xi
= ∂f

∂z̄i
. It follows that ∂̄f =∑ i

∂f

∂z̄i
dz̄i =∑ i hidz̄i = α. This proves

(3.2) as claimed.
By the way, (3.2) says that theT-invariant Dolbeault cohomology ofX vanishes

at degree(0,1). The argument would have been simpler in the special case� =
Rn, since thenX = Rn × (Rn/Zn) is equivalent to the complex group(C×)n,
which is a Stein manifold and thus has trivial Dolbeault cohomology.



80 Meng-Kiat Chuah

Let F be the real-valued functionF = √−1(−f + f̄ ). Then
√−1∂∂̄F = ∂∂̄f − ∂∂̄f̄

= ∂α + ∂̄ ᾱ (by (3.2))

= ω (by (3.1)).

We have proved that (i) implies (ii).
To show that (ii) implies (i), supposeω = √−1∂∂̄F for some real-valued

function F. Let β be the real part of the(0,1)-form
√−1∂̄F, namely β =(√−1/2

)
(∂̄F − ∂F ). Thendβ = (√−1/2

)
d(∂̄F − ∂F ) = √−1∂∂̄F. This proves

that (ii) implies (i).
We next show that (i) implies (iii), so supposeω = dβ. SinceT is compact,

we can takeβ to beT-invariant. By [1, Thm. 4.2.10], theT-action is Hamilton-
ian. In fact, a moment map8 is given by(8(z), ξ) = −(β, ξ])(z), wherez∈X,
ξ ∈Rn, andξ] is the infinitesimal vector field onX. Hence (i) implies (iii).

To complete the proof of the theorem, it remains to show that (iii) implies (i).
If ξ1, . . . , ξn is the standard basis of the Lie algebraRn of T, then their infinites-
imal vector fields onX are ∂

∂y1
, . . . , ∂

∂yn
. Suppose (iii) holds; that is, suppose the

T-action preservingω is Hamiltonian. Then, for eachi,we have thatι
(
∂
∂yi

)
ω is an

exact1-form. Hence there existsφi ∈C∞(X) such thatdφi = ι
(
∂
∂yi

)
ω. Therefore,

ω has the expression

ω =
∑
i

dyi ∧ dφi +
∑
kl

akl dxk ∧ dxl. (3.3)

SinceT is abelian, ∂
∂yi

is T-invariant and so isdφi. By compactness ofT, we may
takeφi to beT-invariant, too. Thusφi(z) = φi(x), and so (3.3) becomes

ω = −
∑
ij

∂φi

∂xj
dxj ∧ dyi +

∑
kl

akl dxk ∧ dxl. (3.4)

Sinceω is of type(1,1) and (3.4) has no term involvingdyk ∧ dyl, it follows that∑
kl akl dxk ∧ dxl = 0. We get

ω = −
∑
ij

∂φi

∂xj
dxj ∧ dyi = d

(
−
∑
i

φidyi

)
,

and (i) follows. This proves the theorem.

This theorem provides the correction for [3, Thm.1.1],which mistakenly assumes
that these equivalent conditions are always valid. We illustrate Theorem 3.1 by the
following examples withn = 2:

ω1=
√−1

∑2
1 dzi ∧ dz̄i

= 2dx1 ∧ dy1+ 2dx2 ∧ dy2;
ω2 = ω1+ 1

2(dz1 ∧ dz̄2 + dz̄1 ∧ dz2)

= 2dx1 ∧ dy1+ 2dx2 ∧ dy2 + dx1 ∧ dx2 + dy1 ∧ dy2.
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Computations show thatω1 andω2 are Kähler. Hereω1 satisfies the equivalent
conditions of Theorem 3.1:ω1 = d

(∑2
1 2xi dyi

) = √−1∂∂̄
(
2
∑2

1 x
2
i

)
. Also, an

infinitesimal vector fieldξ of T onX is a linear combination of∂
∂yi
, so ι(ξ)ω1 is

a linear combination ofdxi; it is exact and so the action is Hamiltonian. On the
other hand,ω2 does not satisfy the conditions of Theorem 3.1: the termdy1∧ dy2

is not exact. Similarlyι
(
∂
∂y1

)
ω2 = −2dx1+ dy2 is not exact owing tody2, so the

action is not Hamiltonian.
It is convenient to work with the class of Kähler forms given by Theorem 3.1,

so from now on we shall always assume thatω belongs to this class. Thusω =√−1∂∂̄F and byT-invariance,F is a function on�; namely,F(z) = F(x). Then
∂2F
∂zi∂z̄j

= 1
4
∂2F
∂xi∂xj

, and positivity ofω implies that the Hessian matrix
(
∂2F
∂xi∂xj

)
ij

is
positive definite, soF is strictly convex. This allows us to apply the convex analy-
sis developed in Section 2 toF.

We next describe the construction of a unitaryT-representationHω out of ω.
This is the scheme outlined in [5] and [7]. There exists a holomorphic line bun-
dle L overX whose Chern class is the integral de Rham cohomology class ofω.

Becauseω is exact, [ω] = 0 and soL is a trivial line bundle. Further,L is equipped
with a connection∇ (whose curvature isω) and with an invariant Hermitian struc-
ture 〈·, ·〉. A smooth sections of L is said to be holomorphic if∇v s = 0 for all
antiholomorphic vector fieldsv. The arguments in [3, Sec. 3] extend to the fol-
lowing proposition.

Proposition 3.2. There exists a unique nonvanishingT-invariant holomorphic
sections0 of L that satisfies〈s0, s0〉 = e−F .
The uniqueness ofs0 in the statement is up to multiplication by complex num-
bers of absolute value 1. From(1.1),X has a naturalT-invariant measure obtained
from the product of the Lebesgue measure on� and the Haar measure onT . We
write dV for the canonical measure onX or�. If a sections of L satisfies (1.2),
we say that it is square-integrable. The square-integrable holomorphic sections
are denoted byHω. Since〈·, ·〉 anddV areT-invariant,Hω becomes a unitary
T-representation. SinceT is abelian, the irreducible subrepresentations ofHω are
1-dimensional. In view of Proposition 3.2, they are characterized byλ ∈ Zn via
{ceλzs0 : c ∈ C}. Here and in what follows, ifz ∈ Cn then we writeλz ∈ C
to denote

∑
i λizi . For s = eλzs0, the condition (1.2) on the square-integrability

becomes ∫
X

〈eλzs0, e
λzs0〉 dV =

∫
�

e2λx−F(x) dV.

Therefore,Hω is a toric model if and only if∫
�

e2λx−F(x) dV <∞ for all λ∈Zn. (3.5)

For the rest of this article, we utilize condition (3.5) to study the conditions for
Hω to be a toric model. Namely, for a strictly convex functionF ∈ C∞(�), we
consider the necessary and sufficient conditions for (3.5).
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4. Rays

In this section we show that conditions (A) and (B) of the main theorem are equiv-
alent. Let� ⊂ Rn be a strictly convex domain. Recall from (1.3) that a ray in�
is a subset of the form{p + tv : t > 0} ∩ �. We say that it is bounded or un-
bounded depending on whetherp + tv gets out of� for larget. For example, if
� ⊂ R2 consists of all the points above the graph ofy = x 2, then a ray is un-
bounded if and only if it is parallel to the vector(0,1). If F ∈C∞(�) is a strictly
convex function, then so is its restrictionF |R to a rayR. In this caseF |R resem-
bles a functionF : [a, b) → R, whereb can be a number or∞, depending on
whether the ray is bounded or unbounded. For this reason, Lemma 2.4 and Corol-
lary 2.5 can be rephrased in terms of rays in�. We say thatF is decreasing along
the ray{p + tv : t > 0} ∩� if F(p + t1v) > F(p + t2v) whenevert1< t2.

Observe that, in both Lemma 2.4 and Corollary 2.5, one side of the equivalent
conditions is independent ofn. This means that if the corresponding condition
holds for onen then it holds for every othern. The expressionxn reflects the effect
of the Lebesgue measuredV of �. Namely, if (θ, r) ∈ S n−1× R+ are the polar
coordinates centered at somep ∈�, then

dV = r n−1dr dθ,

wheredθ is the measure onS n−1 that is invariant under the orthogonal groupO(n).
So if R ⊂ � is a ray with initial pointp, we shall be interested in the measure
r n−1dr onR,wherer is the distance fromp. For our purpose, it is actually irrele-
vant whether we usedr or r n−1dr when we integrate over a rayR. This is because
we shall often consider functions of the typee−F overR, whereF is strictly con-
vex. Then Lemma 2.4 says that

∫
R
e−F dr and

∫
R
e−Fr n−1dr either converge or

diverge simultaneously. Lemma 2.4 can be rewritten as follows.

Lemma 4.1. Let F ∈ C∞(�) be strictly convex, and letR ⊂ � be a ray. The
following conditions are equivalent:

(i)
∫
R
e−Fr n−1dr diverges;

(ii) R is unbounded andF strictly decreases alongR.

If F is restricted toR then the corresponding directional derivative is denoted by
(F |R)′. In other words,(F |R)′ : R → R is given by(F |R)′(r) = (u · F ′)(r) for
all r ∈R, whereu is the unit vector parallel toR. Corollary 2.5 also takes on the
following format.

Corollary 4.2. LetR ⊂ � be an unbounded ray. Then
∫
R
e−F(r)+crr n−1dr <

∞ if and only ifc < l.u.b.(F |R)′.
Two raysR, S ⊂ � are said to be parallel if there existp, q ∈� andv ∈Rn such
thatR = {p + tv : t > 0} ∩� andS = {q + tv : t > 0} ∩�.
Proposition 4.3. Let R andS be parallel rays in�, and letF ∈ C∞(�) be
strictly convex. Then the two equivalent conditions of Lemma 4.1 hold forR if and
only if they hold forS. When this happens,l.u.b.(F |R)′ = l.u.b.(F |S)′ <∞.
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Proof. Suppose thatR is unbounded and thatF is strictly decreasing alongR. We
want to show thatS is unbounded andF is strictly decreasing alongS.

Let p, q denote (respectively) the initial points ofR, S. SinceR is unbounded,
there existsv ∈Rn such thatp + tv ∈R for all t > 0. DefineS1⊂ Rn by

S1= {q + tv : t > 0}, S1∩� = S. (4.1)

We claim thatS = S1. Let C be the convex hull ofR ∪ {q}. Since� is convex,
C ⊂ �. SinceR is unbounded,

S1⊂ C̄ ⊂ �̄. (4.2)

Pickb ∈ S1. It lies in the line segment joining somea, c ∈ S1. By (4.2),a, c ∈ �̄.
By Corollary 2.2,� is geometrically strictly convex, sob ∈�. This implies that
b ∈ S. HenceS = S1 as claimed. We conclude thatS is unbounded.

We also want to show thatF decreases alongS. Recall from Proposition 2.3
thatF −1(−∞, m] is geometrically convex. Letm = max{F(p), F(q)}. Let C
again be the convex hull ofR ∪ {q}. Then

{p, q} ⊂ F −1(−∞, m]

H⇒ R ∪ {q} ⊂ F −1(−∞, m] (sinceF decreases alongR)

H⇒ C ⊂ F −1(−∞, m] (sinceF −1(−∞, m] is geometrically convex)

H⇒ C̄ ⊂ F −1(−∞, m] (sinceF −1(−∞, m] is closed)

H⇒ S ⊂ F −1(−∞, m] (by (4.1) and (4.2)).

This means thatF does not tend to∞ alongS. SinceS is unbounded andF
is strictly convex, this can happen only ifF is strictly decreasing alongS. This
proves the first part of the proposition.

For the rest of the proof, suppose that the equivalent conditions of Lemma 4.1
hold forR andS. SinceF is decreasing alongR, it follows that(F |R)′ < 0 every-
where onR. Hence l.u.b.(F |R)′ <∞. Similarly, l.u.b.(F |S)′ <∞. It remains to
show that the least upper bounds are equal. Givenc ∈R, we have

c < l.u.b.(F |R)′
⇐⇒ ∫

R
e−F(r)+crr n−1dr <∞ (by Corollary 4.2)

⇐⇒ ∫
S
e−F(r)+crr n−1dr <∞ (by the first part of this proposition)

⇐⇒ c < l.u.b.(F |S)′ (by Corollary 4.2).

We conclude that l.u.b.(F |R)′ = l.u.b.(F |S)′, and the proposition follows.

Fix p ∈�, and let(θ, r) be the polar coordinates centered atp. For θ ∈ Sn−1, let
Rθ ⊂ � be the ray with initial pointp in theθ -direction. GivenU ⊂ Sn−1, let
C(U) denote the cone

C(U) =
⋃
θ∈U

Rθ = {(θ, r)∈� : θ ∈U}. (4.3)

Proposition 4.4. Suppose that
∫
R
e−Fr n−1dr < ∞ for some rayR with ini-

tial point p. Then there exists an open setU ⊂ S n−1 such thatR ⊂ C(U) and∫
C(U)

e−F dV <∞.
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Proof. Write R = Rφ for φ ∈ S n−1, and suppose that
∫
Rφ
e−Fr n−1dr < ∞. By

Lemma 4.1, eitherRφ is bounded orF eventually increases alongRφ. We dis-
cuss these two cases separately. Recall that a compact neighborhoodK of φ is a
compact setK such thatp lies in the interior ofK.

Case 1:Rφ is bounded.By Proposition 2.6,φ has a compact neighborhood
K ⊂ S n−1 such that|Rθ | < ∞ for all θ ∈K. Let c > 0 be small enough so that
the ballBc(p) = {x ∈Rn : |x − p| ≤ c} is contained in�. Let Sc(p) = ∂Bc(p)
be its boundary. By compactness ofSc(p), we can define

−∞ < m = min

{
(F |Rθ )′(c) =

∂F

∂r
(θ, c) : θ ∈ Sn−1

}
. (4.4)

By compactness ofBc(p), there exists a sufficiently largeb such that

mr − b < F(θ, r), (θ, r)∈Bc(p). (4.5)

DefineG(θ, r) = mr − b. It is continuous and is smooth everywhere except at
p. By (4.4) and (4.5),G(θ, r) < F(θ, r) for all (θ, r) ∈ �, becauseF is strictly
convex along each rayRθ . Then∫

C(K)

e−F dV <

∫
C(K)

e−G dV < eb
∫
C(K)

e−mr dV. (4.6)

SinceK is compact andθ 7→ |Rθ | is continuous onK (Proposition 2.6), we can
defineM = max{|Rθ | : θ ∈K} <∞. The last integral of (4.6) becomes

eb
∫
C(K)

e−mr dV ≤ eb
∫
K

dθ

∫ M

0
e−mrr n−1dr <∞.

LetU be the interior ofK, and the proposition is proved for Case 1.

Case 2:F eventually increases alongRφ. There exists ac > 0 such that
∂F
∂r
(φ, c) > 0. LetK ⊂ Sn−1 be a compact neighborhood ofφ such that(θ, c) ∈

� and ∂F
∂r
(θ, c) > 0 for all θ ∈K. By compactness ofK, we can define

0< m = min

{
∂F

∂r
(θ, c) : θ ∈K

}
. (4.7)

We repeat the arguments of (4.5) through (4.6). Namely, by compactness of the
set{(θ, r)∈� : θ ∈K, r ≤ c}, there exists ab such thatmr − b < F(θ, r) when-
everθ ∈ K andr ≤ c. This, together with (4.7) and strict convexity ofF along
eachRθ, implies thatmr − b < F(θ, r) for all (θ, r)∈C(K). Then∫

C(K)

e−F dV < eb
∫
C(K)

e−mr dV

≤ eb
∫
S n−1×R+

e−mr dV

= eb
∫
S n−1

dθ

∫ ∞
0
e−mrr n−1dr. (4.8)

The last expression converges because 0< m. LetU be the interior ofK, and the
proposition is proved for Case 2.
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Propositions 4.3 and 4.4 lead to the following corollary. It implies that conditions
(A) and (B) of the main theorem are equivalent.

Corollary 4.5.
∫
�
e−F dV <∞ if and only if

∫
R
e−Fr n−1dr <∞ for all rays

R ⊂ �.
Proof. Suppose that

∫
R
e−Fr n−1dr < ∞ for all raysR ⊂ �. Pick p ∈ �. Let

(θ, r) be the polar coordinates centered atp, and denote the rays with initial point
p byRθ, whereθ ∈ S n−1. GivenU ⊂ S n−1, we define the coneC(U) as in (4.3).
Since

∫
Rθ
e−Fr n−1dr <∞, by Proposition 4.4 it follows thatθ has an open neigh-

borhoodUθ ⊂ S n−1 such that
∫
C(Uθ )

e−F dV <∞. SinceSn−1 is compact, there
existθ1, . . . , θk such thatUθ1∪ · · · ∪Uθk = S n−1, and soC(Uθ1)∪ · · · ∪C(Uθk ) =
�. Then

∫
�
e−F dV ≤∑k

i=1

∫
C(Uθi )

e−F dV <∞.
Conversely, suppose that

∫
R
e−Fr n−1dr diverges for a rayR. By Lemma 4.1,R

is unbounded andF decreases alongR. By Proposition 4.3, the same situations
occur for all rays parallel toR. We write� as a union of the rays parallel toR and
then find thate−F is increasing along each of these unbounded rays. Therefore,∫
�
e−F dV diverges. This proves the corollary.

Thus, for every strictly convex functionF ∈C∞(�), the integrability ofe−F dV
over� is equivalent to the integrability ofe−Fr n−1dr over every ray in�. This
means that checking convergence of (3.5) for a toric model is equivalent to check-
ing condition (B) of the main theorem.

5. Epigraph

In this section, we consider the epigraph (1.4) ofF and show that conditions (B)
and (C) of the main theorem are equivalent.

SinceF is strictly convex, epi(F ) is geometrically strictly convex; namely, it
satisfies (2.3). So for every lineL ⊂ Rn × R, eitherL ∩ epi(F ) is empty or it is
connected. However,L ∩ epi(F )may or may not be bounded. The next proposi-
tion shows that this boundedness property determines whetherHω is a toric model.
The lineL is said to be nonvertical if it is not parallel to the axis 0×R ⊂ Rn×R.

Proposition 5.1. There exists a nonvertical lineL ⊂ Rn × R such that
L ∩ epi(F ) is unbounded if and only if condition(B) of the main theorem fails.

Proof. Suppose thatL ∩ epi(F ) is unbounded for some lineL. SinceL is non-
vertical, it can be regarded as the graph of an affine function. Namely, there exists
an unbounded rayR ⊂ � and an affine functionG : �→ R such that the graph
of the restricted functionG|R is L. Let r be the distance from the initial point of
R. Then, for larger, G(r) corresponds to the unbounded portion ofL ∩ epi(F ).
That is, there exists anr0 such thatG(r) > F(r) for all r ∈ (r0,∞). SinceG is
an affine function, there existm, c such thatG(r) = mr + c for all r ∈R. Thus
F(r) < mr+ c for all r > r0. Equivalently, there exists aλ∈Zn such thatF(r) <
λr + c for all r > r0 in R. Then
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e−F(r)+λrr n−1dr >

∫ ∞
r0

e−F(r)+λrr n−1dr = e−c
∫ ∞
r0

e−F(r)+λr+cr n−1dr.

The final expression diverges becausee−F(r)+λr+c > 1 for all r > r0. Therefore,
condition (B) of the main theorem fails.

Conversely, suppose that condition (B) of the main theorem fails. Then there
exist a rayR ⊂ Rn and a weightλ ∈ Zn such that

∫
R
e−F(r)+λrr n−1dr = ∞. By

Lemma 4.1,R is unbounded and the functionF(r)−λr is strictly decreasing along
R. For suitablem > 0 andc, we can construct an affine functionG(r) = mr + c
onR such thatG(r0) = F(r0) for somer0. SinceG is increasing alongR, it fol-
lows thatG(r) > F(r) − λr for all r > r0. Then the graph ofG is a line whose
intersection with epi(F ) is unbounded. This proves the proposition.

By Proposition 5.1, it follows that conditions (B) and (C) of the main theorem are
equivalent.

6. Gradient Function

In this section we investigate condition (D) of the main theorem. BecauseF ∈
C∞(�) is strictly convex, the gradient functionF ′ is a diffeomorphism of� onto
its image1. Condition (D) is equivalent to saying that(F ′)−1 maps bounded sets
to bounded sets. We shall show that

∫
R
e−F(r)+λrr n−1dr < ∞ for every rayR

and weightλ if and only if (F ′)−1 maps every bounded sequence to a bounded se-
quence. This will then establish the equivalence of conditions (B) and (D). The
two directions of these equivalent conditions are given by Propositions 6.1and 6.3.

Proposition 6.1. Suppose that
∫
R
e−F(r)+λrr n−1dr diverges for someλ ∈ Zn

and rayR. Then there exists a bounded sequence{si} ⊂ 1 such that the corre-
sponding sequence{(F ′)−1(si)} is unbounded.

Proof. Suppose that
∫
R
e−F(r)+λrr n−1dr diverges for some weightλ and rayR.

For simplicity, writeG(x) = F(x)−λx. ClearlyG′ is also one-to-one, and its im-
age is1−λ. By Lemma 4.1,R is unbounded andG decreases alongR. We rotate
and shift the coordinates so thatR is the positivex1-axis; thus, for this proposi-
tion (only), we writex ∈ Rn asx = (x1, x 2) ∈ R × Rn−1. The rays parallel toR
are called horizontal rays.

By Proposition 4.3, all the horizontal raysS are unbounded and their directional
derivatives(G|S)′ have a common least upper boundu1 ∈R. Hence there exists a
u2 ∈Rn−1 such thatu = (u1, u2)∈Rn is a limit point of1− λ. Let {qi} ⊂ 1− λ
be a sequence converging tou. If we now writeqi = (q1

i , q
2
i ), then

lim
i→∞ q

1
i = u1. (6.1)

Let pi = (p1
i, p

2
i )∈� be the corresponding sequence satisfyingG′(pi) = qi.

We claim that{pi} ⊂ � is an unbounded sequence. Suppose otherwise; we
derive a contradiction from here. If{pi} is bounded, then so are{p1

i } and{p2
i }.

Hence there exists anm∈R such that

p1
i < m (6.2)
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for all i, and
A = {p2

i }i ⊂ Rn−1 (6.3)

is bounded. Recall that, by Proposition 4.3, every horizontal ray is unbounded.
Therefore, the infinite horizontal cylinderC = {(t, A) : t > m} is contained in�.
By Corollary 2.2,� is geometrically strictly convex and so

C̄ = {(t, Ā) : t ≥ m} ⊂ �.
Let a ∈ Ā. SinceG is strictly convex, the functiont 7→ ∂G

∂x1 (t, a) is increasing.
By Proposition 4.3,∂G

∂x1 (t, a)→ u1 ast →∞. SinceĀ is compact, there exists a
c > 0 such that

t < m, a ∈ Ā H⇒ ∂G

∂x1
(t, a) < u1− c. (6.4)

Then (6.2)–(6.4) imply that∂G
∂x1 (pi) < u1− c for all i. In other words,

q1
i < u1− c

for all i. This contradicts (6.1). By this contradiction, we conclude that{pi} is an
unbounded sequence as claimed.

Recall thatqi ∈ 1 − λ. Let si = qi + λ ∈ 1. ThenF ′(pi) = G′(pi) + λ =
qi+λ = si ∈1. So{si} is a convergent sequence in1 such that{(F ′)−1(si) = pi}
is unbounded. This proves the proposition.

To obtain the converse of Proposition 6.1, we need the following lemma.

Lemma 6.2. Suppose that there exists an unbounded sequence{pi} ⊂ � such that
F ′(pi)→ 0. Then there exists an unbounded rayR ⊂ � such that

∫
R
e−Fr n−1dr

diverges.

Proof. Let p1, p2, . . . be an unbounded sequence in�, and letF ′(pi)→ 0. Fix
p ∈ �, wherep 6= pi. We shall construct an unbounded ray with initial point
p. Since{pi} is unbounded, we may assume (taking a subsequence if necessary)
that |pi − p| → ∞. Let (θ, r) be the polar coordinates centered atp, so that we
can parameterize the rays with initial pointp byRθ, θ ∈ S n−1. LetRφi be the ray
with initial pointp and containingpi. By compactness ofSn−1, a subsequence of
{φi} ⊂ Sn−1 converges to someφ ∈ Sn−1. We may assume thatφi → φ.

We claim thatRφ is unbounded. For allr > 0, (φ, r) is a limit point of⋃
i Rφi ⊂ � because|Rφi | → ∞. Hence(φ, r) ∈ �̄. Since� is geometrically

convex, it follows from(φ, r ± ε) ∈ �̄ that (φ, r) ∈ �. SoRφ is unbounded as
claimed.

We also claim thatF decreases alongRφ. Suppose otherwise. Then there exists
a sufficiently larget such that∂F

∂r
(φ, t) > 0. LetK ⊂ Sn−1 be a compact neigh-

borhood ofφ such that(θ, t)∈� and ∂F
∂r
(θ, t) > 0 for all θ ∈K. By compactness

of K, we can define

0< m = min

{
∂F

∂r
(θ, t) : θ ∈K

}
.

SinceF is strictly convex along eachRθ, it follows that
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0< m ≤ ∂F
∂r
(θ, r) for all θ ∈K, r ≥ t. (6.5)

Writepi = (φi, ti). Sinceφi → φ, it follows thatφi ∈K eventually. Also,ti ≥ t
eventually as|pi − p| → ∞. Then the conditionF ′(pi)→ 0 contradicts (6.5).
We conclude thatF decreases alongRφ as claimed.

SinceRφ is unbounded andF decreases alongRφ, it follows by Lemma 4.1
that

∫
Rφ
e−Fr n−1dr diverges.

This lemma leads to the converse of Proposition 6.1. LetF ′ : �→ 1 be the dif-
feomorphism as before.

Proposition 6.3. Suppose that there exists a bounded sequence{qi} ⊂ 1 in
which {(F ′)−1(qi)} is unbounded. Then there exists a rayR ⊂ � and aλ ∈ Zn

such that
∫
R
e−F(r)+λrr n−1dr diverges.

Proof. Let {qi} ⊂ 1 be a bounded sequence in whichpi = (F ′)−1(qi) is un-
bounded. Taking a subsequence if necessary, we may assume thatqi → q ∈ 1̄.
WriteG(x) = F(x)− qx, so thatG′(pi)→ 0. Since{pi} is unbounded, Lemma
6.2 says that there exists an unbounded rayR ⊂ � such that∫

R

e−F(r)+qrr n−1dr =
∫
R

e−G(r)r n−1dr = ∞. (6.6)

For suchR, we can replaceq ∈ Rn with someλ ∈ Zn such thatqr < λr for all
r ∈R that are sufficiently far. Then (6.6) says that

∫
R
e−F(r)+λrr n−1dr diverges.

The proposition follows.

By Propositions 6.1 and 6.3, we have established the equivalence of conditions (B)
and (D) of the main theorem.

7. Concavity of Boundary

Recall that, sinceF ∈C∞(�) is strictly convex, its gradientF ′ : �→ 1 is a dif-
feomorphism. Condition (D) is equivalent to saying that(F ′)−1 sends bounded
sets to bounded sets, which clearly implies (E). The purpose of this section is to
show that, conversely, (E) also implies (D). Namely, if{qi} is a sequence converg-
ing to q ∈ ∂1 then, in applying (D) and checking boundedness of{(F ′)−1(qi)},
we can ignore the case whereq is concave. This will be proved in Proposition 7.3.

Note that for1 we can only discuss geometric convexity in the sense of (1.5) or
(2.3); the analytic notion of convexity (as in Proposition 2.1) is not available be-
cause1 may not have smooth boundary. For example, ifF ∈ C∞(R2) is given
byF(x, y) = ex + ey, then1 is the open first quadrant and so its boundary is not
smooth.

By the way, if� = Rn then1 has no concave boundary point.

Proposition 7.1. If � = Rn, then1 is geometrically convex.
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Proof. Let � = Rn. We introduce the notationFc ∈ C∞(Rn) for c ∈ Rn, given
byFc(x) = F(x)− cx. ThenFc is strictly convex. Note thatFc has a global min-
imum if and only ifc ∈1. Also,Fc has a global minimum if and only ifFc(x)→
∞ whenever|x| → ∞. This observation makes use of� = Rn.

Suppose thatr, s ∈ 1 andq = tr + (1− t)s for some 0< t < 1. We want
to show thatq ∈1. Sincer, s ∈1, the strictly convex functionsFr andFs have
global minima. The same is true fortFr and(1− t)Fs. Hence, forx ∈Rn,

|x| → ∞ H⇒ tFr(x), (1− t)Fs(x)→∞. (7.1)

Direct computation shows that

Fq = tFr + (1− t)Fs. (7.2)

Then (7.1) and (7.2)imply that, forx ∈Rn,

|x| → ∞ H⇒ Fq(x)→∞.
Therefore,Fq has a global minimum. Equivalentlyq ∈1, which proves that1 is
geometrically convex.

However, for general strictly convex domains�, the image set1may not be geo-
metrically convex. The following lemma will be needed for Proposition 7.3.

Lemma 7.2. If q ∈1, then
∫
�
e−F(x)+qx dV <∞.

Proof. Sinceq ∈1, we writeF ′(p) = q for somep ∈�. Let (θ, r) be the polar
coordinates centered atp. LetG(x) = F(x) − qx. ThenG ∈ C∞(�) is strictly
convex andG′(p) = 0. Thusp is the global minimum ofG. Therefore,G in-
creases along every rayR with initial point p, namely(G|R)′(r) > 0. Pickc > 0
small enough so that the ballBc(p) = {x ∈Rn : |x − p| ≤ c} is contained in�.
Let Sc(p) = ∂Bc(p) be its boundary. The rest of the proof imitates the arguments
of (4.7) through (4.8) in Proposition 4.4. By compactness ofSc(p),we can define
0 < m < min{(G|Rθ )′(c) : θ ∈ Sn−1}. By compactness ofBc(p), there exists ab
such thatmr − b < G(θ, r) for all (θ, r)∈Bc(p). By strict convexity ofG along
eachRθ, it follows thatmr − b < G(θ, r) for all (θ, r)∈�. Then∫

�

e−G dV < eb
∫
�

e−mr dV

≤ eb
∫
S n−1×R+

e−mr dV

= eb
∫
S n−1

dθ

∫ ∞
0
e−mrr n−1dr.

The last expression converges becausem > 0. This proves the lemma.

The converse of Lemma 7.2 is not true. For example,e−F(x)+qx is always inte-
grable if� is bounded. In the special case where� = Rn, the converse holds [3].

Proposition 7.3. Let q ∈ ∂1 be a concave boundary point. If{qi} ⊂ 1 con-
verges toq, then(F ′)−1(qi) is bounded.
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Proof. Sinceq is concave, there existu, v ∈1 such thatq lies in the line segment
joining u andv. Sinceu, v ∈1, Lemma 7.2 implies that∫

�

e−F(x)+ux dV <∞,
∫
�

e−F(x)+vx dV <∞.
Then Corollary 4.5 says that, for all raysR,∫

R

e−F(r)+urr n−1dr <∞,
∫
R

e−F(r)+vrr n−1dr <∞. (7.3)

We claim that, for any rayR ⊂ �,∫
R

e−F(r)+qrr n−1dr <∞. (7.4)

If R is bounded, then Lemma 4.1 immediately gives (7.4) and there is nothing to
prove. Suppose then thatR is unbounded. Sinceq lies betweenu andv, either
qr < ur or qr < vr for r ∈R that are far away. Equivalently,

e−F(r)+qr < e−F(r)+ur or e−F(r)+qr < e−F(r)+vr (7.5)

for all r ∈R that are far away. By (7.3) and (7.5),
∫
R
e−F(r)+qrr n−1dr <∞. This

proves (7.4) for all the raysR ⊂ �.
Now let pi = (F ′)−1(qi) and writeG(x) = F(x) − qx. ThenG′(pi) → 0.

Suppose that{pi} is unbounded. Then, along withG′(pi)→ 0, Lemma 6.2 says
that there exists a rayR such that

∫
R
e−Gr n−1dr = ∞. But this contradicts (7.4).

Therefore,{pi} must be bounded, and the proposition follows.

By Proposition 7.3, we conclude that the boundedness of{(F ′)−1(qi)} is automatic
if {qi} approaches a concave point. Thus, conditions (D) and (E) of the main the-
orem are equivalent.

8. Examples

We provide the following three examples of strictly convex functionsF on 1-
dimensional domains�. Thus,

F : �→ R, � = (a, b) ⊂ R, −∞ ≤ a < b ≤ ∞.
These examples illustrate the spirits of conditions (B), (C), and (D) of the main
theorem. The image1 of the gradient function is 1-dimensional, so it has no con-
cave boundary point. Therefore, condition (E) is irrelevant here.

Example 8.1 F(x) = x 2. Whethera, b are numbers or±∞ is not important
here. Note that

∫ b
a
e−x2+λx dx converges for allλ. Equivalently,L ∩ epi(F ) is

bounded wheneverL ⊂ R2 is a nonvertical line. SinceF ′(x) = 2x, clearly
F ′(U) = 2U is bounded if and only ifU is bounded, and(F ′)−1 has the same
property. HenceHω is always a toric model.

Example 8.2 F(x) = ex.
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Case1:a > −∞. Here
∫ b
a

exp(−ex+λx) dx converges for allλ. Equivalently,
wheneverL ⊂ R2 is a nonvertical line,L ∩ epi(F ) is always bounded. Further,
F ′(U) = eU is bounded if and only ifU is bounded, so in this caseHω is a toric
model.

Case 2:a = −∞. Forλ < 0, we have that
∫ ∞
−∞ exp(−ex + λx) dx blows up

near−∞. Equivalently, ifL has negative slope, thenL ∩ epi(G) is unbounded
towardx → −∞. The gradient functionF ′(x) = ex sends an unbounded set
(−∞, c) to a bounded set(0, ec), so hereHω is not a toric model.

Example 8.3. Let� = R and letF be a strictly convex function whose graph
lies above the diagonals{x = y} and{x = −y}, having them as asymptotes. In
this caseHω fails to be a toric model because of obstructions at both ends,±∞.
From the integral viewpoint,

∫ ∞
−∞ e

−F(x)+λx dx blows up near∞ if λ ≥ 1 and
blows up near−∞ if λ ≤ 1. From the epigraph viewpoint, letm be the slope of
L ⊂ R2. ThenL ∩ epi(F ) is unbounded towardx → ∞ if m ≥ 1 and is un-
bounded towardx → −∞ if m ≤ 1. From the gradient viewpoint, observe that
F ′ is a diffeomorphism fromR onto(−1,1). Therefore,F ′ maps the unbounded
sets(−∞, u) and(v,∞) to some bounded sets(−1, F ′(u)) and(F ′(v),1).

The various obstructions at the−∞ end will be removed ifa > −∞; similarly,
the obstructions at the∞ end will be removed ifb <∞.

9. Bergman Kernel

In this section we discuss the Bergman kernel associated to the Kähler formω =√−1∂∂̄F onX and then show that it is given by (1.6).
To avoid coefficients inL ,we trivialize it by the nonvanishing holomorphic sec-

tion s0 of Proposition 3.2. Consider the Bergman spaceH of holomorphic func-
tions onX that are square-integrable with respect to the measuree−F dV, namely,

H =
{
h : X→ C : h is holomorphic and

∫
X

h(z)h(z)e−F(z) dV <∞
}
. (9.1)

The inner product of the Hilbert spaceH is given by the integral, and we let‖ · ‖2
denote the corresponding norm.

Proposition 9.1. The trivializationhs0 ↔ h defines an isomorphism between
theT-invariant Hilbert spacesHω andH.
Proof. By direct computation, we have

‖hs0‖2=
∫
X

|h(z)|2〈s0, s0〉 dV (by (1.2))

=
∫
X

|h(z)|2e−F(z) dV (by Proposition 3.2)

= ‖h‖22 (by (9.1)).

This proves the proposition.
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We useH to compute the Bergman kernelK : X × X→ C, which is defined by
K(z,w) =∑λ eλ(z)eλ(w),where{eλ}λ is an orthonormal basis ofH. The infinite
sum converges and is independent of the choice of orthonormal basis [8, Sec. 1].

Theorem 9.2. If Hω is a toric model, then the Bergman kernel is

K(z,w) =
∑
λ∈Zn

eλ(z+w̄)∫
x∈� e2λx−F(x) dV

.

Proof. Suppose thatHω is a toric model. Theneλzs0 ∈ Hω for all λ ∈ Zn.

Equivalently, by Proposition 9.1,eλz ∈H for all λ∈Zn. By the Peter–Weyl theo-
rem (see [2, Thm. 5.10]),{eλz : λ∈Zn} is an orthogonal basis ofH. Since

‖eλz‖22 =
∫
X

eλzeλz̄e−F(z) dV =
∫
x∈�

e2λxe−F(x) dV,

the Bergman kernel is

K(z,w) =
∑
λ∈Zn

eλz

‖eλz‖2
eλw̄

‖eλw‖2 =
∑
λ∈Zn

eλ(z+w̄)∫
x∈� e2λx−F(x) dV

.

The theorem follows.

If Hω is not a toric model, then someeλz do not lie inH, and the expression in
the theorem contains some denominators

∫
x∈� e

2λx−F(x) dV that diverge. In this
case we need to disregard such summands in order to obtain the Bergman kernel.
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