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Infinitely Many Grand Orbits

Mark Comerford

1. Introduction

Sullivan’s non-wandering theorem is one of the best-known and most fundamental
results of classical rational iteration. We exhibit a counterexample which shows
that a natural consequence of this theorem no longer holds if one is allowed to
choose a different polynomial at each stage of the iterative process. The proof re-
lies heavily on properties of the local dynamics near a parabolic fixed point.

We begin by considering a sequence of rational functions{Rn}∞n=1 = {R1, R2,

R3, . . . } of some fixed degreed ≥ 2. LetQn(z) be the composition of the firstn
of these functions in the natural order; that is,

Qn = Rn B Rn−1 B · · · B R2 B R1.

We will also be interested in the compositions

Qm,n = Rn B Rn−1 B · · · B Rm+2 B Rm+1.

Define theFatou setF for such a sequence of rational functions as

F = {z∈ C̄ : {Qn}∞n=1 is a normal family on some neighbourhood ofz};
theJulia setJ is then simply the complement of the Fatou set inC̄. Note that,
if {Rn}∞n=1 is a constant sequence{R,R,R, . . .}, then these definitions coincide
with the standard ones. One of the reasons for this definition of Julia and Fatou
sets is that we can formulate an analogue of the principle of complete invariance
in standard rational iteration. In order to do this, we shall introduce the following
terminology.

We start by fixing as before a sequence{Rn}∞n=1= {R1, R2, R3, . . .} of rational
functions of fixed degreed ≥ 2. With this in mind, for anyn ≥ 0, let us define
thenth Julia setJn to be the Julia set for the sequence{Rn+1, Rn+2, Rn+3, . . .}
that we obtain from our original sequence simply by deleting the firstnmembers.
Thenth Fatou setis similarly defined as the Fatou set for{Rn+1, Rn+2, Rn+3, . . .}.
Note that, with these definitions,J0 = J andF0 = F. We now state the principle
of complete invariance for random iteration as follows.

Theorem 1.1. For any0 ≤ m < n we haveQm,n(Jm) = Jn andQm,n(Fm) =
Fn, with Fatou components ofFm being mapped surjectively onto those ofFn
byQm,n.
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The proof is a straightforward adaptation of the standard classical proof.
The notation introduced previously can also be extended in the obvious way

to cover sets and points. For a setU that we introduce at stagem, we setUn =
Qm,n(U); for a pointx that is introduced at stagem, we setxn = Qm,n(x).

It turns out that this scenario of using rational functions is somewhat too general
for proving significant results. The most natural restriction one can probably make
was introduced by Fornæss and Sibony [6], who considered sequences of monic
polynomials with uniformly bounded coefficients—that is, sequences of the form

Rn(z) = Pn(z) = zd + ad−1,nz
d−1+ · · · + a1,nz+ a0,n,

where we can find someM ≥ 0 such that|ai,n| ≤ M for 1≤ i ≤ d −1 and alln∈
N. From now on, we shall call such sequencesbounded polynomial sequences.

One of the advantages of this definition is that we can find some radiusR de-
pending only on the coefficient boundM just described so that, for any sequence
{Pn}∞n=1 as before, it is easy to see that

|Qn(z)| → ∞ asn→∞, |z| > R,

which shows in particular that, as for classical polynomial Julia sets, there will be
a basin at infinityA∞ on which all points escape to infinity under iteration. Such
a radius will be called anescape radiusfor the coefficient boundM.

2. Grand Orbits in the Classical Case

We start with the definition of a grand orbit for random iteration.

Definition 2.1. Let{Pn}∞n=1 be a bounded polynomial sequence and letU be
some subset ofC that is introduced at some stagen ≥ 0. We say that a setV
appearing at some stagem ≥ 0 is in thegrand orbit of U if we can findN ≥
max{m, n} such thatQm,N(V ) = Qn,N(U), and we writeG(U) for the set of all
suchV.

Form ≥ 0 fixed, the set of allV at stagemwith the above property is calledthe
grand orbit ofU at stagem, and we writeGm(U). If m = n then we callGn(U)
the immediategrand orbit ofU (at stagen).

Basically, saying two setsU andV are in the same grand orbit means that (at some
stage) they are mapped to the same set and so the dynamical behavior on each of
them is eventually the same. One should note that this definition is slightly dif-
ferent from the classical one. For example, a rational function whose (classical)
Fatou set contains a cycle of period 3 would give rise to three distinct grand orbits
according to our definition but to only one grand orbit using the standard defini-
tion such as is given in [7; 9].

We now state some well-known results from classical complex dynamics. For
proofs and terminology, the reader is referred to the standard references [5; 7;
8; 9]. We start with Sullivan’s famous non-wandering theorem.
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Theorem 2.1 (Sullivan). LetR be a rational function and letU be a(classical)
Fatou component forR. ThenU is eventually periodic under iteration byR.

Theorem 2.2 (Classification of Periodic Fatou Components).LetR be a ratio-
nal function and letU be a(classical) Fatou component forR that is periodic(i.e.,
R◦n(U) = U for somen ≥ 1). Then we have one of the following four possibili-
ties forU :

(1) U contains an attracting or superattracting cycle;
(2) U is a basin of a parabolic periodic point lying on∂U ;
(3) U is a Siegel disk; or
(4) U is a Herman ring.

For polynomials, the last possibility cannot occur because all Fatou components
associated with polynomials must be simply connected (in view of the maximum
principle) whereas Herman rings are doubly connected. The other result we need
to state is equally well known.

Theorem 2.3 (Fatou, Shishikura, Epstein).LetR be a rational function of de-
greed. Then the number of nonrepelling cycles associated withR is at most2d−2.

By combining these last two results with Sullivan’s non-wandering theorem, we
obtain the following corollary.

Corollary 2.1. The number of grand orbits of Fatou components associated
with a constant sequence arising from a polynomialP is finite.

Proof. By Theorem 2.2, each periodic Fatou component is associated with a non-
repelling cycle, and the number of grand orbits associated with that component
and its iterates is then equal to the period of that cycle. (Note that here we are
using therandomdefinition of grand orbit as given in Definition 2.1.) However,
Theorem 2.3 shows that we can have only finitely many grand orbits that are as-
sociated with some periodic Fatou component, whereas Sullivan’s non-wandering
theorem (Theorem 2.1) tells us that every grand orbit of Fatou components must
be associated with a periodic Fatou component. The result now follows.

It is worth noting that, since we can find nonrepelling cycles of arbitrarily long
period even for quadratic polynomials of the formz2 + c, the actual number of
grand orbits of Fatou components—though finite—may be arbitrarily large. In
the random case, however, we can say more.

3. Grand Orbits in the Random Case

We start by stating the principal result of this paper.

Theorem 3.1. There exists a bounded sequence of degree-2 polynomials whose
corresponding Fatou set has infinitely many grand orbits.
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The proof will rely heavily on properties of the behavior of the iterates near a
parabolic periodic point. The reader is referred to [5] for an exposition that con-
tains proofs of the relevant facts that we shall make use of in the sequel.

We start by considering the polynomialP(z) = z2 − z. This has a parabolic
fixed point at 0 and, if we look at the second iterateP ◦2(z) = z − 2z3 + z4, we
see that there are (as expected) two petals that are interchanged byP. Also, the
expanding directions coincide with the imaginary axis and the contracting direc-
tions with the real axis. Finally, we have a “repelling tongue” that consists of the
two parts ofA∞ (the attracting basin at infinity) that approach 0 from above and
below the real axis. Points in the repelling tongues will lie in repelling petals but
not in attracting ones. Because, near the origin, the attracting petals will contain
a region lying outside that bounded by curves of the formx = ±ky2+O(|y 5/2|)
for some constantk depending onP, we see that it will be easy to choose points
whose iterates are guaranteed to remain in the attracting petals and avoid the re-
pelling tongues.

The familyP we will consider is based onP ◦2 and contains (in addition toP ◦2
itself ) translates ofP ◦2 of the formz4 − 2z3 + z + cn, where the constantscn
are real, bounded, and at our disposal (any small bound such as 1/4 will do). (We
could simply use translates ofP instead, but usingP ◦2 is slightly simpler as it
preserves the order of points on the real axis near 0; since all polynomials inP
are simply compositions ofP and translates ofP, the result will clearly follow
if we use these degree-4 polynomials instead of translates ofP.) Now letR be
an escape radius for the coefficient bound 2, so that (denoting byC(0, R) the cir-
cle about 0 of radiusR) the iterates of points lying outsideC(0, R) will escape to
infinity, regardless of which polynomials fromP we iterate with. Our first main
task is to prove the following simple lemma concerning the dynamics associated
with sequences of polynomials taken fromP.
Lemma 3.1. Let {Pn}∞n=1 be a sequence of polynomials chosen fromP and letx1

andx2 be two points on the real axis that lie in bounded Fatou components asso-
ciated with this sequence. Thenx1 andx2 lie in the same Fatou component if and
only if the line segment joining them also lies in this Fatou component.

Proof. The “if ” part of the result is trivial. For the “only if ” part, supposex1 and
x2 lie in the same Fatou componentU and letγ be a path inU joining x1 to x2.

If we denote the image ofγ under complex conjugation bȳγ, then symmetry and
the fact that all polynomials involved have real coefficients imply thatγ̄ is also a
path inU joining x1 andx2. It then follows easily from the maximum principle
that the straight line segment connecting the two points also must lie withinU,

which completes the proof.

Before we start the construction proper, we need some observations concerning
distortion. We begin by considering a simply connected domainU that is small,
approximately circular, and symmetric about the real axis. We will also require
thatU be small in comparison to its distance from the point 0. Having fixed such
a neighborhood, one of our requirements will be to construct our sequence so that
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(among other things) the iterates of such a neighborhood will be bounded, thereby
ensuring thatU will lie inside a Fatou component for such a sequence. Clearly,
this will be the case if the iterates ofU remain small and also remain small com-
pared to their distance from 0; this will guarantee that each iterate will lie in one
of the two attracting petals forP ◦2, which (as we shall see) is something we will
need.

In practice, in order to generate infinitely many grand orbits of Fatou compo-
nents, we will need to introduce infinitely many such neighborhoods. Our aim will
be to show that, at every stage, each one of these will lie in a Fatou component
and that different neighborhoods will lie in different components, thereby yield-
ing infinitely many grand orbits. These neighborhoods will be introduced as we
construct our sequence of polynomials, and we will need to consider them in ad-
jacent pairs. Toward that end, letU1 andU2 denote such a pair and let us also
consider a pointx1 lying on the real axis at approximately the midpoint between
them (see Figure 1). We are interested in the distortion of this picture because we
want to ensure our sequence is such that, if we move the pointx1 at some stageN
to 0, then the corresponding iterates ofU1 andU2 will each lie in one of the at-
tracting petals forP ◦2; this is something we need in order to ensure thatU1 and
U2 lie in bounded Fatou components for the sequence of polynomials that we will
construct. We need to consider the following two cases.

Figure 1 Geometry for the Fatou domains

Case 1.Setx = 0. In order to investigate how the picture distorts, we need to
consider the local behavior ofP ◦2 near the origin. So supposex+ iy is small and,
in addition, assume that|y| ≤ |x|. If we now letu+ iv = P ◦2(x + iy), then

u = x − 2(x3− 3xy2)+ (x4 − 6x 2y2 + y 4),

v = y − 2(3x 2y − y3)+ (4x3y − 4xy3);
from this it follows (providedx + iy is sufficiently small) that∣∣∣∣vu

∣∣∣∣ = ∣∣∣∣yx
∣∣∣∣∣∣∣∣1− 6x 2 + 2y2

1− 2x 2 + 6y2
+O(x3)

∣∣∣∣ < ∣∣∣∣yx
∣∣∣∣.

This shows that, if we consider the angle of the narrowest sector centered atx1

that containsU1 andU2, then this angle will become smaller under iteration by
P ◦2, which will clearly be necessary in order to ensure that we can always place
the iterates ofU1 andU2 in the two attracting petals forP ◦2 by movingx1 to 0.
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Next we suppose thatx1+ iy1 andx2 + iy2 are again two points close to 0 for
which |x1| < |x2| and that also satisfyy1/x1 = y2/x2 = k, where|k| < 1/

√
3

(i.e., the two points lie on the same line through the origin). Letu1 + iv1 and
u2 + iv2 be the images of these points underP ◦2. Then, arguing as before, we
have ∣∣∣∣u1

u2

∣∣∣∣ = ∣∣∣∣x1

x2

∣∣∣∣∣∣∣∣1− 2x 2
1 + 6y2

1

1− 2x 2
2 + 6y2

2

+O(x3
1)

∣∣∣∣
=
∣∣∣∣x1

x2

∣∣∣∣∣∣∣∣1− x 2
1 (2− 6k2)

1− x 2
2(2− 6k2)

+O(x3
1)

∣∣∣∣ > ∣∣∣∣x1

x2

∣∣∣∣,
providedx2 is small enough. Combined with our earlier remark concerning an-
gles of sectors, this shows that the ratios diam(U1)/dist(U1,0) and diam(U2)/

dist(U2,0) become smaller under iteration byP ◦2 and also shows that the ratio
dist(U1,0)/dist(U2,0) becomes closer to 1.

These calculations show that the image of our original picture will look some-
thing like Figure 2 after we mapx1 to 0 and apply a high iterate ofP ◦2. In partic-
ular, we see that the ratios diam(U1)/dist(U1,0) and diam(U2)/dist(U2,0) will
decrease under iteration byP ◦2 and will, in fact, tend to zero as the number of
iterations withP ◦2 approaches infinity.

Figure 2 After treatment withP ◦2n

Case 2.Here we have that the corresponding pointx1 is 0 for another pair of
domains (one of which could easily be eitherU1 orU2) and that the diameters of
U1 andU2 are again small compared to their distances from 0—that is, smaller
than some fairly small constant (which, as we saw before, should be smaller than
1/
√

3). That this can always be done will be shown later, but for now let us as-
sume that it is possible. To investigate the distortion under this situation, we apply
the standard analysis for the behavior of a function near a parabolic point. On each
petal,P ◦2(z) is conjugate via 1/4z2 to the transformation

w ′ = g(w) = w +1+O(|w|−1/2).

Also, if the absolute values ofw1 andw2 are bigger than some large integerM,
then we can apply the chain rule to obtain

|g(w1)− g(w2)| = |w1− w2|(1+O(M−3/2)).

The conjugacy tog above shows that iterates of points near 0 underP ◦2 approach
0 at a rate comparable to that of the sequence{1/√n }. Let z1

n, z
2
n be the iterates of

two such points underP ◦2. Then we can certainly say that they will eventually lie
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within a distance less than (say)n−3/8 of 0. Letw1
n, w

2
n denote the image of these

sequences of points under the conjugacyw = 1/4z2. If we choosez1
1 andz2

1 to
be less thanN−3/8 in absolute value for largeN, it follows that there are positive
constantsC andK (depending only onP) such that

∞∏
n=N

(
1− C

n9/8

)
≤ |w

1
n − w2

n |
|w1

1 − w2
1|
≤
∞∏
n=N

(
1+ C

n9/8

)
,

and from this we may conclude that

1− K

N1/8
≤ |w

1
n − w2

n |
|w1

1 − w2
1|
≤ 1+ K

N1/8
.

This shows (provided we chooseU1 andU2 to be small enough initially) that all
ratios of the four quantities diam(U i) and dist(U i, x i), i = 1,2—as well as the an-
gle of the narrowest sector atx1 that containsU1 andU2—can be made to change
as little as we wish by makingU1∪U2 lie within a sufficiently small disk about 0.

The result of examining these two cases, where 0 lies either at the pointx between
U1 andU2 or at the corresponding point for another such pair of domains, is that
we can be sure Figure 1 will distort either by an amount we can control or in such a
way as to actually improve—in the sense of ensuring thatU1 andU2 will always
lie in attracting petals. We can summarize all we need in the following lemma.

Lemma 3.2. Let k be a small positive constant that we may take to be less than
1/3, and letε > 0. LetU1, U2, . . . , U n, U n+1 be simply connected domains that
are symmetric about the real axis and are numbered from left to right and sep-
arated by pointsx1, x 2, . . . , xn on the real axis, so thatxi lies betweenU i and
U i+1. Then there exists aδε > 0 such that, if

diam(U1∪ U2 ∪ · · · ∪ U n+1) < δε

and, fori = 1, . . . , n,

diam(U i)/dist(U i, x i) < k

diam(U i+1)/dist(U i+1, x i) < k,

then for any positive integerN andi = 1, . . . , n we have

diam(U i
N)/dist(U i

N , x
i
N) < k(1+ ε),

diam(U i+1
N )/dist(U i+1

N , xiN) < k(1+ ε),
whereU i

N andxiN denote the images ofU i andxi underP ◦2N.

We now turn to proving the main result.

Proof of Theorem 3.1.The theorem will be proved by running the inductive con-
struction that follows. This will generate, on the one hand, a sequence of poly-
nomials and, on the other, a sequence of domains each of which lies in a Fatou
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component for this sequence of polynomials and with different domains guaran-
teed to lie in different components at every stage. Before we start the induction,
we first fix ε > 0 small enough so that

1

4

∞∏
n=1

(1+ ε2−n) < 1

3
.

Induction: Stage 1.We are now ready to start the construction proper. Begin
with two small domainsU1 andU2, symmetric about the real axis, which we may
as well take to be small disks symmetrically placed about 0 so that they lie in the two
attracting petals forP ◦2. We will also require (a) thatU1∪U2 have diameter less
thanδε/2 (using the notation from Lemma 3.2) and (b) that diam(U1)/dist(U1,0)
and diam(U2)/dist(U2,0) each be less than 1/4 in value.

We now iteratem1,1 times withP ◦2, wherem1,1 is large enough so that the in-
verse image ofC(0, R) at stagem1,1 underP ◦2m1,1 has points above and below the
real axis that are less than 1 in absolute value.

This takes care of the “separation” part of the first induction step. For the
“distortion” part, we note that we can makem1,1 larger if needed so that
diam(U1

m1,1
∪ U2

m1,1
) < 1

5δε/16. Now apply a suitable polynomial fromP whose
constant termc1,1 has been chosen so as to moveU1 andU2 to the left of 0
and such that diam(U2

m1,1+1)/dist(U2
m1,1+1,0) < 1/4. By making δε/48 smaller if

necessary, we can introduce another small diskU3 whose center lies to the
right of 0 so that diam(U3

m1,1+1)/dist(U3
m1,1+1,0) is also less than 1/4 while

diam(U1
m1,1+1∪ U2

m1,1+1∪ U3
m1,1+1) < δε/16.

Lastly, to be definite, let us label the sequence of polynomials generated so far
by usingPn to denote the polynomial that is thenth to be applied. In other words,
Pn = P ◦2 for n ≤ n ≤ m1,1, andPm1,1+1= z4 − 2z3+ z+ c1,1.

Induction Hypothesis: Stagen. Suppose now that the firstn steps have been
carried out. We assume that, at the start of stagen+1,we have already constructed
and applied the firstNn members of our sequence of polynomials, which of course
we will labelP1, P2, . . . , PNn. We now haven + 2 domainsU1

Nn
, U2

Nn
, . . . , U n+2

Nn

that we label from left to right as well as pointsx1
Nn
, x 2

Nn
, . . . , xn+1

Nn
, wherexiNn

lies betweenU i
Nn

andU i+1
Nn
. We first make an assumption concerning the close-

ness of points inA∞,m (the basin at infinity at stagem) to each of the points
x1
m, x

2
m, . . . , x

n+1
m . If 1 ≤ m ≤ Nn−1 (whereNn−1 denotes the start of stagen), then

we assume there are suitable points inA∞,m each of which is within a distance
of less than 1/n of the real axis. In other words, for each 1≤ i ≤ n+ 1 there are
points within a distance of less than 1/n of xim, lying both above and below the real
axis, whose orbits have escaped outsideB(R,0) by stageNn and are thus guar-
anteed to escape to infinity, regardless of which polynomials are chosen for our
sequence afterPNn, the last to be chosen so far. Note that even thoughxim may
not have actually been introduced by stagem, there is no real problem. Either we
simply ignore this case and make no assumption, or we consider the preimage of
xim closest to 0 taken from the stage at which it was introduced.
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We assume with regard to the distortion of this picture that, for each 1≤ i ≤
n + 1, diam(U i

Nn
)/dist(U i

Nn
, x iNn) and diam(U i+1

Nn
)/dist(U i+1

Nn
, x iNn) are both less

than or equal to

1

4

n∏
j=1

(
1+ ε2

−j−1

j

)j
<

1

4

n∏
j=1

(1+ ε2−j ) < 1

3
,

provided we chooseε small enough. In order to guarantee that we can control
future distortions, we will also need to ensure thatU1

Nn
∪U2

Nn
∪ · · · ∪U n+1

Nn
is suf-

ficiently small, with diameter less thanδε2−(n+2)/(n+1).

Induction Step: Stagen+1. We start by choosing fromP the polynomialPNn+1

that movesx1
Nn

to 0. Now applyP ◦2 mn+1,1 times; because the firstNn + 1 poly-
nomials are now fixed, we may choosemn+1,1 to be large enough to ensure the
existence of points in the preimage underQm,Nn+mn,1+1 of C(0, R), both above
and below the real axis, within a distance of 1/(n+ 1) of x1

m and where 0≤ m ≤
Nn. This ensures there exist points inA∞,m lying above and below the real axis
and within a distance of 1/(n + 1) of x1

m for 0 ≤ m ≤ Nn, that is, from the point
at which we started our sequence until the beginning of stagen.

We have now constructed the nextmn,1 + 1 members of our sequence of
polynomials. Explicitly,PNn+1= z−2z3+ z4−x1

Nn
andPm = P ◦2 forNn+2 ≤

m ≤ Nn+mn,1+1. Our assumption in the induction hypothesis (thatU1
Nn
∪ U2

Nn
∪

· · · ∪ U n+2
Nn

has diameter less thanδε2−(n+2)/(n+1)) guarantees that, for eachi from
2 ton, diam(U i

m)/dist(U i
m, x

i
m) and diam(U i+1

m )/dist(U i+1
m , xim) are both bounded

by
1

4

( n∏
j=1

(1+ ε2−j )
)(

1+ ε2−n−2

n+1

)
<

1

3

for Nn + 1≤ m ≤ Nn + mn,1+ 1. Also, for i = 1 we have the stronger conclu-
sion that diam(U1

m)/dist(U1
m, x

1
m) and diam(U2

m)/dist(U2
m, x

1
m) are both less than

1
4

∏n
j=1(1+ε2−j ) < 1

3. In view of our previous remarks, we see that the distortion
remains small.

This completes the first step of stagen+1 for the first pair of domains. We now
apply a polynomialPn,2 from P that movesx 2

Nn+mn,1+1 to 0 and then iteratemn,2

times withP ◦2. As before, by considering preimages of the circleC(0, R)we may
guarantee that, for 0≤ m ≤ Nn, there will be points inA∞ that are above and
belowx 2

m and that lie within a distance 1/(n+1) of x 2
m.

Similarly, thatU1
Nn
∪ U2

Nn
∪ · · · ∪ U n+2

Nn
has diameter less thanδε2−(n+2)/(n+1)

ensures that diam(U i
m)/dist(U i

m, x
i
m) and diam(U i+1

m )/dist(U i+1
m , xim) are both

bounded by
1

4

( n∏
j=1

(1+ ε2−j )
)(

1+ ε2−n−2

n+1

)2

<
1

3

for Nn + mn,1 + 1 ≤ m ≤ Nn + mn,1 + mn,2 + 2 and for 3≤ i ≤ n + 2.
For i = 1,2, the corresponding assumption is that diam(U i

m)/dist(U i
m, x

i
m) and

diam(U i+1
m )/dist(U i+1

m , xim) are both less than
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1

4

( n∏
j=1

(1+ ε2−j )
)(

1+ ε2−n−2

n+1

)
<

1

3

for Nn + mn,1+ 1 ≤ m ≤ Nn + mn,1+ mn,2 + 2. Again, this ensures that the
distortion remains small and under control.

We now continue this process for all the other pairs of domains from left to
right. For the last pair the argument is the same, except we make the stronger
assumption thatmn+1,n+1 is big enough to guarantee that, if we letN ′n+1 =
Nn +∑n+1

i=1 mn,i + n+1, then

diam(U1
N ′
n+1
∪ U2

N ′
n+1
∪ · · · ∪ U n+2

N ′
n+1
) < 1

5δε2−(n+3)/(n+2).

This enables us to apply another polynomialP ′Nn+1+1 that moves all our domains
to the left of 0 and then introduce a new discUn+3 at stageN ′n+1+ 1, which we
shall simply relabelNn+1 so that

diam(U1
Nn+1
∪ U2

Nn+1
∪ · · · ∪ U n+3

Nn+1
) < δε2−(n+3)/(n+2)

and also diam(U n+2
Nn+1

)/dist(U n+2
Nn+1

,0) and diam(U n+3
Nn+1

)/dist(U n+3
Nn+1

,0) are both less
than 1/4. We have now reached stageNn+1 and, as the notation suggests, stage
n+1 is finished and we are now at the start of stagen+ 2.

This completes the induction. For each pair of neighborhoodsU i
m andU i+1

m

(where m is any natural number), the ratios diam(U i
m)/dist(U i

m, x
i
m) and

diam(U i+1
m )/dist(U i+1

m , xim) remain bounded by 1/3; hence the iterates of each
domain will lie in one of the attracting petals forP ◦2 and thus will certainly be
bounded. This guarantees that eachU i will lie in a Fatou component for the se-
quence of polynomials generated by our inductive scheme (suitably shifted to take
into account when each domain is introduced). On the other hand, the pointsxim
have bounded orbits but are approached arbitrarily closely by points inA∞,m,
which implies that they must all lie in the corresponding iterated Julia setJm. It
follows in view of Lemma 3.1 that, at each stage, all the domains will lie in dif-
ferent Fatou components. Therefore, we do indeed obtain infinitely many grand
orbits as desired.
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