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Bordism of Unoriented Surfaces in 4-Space
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1. Introduction

Sanderson [9; 10] studied the groupLm,n of bordism classes of “oriented” closed
(m − 2)-manifolds ofn components inRm. He showed thatLm,n is isomorphic
to the homotopy groupπm

(∨n−1
i=1 S

2
); in particular, the bordism groupLm,n for

m = 4 is given as follows.

Theorem 1.1 (Sanderson).

L4,n
∼= (Z 2⊕ · · · ⊕ Z 2︸ ︷︷ ︸

n(n−1)
2

)⊕ (Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
n(n−1)(n−2)

3

).

In particular, we haveL4,1
∼= {0}, L4,2

∼= Z 2, andL4,3
∼= Z3

2⊕ Z2.

Similarly, there is a group of bordism classes of “unoriented” closed(m − 2)-
manifolds ofn components inRm. We denote the group byULm,n. The aim of
this paper is to determine the bordism groupULm,n form = 4 via purely geomet-
ric techniques.

An n-component surface linkF is a closed surface embedded inR4 (smoothly,
or PL and locally flatly) such that an integer in{1, . . . , n}, called thelabel, is
assigned to each connected component. We denote byα(K) the label of a con-
nected componentK of F. The ith component ofF is the union of the con-
nected components ofF that have labeli. The ith component may be orientable
or not, and it could be empty. We often denote ann-component surface linkF by
F1∪· · ·∪Fn,where eachFi is theith component ofF. Twon-component surface
links F andF ′ areunorientedly bordantif there is a compact 3-manifoldW =⋃n
i=1Wi properly embedded inR4 × [0,1] such that∂Wi = Fi × {0} ∪ F ′i × {1}

for i = 1, . . . , n. In this paper,F 'B F ′ means thatF andF ′ are unorient-
edly bordant, andF ∼=A F ′ means that they are ambient isotopic inR4. The
unoriented bordism classes ofn-component surface links form an abelian group
UL4,n such that the sum [F ] + [F ′ ] is defined to be the class [F q F ′ ] of the
split unionF q F ′. The identity is represented by the emptyF = ∅ and the
inverse−[F ] is represented by the mirror image ofF. The following is our main
theorem.
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Theorem 1.2.

UL4,n
∼= (Z ⊕ · · · ⊕ Z︸ ︷︷ ︸

n

)⊕ (Z 4⊕ · · · ⊕ Z 4︸ ︷︷ ︸
n(n−1)

2

)⊕ (Z 2⊕ · · · ⊕ Z 2︸ ︷︷ ︸
n(n−1)(n−2)

3

).

In particular, we haveUL4,1
∼= Z, UL4,2

∼= Z2⊕Z 4, andUL4,3
∼= Z3⊕Z3

4⊕Z2
2.

This paper is organized as follows. In Section 2, we give definitions of three kinds
of unoriented bordism invariants—normal Euler numbers, double linkings, and
triple linkings—by the projection method. In Section 3 we study 1-component
surface links. In Section 4, we introduce a family of surface links; the elements
of the family are callednecklaces.Section 5 is devoted to the study of crossing
changes that produce necklaces. In Section 6, we prove Theorem 1.2.

2. Unoriented Bordism Invariants

All of our bordism invariants will be defined using the diagram of a knotted or
linked surface. We begin by recalling this notion. Consider a surface linkF. We
may assume that the restrictionπ|F : F → R3 of a projectionπ : R4 → R3 is
a generic map; that is, the singularity set of the imageπ(F ) ⊂ R3 consists of
double points and isolated branch /triple points. See Figure 1. The closure of the
self-intersection set onπ(F ) is regarded as a union of immersed arcs and loops,
which we calldouble curves.Branch points (or Whitney umbrella points) occur at
the end of the double curves, and triple points occur when double curves intersect.

Figure 1 Generic intersections of surfaces in 3-space

By asurface diagramofF we mean the imageπ(F ) equipped with over/under-
information along each double curve with respect to the projection direction. To
indicate such over/under-information, we remove a neighborhood of a double
curve on the sheet (thelower sheet) that lies lower than the other sheet (theupper
sheet). See Figure 2. Notice that the removal of this neighborhood is merely a con-
vention in depicting illustrations. In particular, we still speak of “double curves”
and triple points, and we locally parametrize the surfaces using immersions.

There are seven kinds of local moves on surface diagrams, calledRoseman moves
(analogues of Reidemeister moves for classical knots) that together are sufficient
to relate diagrams of ambient isotopic surface links (cf. [3; 4; 8]). Specifically,
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Figure 2 The broken surface diagrams at intersection points

two diagrams represent ambiently isotopic surface links if and only if one can be
obtained from the other by means a finite sequence of moves taken from the list
of Roseman moves. We remark that the Roseman moves are used here only in re-
lation to their effect on the cobordism invariants.

For a surface knotK (i.e., a connected closed surface embedded inR4),Whit-
ney defined thenormal Euler numbere(K) of K to be the Euler number of a
tubular neighborhood ofK in R4 considered as a 2-plane bundle (see [7; 12]). It
is known [5; 7] that

(i) e(K) = 0 if K is orientable,
(ii) (Whitney’s congruence)e(K) ≡ 2χ(K) (mod 4), and

(iii) (Whitney–Massey theorem)|e(K)| ≤ 4− 2χ(K),

whereχ(K) denotes the Euler characteristic ofK. For a 1-component surface link
F, we define the normal Euler numbere(F ) of F to be the sum ofe(K) for the
connected componentsK of F. The normal Euler numbere(F ) can be calculated
by use of a projection ofF in R3; it is equal to the number of positive type branch
points (see Figure 2) minus that of negative type ones [2].

LetF = F1∪ F2 be a 2-component surface link andD a surface diagram ofF.
A double curve ofD is said to beof type(i, j) if the upper sheet belongs toFi and
the lower belongs toFj, wherei, j ∈ {1,2}. If a double curve is an immersed arc,
then its endpoints are branch points and hence the type is(1,1) or (2,2). LetC =
c1∪ · · · ∪ cm be the set of double curves of type(1,2) on the surface diagramD.
Each double curveci is an immersed loop inR3.

We take a 2-diskB2 and a union of intervalsX in R2 as follows:

(i) B2 = {(x, y) | x 2 + y2 ≤ 1};
(ii) X = {(x, y) | −1≤ x ≤ 1, y = 0} ∪ {(x, y) | x = 0, −1≤ y ≤ 1}.
For a regular neighborhoodN(ci) of ci in R3, the pair(N(ci),D ∩ N(ci)) is re-
garded as the image of an immersion, sayϕ, of one of the following manifold
pairs:

(i) (B2, X)× [0,1]/(x,0) ∼ (x,1) for x ∈B2; or
(ii) (B2, X)× [0,1]/(x,0) ∼ (−x,1) for x ∈B2.

Let c ′i be a loop or a pair of loops immersed inN(ci) such thatc ′i = ϕ({z,−z}×
[0,1]/∼) for somez ∈B2 \X. We give orientations toci andc ′i such that [c ′i ] =
2[ci ] ∈ H1(N(ci);Z). See Figure 3. We putC ′ = c ′1 ∪ · · · ∪ c ′m. SinceC and
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Figure 3 The double curve push-offs

C ′ are mutually disjoint 1-cycles inR3, the linking number Lk(C,C ′) betweenC
andC ′ is defined; letd be a 2-cycle inR3 with ∂d = C such thatd andC ′ inter-
sect transversely. Then Lk(C,C ′) is the algebraic intersection number ofC ′ with
d. This number is well-defined modulo 4; it does not depend on a choice ofz ∈
B2 \X and an orientation ofci for eachi. Furthermore, its congruence class mod-
ulo 4 remains unchanged under the Roseman moves. Hence, the mod 4 reduction
of Lk(C,C ′) is an ambient isotopy invariant ofF = F1∪ F2.

Definition 2.1. Thedouble linking numberbetweenF1 andF2, denoted by
d(F1, F2), is the value inZ 4 = Z/4Z = {0,1,2,3} that is the linking number
Lk(C,C ′) modulo 4.

It is proved later that the double linking number is asymmetric:d(F1, F2) =
−d(F2, F1).

Let F = F1 ∪ F2 ∪ F3 be a 3-component surface link. At a triple point on
a surface diagram ofF there exist three sheets—calledtop, middle,andbottom
(with respect to the projection direction). A triple point isof type(i, j, k) if the
top sheet comes fromFi, the middle comes fromFj, and the bottom comes from
Fk, wherei, j, k ∈ {1,2,3}. LetN(i, j, k) denote the number of the triple points
of type (i, j, k). The mod 2 reduction ofN(i, j, k) is preserved under Roseman
moves and hence is an ambient isotopy invariant ofF, providedi 6= j andj 6= k
(though possiblyi = k) [11].

Definition 2.2. Thetriple linking numberamongFi, Fj, andFk, denoted by
t(Fi, Fj, Fk), is the value inZ 2 = Z/2Z = {0,1} that is the numberN(i, j, k)
modulo 2, providedi 6= j andj 6= k.
Lemma 2.3. The ambient isotopy invariantse, d, and t are unoriented bordism
invariants.

Proof. We take surface diagramsD andD ′ of surface linksF andF ′, respec-
tively. If F andF ′ are unorientedly bordant, thenD ′ is obtained fromD by a
finite sequence of moves from the following list:

(a) an ambient isotopy ofR3;
(b) a Roseman move;
(c) adding or deleting embedded 2-spheres inR3 that are disjoint fromD;
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Figure 4 Attaching 1- and 2-handles

(d) a 1-handle surgery onD in R3 whose core is a simple arcγ with γ ∩D = ∂γ
(see Figure 4);

(e) a 2-handle surgery onD in R3 whose core is a simple 2-diskδwith δ ∩D = ∂δ.
Recall that Roseman moves do not change the invariantse, d, and t. The other
deformations listed do not change the singularity set of the diagram. Hencee, d,

andt are unoriented bordism invariants.

3. 1-Component Surface Links

A projective plane embedded inR4 isstandardif it has a surface diagram as shown
in Figure 5. A nonorientable surface knot is said to betrivial if it is a connected
sum of some standard projective planes inR4. Two trivial nonorientable surface
knotsF andF ′ are ambient isotopic if and only ife(F ) = e(F ′) andχ(F ) =
χ(F ′). The following lemma is folklore.

Figure 5 The positive and negative projective planes

Lemma 3.1. Two1-component surface linksF andF ′ are unorientedly bordant
if and only ife(F ) = e(F ′).
Proof. The “only if ” part is obvious, so we prove the “if ” part. It is known (see
[5]) that any nonorientable surface link is transformed into a trivial nonorientable
surface knot by some 1-handle surgeries. Thus we may assume thatF andF ′ are
trivial nonorientable surface knots withe(F ) = e(F ′). By Whitney’s congruence,
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we haveχ(F ) ≡ χ(F ′) (mod 2). Doing 1-handle surgeries if necessary, we may
assume thatχ(F ) = χ(F ′). ThenF andF ′ are ambient isotopic. Thus the origi-
nal 1-component surface linksF andF ′ are unorientedly bordant.

4. Necklaces

We introduce a family of surface links, callednecklaces,that is used to prove The-
orem 1.2. In the upper 3-spaceR3+ = {(x, y, z) | z ≥ 0}, we take a 3-ball

B3 = {(x, y, z) | x 2 + y2 + (z− 2)2 ≤ 1}.
Let f = {ft }0≤t≤1 andg = {gt }0≤t≤1 be ambient isotopies ofB3 that present a
180◦ rotation around thez-axis and a 360◦ rotation around the axis(y = 0, z= 2).
We put a Hopf linkk1∪ k2 in B3 as in Figure 6 so thatf1(ki) = ki andg1(ki) =
ki for i = 1,2. By amotionof k1∪ k2 we mean an ambient isotopyh = {ht }0≤t≤1

of B3 with h1(k1∪ k2) = k1∪ k2. Two motionsh andh′ areequivalentif there is
a 1-parameter family of motions betweenh andh′.

Figure 6 Spinning the Hopf link in two directions

We consider thatR4 is obtained by spinningR3+ around∂R3+ by use of a map
µ : R3+ × [0,1]→ R4 defined by((x, y, z)× {t}) 7→ (x, y, z cos 2πt, z sin 2πt).
For integersp, q we construct a 2-component surface linkSp,q = T1∪ T2, called
astrand,as follows:

Ti = µ
( ⋃
t∈[0,1]

(fp · gq)t(ki)× {t}
)
⊂ R4 (i = 1,2).

EachTi (i = 1,2) is homeomorphic to a torus (resp., a Klein bottle) ifp is even
(resp., odd).

Lemma 4.1. (i)StrandsSp,q andSp+2q,0 are ambient isotopic.
(ii) If p ≡ p ′ (mod 4),then two strandsSp,q andSp

′,q are ambient isotopic.
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Proof. By the belt trick (see [6]), the motiong is equivalent tof 2, andf 4 is
equivalent to the identity. The result follows.

The preceding lemma implies that ambient isotopy classes of strands are repre-
sented bySp,q with q = 0 andp ∈Z 4. We shall abbreviateSp,0 to Sp.

Lemma 4.2. For a strandSp = T1∪ T2, we have:

(i) e(T1) = e(T2) = 0∈Z;
(ii) d(T1, T2) = −d(T2, T1) = p ∈Z 4; and

(iii) t(T1, T2, T1) = t(T2, T1, T2) = p ∈Z 2.

Proof. (i) For eachi = 1,2, we take a 2-diskDi embedded inB3 with ∂Di = ki
andf1(Di) = Di. The imageµ(Di × [0,1]) is a 3-manifold whose boundary is
Ti. Thuse(Ti) = 0.

(ii) In Figure 7, we illustrate the motionf of the Hopf linkk1∪ k2. Since we
can obtain a diagram ofSp by takingp copies of the motion and connecting them,
we haved(T1, T2) = p. Similarly, we haved(T2, T1) = −p.

Figure 7 The movie of the strandS1

(iii) The motion in Figure 7 contains two Reidemeister moves of typeIII. One
of them corresponds to a triple point of type (top, middle, bottom)= (T1, T2, T1)

and the other corresponds to that of(T2, T1, T2). Thus we havet(T1, T2, T1) =
t(T2, T1, T2) = p.
Form numbers{ti}i=1, ...,m with 0 < t1 < · · · < tm < 1, we consider a surface
link defined as follows:

Sp ∪ µ(∂B3× {t1}) ∪ · · · ∪ µ(∂B3× {tm}).
We call such a surface link anecklaceand a spherical componentBi = µ(∂B3 ×
{ti}) abeadof the necklace.

Lemma 4.3. LetSp ∪B1∪ · · · ∪Bm be a necklace with the strandSp = T1∪ T2.

For eachi = 1, . . . , m, we have
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t(T2, T1, Bi) = t(Bi, T1, T2) = 1,

t(T1, T2, Bi) = t(Bi, T2, T1) = 1,

t(T1, Bi, T2) = t(T2, Bi, T1) = 0.

Proof. In a surface diagram, a bead introduces four triple pointsτ1, . . . , τ4 as
shown in Figure 8. The top, middle, and bottom sheets aroundτ1 come fromT2,

T1, andBi (respectively). Forτ2 they areT1, T2, andBi; for τ3 they areBi, T1,

andT2; and forτ4 they areBi, T2, andT1.

Figure 8 The local picture of a bead on a strand

We denote byNp(i, j ; k1, . . . , km) ann-component surface link that is a necklace
Sp ∪B1∪ · · · ∪Bm with the strandSp = T1∪ T2 such thatα(T1) = i, α(T2) = j,
andα(B1) = k1, . . . , α(Bm) = km,whereα(K) stands for the label of a connected
componentK.

Lemma 4.4. (i)Np(i, i; k1, . . . , km) is unorientedly null-bordant.
(ii) Np(i, j ; k1, . . . , km) ∼=A N−p(j, i; k1, . . . , km).

(iii) Np(i, j ; k1, k2, k3, . . . , km) 'B Np(i, j ; k3, . . . , km), providedk1= k2.

(iv) Np(i, j ; k1, k2, . . . , km) 'B Np+2(i, j ; k2, . . . , km), providedk1= i.
(v) Np(i, j ; k1, . . . , km) q Np ′(i, j ; k ′1, . . . , k ′l ) 'B Np+p ′(i, j ; k1, . . . , km, k

′
1,

. . . , k ′l ).
(vi) N 0(i, j ; ∅) is unorientedly null-bordant.

Proof. (i) Consider an annulusA in intB3 with ∂A= k1∪ k2 andf1(A)= A. The
imageµ(A× [0,1]) is a 3-manifold whose boundary is the strandSp = T1∪ T2.

Thus, we can removeSp and then all the beadsBi (i = 1, . . . , m) up to unoriented
bordism.

(ii) By a 180◦ rotation ofB3 around the axis(y = 0, z = 2), the components
k1 andk2 are switched. Then the direction of the rotationf is reversed.
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(iii) We can remove the beadsBi = µ(∂B3 × {ti}) (i = 1,2) from F by a
3-manifoldµ(∂B3× [t1, t2]).

(iv) We perform a 1-handle surgery betweenK1 andB1 as shown in Figure
9(1)→ (2). The diagram illustrated in (2) is ambient isotopic to that in (3). This
surface is realized by a motion as in (4), which is the 360◦ rotation around the axis
(x = 0, z = 2). This motion is equivalent tof 2.

Figure 9 The movies of surgeries and isotopies

(v) We connect the strands ofNp(i, j ; k1, . . . , km) andNp ′(i, j ; k ′1, . . . , k ′l ) up
to unoriented bordism, which yieldsNp+p ′(i, j ; k1, . . . , km, k

′
1, . . . , k

′
l ) (see [1,

Lemma 2.3]).
(vi) Consider the Hopf linkk1∪ k2 to use the definition of a strand. Letγi (i =

1,2) be disjoint simple arcs inR+3 connectingki and∂R3+ in an obvious way. Then
the 2-handle surgeries along the 2-disksµ(γ1 × [0,1]) andµ(γ2 × [0,1]) make
S 0 a split union of 2-spheres.

5. Crossing Changes

In this section, we study a crossing change along a double curve of a surface
diagram. The idea is similar to a crossing change for a classical link inR3. For a
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Figure 10 A movie of a crossing change and the resulting surface

classical link, a crossing change can be realized by 1-handle(=band) surgeries as
shown in Figure 10(i). Hence, any classical linkk1∪ · · · ∪ kn is bordant to a split
union: k1q · · · q kn q (Hopf links).

Lemma 5.1. Anyn-component surface-linkF1∪ · · · ∪Fn is unorientedly bordant
to a split union: F1q · · · q Fn q (necklaces).

In a surface diagram, we use a symbolE (as in Figure 10(ii)) for a local diagram
that is obtained from Figure 10(i) by regarding it as a movie.

Let c be a double curve of a surface diagram such that it is an immersed loop
in R3. As mentioned in Section 2, a regular neighborhoodN(c) of c is regarded
as the image of an immersionϕ of B2× [0,1]/∼ . See Figure 11. For eachc, we
choose a pair of diagonal regionsY of B2 \X and putR(c) = ϕ(Y × [0,1]/∼).

Figure 11 A neighborhood of a double curve

Let A1 andA2 be the sheets that intersect along the curvec such thatA1 is
higher thanA2 with respect to the projection direction; in other words,c is of type
(upper, lower)= (A1, A2). To prove Lemma 5.1, we introduce four kinds of local
deformations under which unoriented bordism classes are preserved.

1: Local crossing change.Consider two 1-handle surgeries as shown in Fig-
ure 12 in the motion picture method. We call this alocal crossing changealongc.
We always assume that the “local strand” (Hopf link)× [0,1] obtained by a local
crossing change is in the specified regionR(c). Let t be a triple point onc and let
H be a sheet that is transverse toc at t. If H is a top or bottom sheet, then we
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Figure 12 The local crossing change

Figure 13 A local crossing change near a triple point

can perform a local crossing change along the curvec as in Figure 13. For exam-
ple, ifH is a top sheet, then the type oft is changed from (top, middle, bottom)=
(H,A1, A2) to (H,A2, A1), and the local strand goes under the sheetH.

2: End change.Consider a composite of three ambient isotopies as shown in
Figure14. We call this anend changeof a local strand. This deformation moves an
end part of the local strand into the diagonal region ofR(c). The new local strand
has additional intersections withA1 andA2. In the bottom of Figure 14, the boxed
“f ” means a local diagram corresponding to a 180◦ rotation of the Hopf link.

3: Canceling adjacent ends.Assume that two adjacent ends of local strands
are in the same region ofR(c). Consider the deformation illustrated in Figure 15,
which is realized by two 2-handle surgeries onA1 andA2. We call this acanceling
of adjacent endsof local strands alongc.
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Figure 14 The movies and diagrams determining an end change

Figure 15 Canceling adjacent ends for a crossing change

4: Making a bead.Assume that a strand intersects a sheetH transversely. If
the strand is underH then we consider a 2-handle surgery onH, as shown in Fig-
ure 16. This deformation makes the strand overH while producing a bead.

In a surface diagram of ann-component surface linkF = F1∪ · · · ∪ Fn, we say
that a double curve of type(i, j) ispreferredif i ≤ j ; a triple point of type(i, j, k)
is preferred ifi ≤ j andj ≤ k.
Proof of Lemma 5.1.Consider a surface diagram ofF = F1∪ · · · ∪ Fn. If there
is a nonpreferred double curve without triple points (i.e., an embedded loop), we
apply a local crossing change along the curve followed by canceling adjacent ends
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Figure 16 Making a bead

of the local strand. This makes the double curve preferred and yields a strand
(necklace without beads) that is separated fromF. Hence we may assume there is
at least one triple point on any nonpreferred double curve of the surface diagram.

For each nonpreferred triple pointt of type(i, j, k), we perform local crossing
changes so thatt changes into a preferred triple point as follows.

(a) If j < i ≤ k, then we perform a local crossing change along the double curve
of type(i, j) over the bottom sheet labeledk.

(b) If i ≤ k < j, then we perform a local crossing change along the double curve
of type(j, k) under the top sheet labeledi.

(c) If k < i ≤ j, then we perform a local crossing change along the double curve
of type(j, k) and then perform another along the curve of type(i, k).

(d) If j ≤ k < i, then we perform a local crossing change along the double curve
of type(i, j) and then perform another along the curve of type(i, k).

(e) If k < j < i, then we perform a local crossing change along the double curve
of type(i, j), next along the curve of type(i, k), and then along the curve of
type(j, k).

Figure 17 shows the case ofk < j < i.

Figure 17 A 3-fold crossing change at a triple point of typek < j < i

All the local crossing changes just described are performed along nonpreferred
double curves. After applying suitable end changes, we can cancel all the adjacent
ends of local strands along nonpreferred double curves. Then we obtain a surface
diagram of(F1q · · · q Fn) ∪ (strands) for which any double curves betweenFi
andFj are preferred. By making beads if necessary, we can split necklaces from
F1q· · ·qFn. ThusF is unorientedly bordant toF1q· · ·qFnq (necklaces).
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Lemma 5.2. N 0(i, j ; k) 'B N 0(k, i; j)qN 0(k, j ; i).
Proof. Consider a surface diagram ofN 0(i, j ; k) that contains the local diagram il-
lustrated in Figure 8. In the local diagram, along the double curves of type(i, k)and
(j, k), we perform (global) crossing changes as in the proof of Lemma 5.1. Then
N 0(i, j ; k) is unorientedly bordant to a split union ofN 0(i, k; j) ∼=A N 0(k, i; j)
along the curve of type(i, k), N 0(j, k; i) ∼=A N 0(k, j ; i) along the curve of type
(j, k),and a surface linkF obtained by the crossing change. ThenF is a split union
of S 0(i, j) and a trivial 2-sphere labeledk, which is unorientedly null-bordant by
Lemma 4.4(vi).

6. Proof of Theorem 1.2

LetP+ andP− be the standard projective plane inR4 with e(P+) = 2 ande(P−) =
−2, respectively (see Figure 5). We denote byP m the connected sum ofm copies
of P+ if m > 0, −m copies ofP− if m < 0, and the empty set ifm = 0. Regard-
ing P m as ann-component surface link with a labelα(P m) = i, we denote it by
P m(i). Regarding a strandSp = T1∪T2 as ann-component surface link such that
α(T1) = i andα(T2) = j, we denote it bySp(i, j). ThenSp(i, j) = Np(i, j ; ∅)
in the notation used in Lemma 4.4.

Lemma 6.1. Anyn-component surface linkF is unorientedly bordant to a split
union (∐

i∈01

P mi(i)

)∐( ∐
(i,j)∈02

Spij(i, j)

)∐( ∐
(i,j,k)∈03

N 0(i, j ; k)
)
.

Here,0i (i = 1,2,3) is a subset of thei-fold Cartesian product of{1, . . . , n},
mi ∈Z (i ∈01), andpij ∈Z 4 ((i, j)∈02) satisfying:

(i) mi 6= 0 for anyi ∈01;
(ii) i < j andpij 6= 0 for any(i, j)∈02;

(iii) i < j < k or i < k < j for any(i, j, k)∈03.

Proof. By Lemma 5.1, anyn-component surface linkF = F1∪ · · · ∪ Fn is unori-
entedly bordant to(F1q · · · q Fn) q F ′, whereF ′ is a split union of necklaces.
Put01 = {i | e(Fi) 6= 0} andmi = e(Fi)/2∈ Z (i ∈ 01). By Lemma 3.1, we see
thatF1q· · ·qFn is unorientedly bordant to

∐
i∈01

P mi(i) satisfying condition (i).
Because a necklaceNp(i, j ; k1, . . . , km) is unorientedly bordant toSp(i, j) q

N 0(i, j ; k1)q · · · qN 0(i, j ; km) by Lemma 4.4(v), it follows thatF ′ is unorient-
edly bordant toF ′′ qF ′′′ such thatF ′′ is a split union of someSp(i, j) andF ′′′ is
a split union of someN 0(i, j ; k).

We may assume thati < j for anySp(i, j) appearing inF ′′ by Lemma 4.4(i)
and (ii). Moreover, by Lemma 4.4(v) and (vi), we see that there exist a sub-
set02 ⊂ {1, . . . , n}2 andpij ∈ Z 4 such that (a)F ′′ is unorientedly bordant to∐
(i,j)∈02

Spij(i, j) and (b) condition (ii) is satisfied.

By parts (i), (ii), (iv), and (vi) of Lemma 4.4, we may assume thati < j,

i 6= k, andj 6= k for anyN 0(i, j ; k) appearing inF ′′′. Applying Lemma 5.2 for
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N 0(i, j ; k) with k < i < j, we may assume that(i, j, k) satisfies condition (iii)
for anyN 0(i, j ; k) appearing inF ′′′. By parts (iii), (v), and (vi) of Lemma 4.4,
we see that there exists a subset03 ⊂ {1, . . . , n}3 such that (a)F ′′′ is unorientedly
bordant to

∐
(i,j,k)∈03

N 0(i, j ; k) and (b) condition (iii) is satisfied.

For the unoriented bordism groupUL4,n, we consider three types of homomor-
phismsei (i = 1, . . . , n), dij (i 6= j), andtijk (i 6= j, j 6= k) as follows:

ei : UL4,n→ Z for [F ] 7→ e(Fi)/2,

dij : UL4,n→ Z 4 for [F ] 7→ d(Fi, Fj ),

tijk : UL4,n→ Z 2 for [F ] 7→ t(Fi, Fj, Fk),

whereF = F1∪ · · · ∪ Fn.
Lemma 6.2. For ann-component surface linkF, let 0i (i = 1,2,3), mi ∈Z (i ∈
01), andpij ∈Z 4 ((i, j)∈02) be as in Lemma 6.1. Then the following statements
hold.

(i) ei([F ]) = mi if i ∈01 andei([F ]) = 0 if i /∈01.

(ii) For i < j : dij([F ]) = pij if (i, j)∈02 anddij([F ]) = 0 if (i, j) /∈02.

(iii) For i < j < k: tijk([F ]) = 1 if (i, j, k)∈03 andtijk([F ]) = 0 if (i, j, k) /∈
03.

(iv) For i < k < j : tijk([F ]) = 1 if (i, j, k)∈03 andtijk([F ]) = 0 if (i, j, k) /∈
03.

Proof. (i) Sincee(P m) = 2m, we haveei([F ]) = mi if i ∈ 01 and otherwise
ei([F ]) = 0.

(ii) This follows from Lemma 4.2(ii).
(iii), (iv) Note that(j, i, k), (j, k, i), (k, i, j), (k, j, i) /∈03. Since

tijk([N
0(i, j ; k)]) = 1 and tijk([N

0(i, k; j)]) = 0

by Lemma 4.3, it follows thattijk([F ]) = 1 if and only if (i, j, k)∈03.

Proof of Theorem 1.2.Consider a homomorphism

UH : UL4,n→ (Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
n

)⊕ (Z 4⊕ · · · ⊕ Z 4︸ ︷︷ ︸
n(n−1)

2

)⊕ (Z 2⊕ · · · ⊕ Z 2︸ ︷︷ ︸
n(n−1)(n−2)

3

)

defined byUH = (⊕n
i=1ei

)⊕ (⊕i<j dij
)⊕ (⊕i<j<k or i<k<j tijk

)
. This homo-

morphism is injective by Lemma 6.2. Also,UH is surjective; indeed,UH([P 1(i)])
(i = 1, . . . , n), UH([S1(i, j)]) (i < j), andUH([N 0(i, j ; k)]) (i < j < k or i <
k < j) are generators ofZ, Z 4, andZ 2, respectively.

In the definition of the homomorphismUH,we do not use all double linking num-
bers and triple linking numbers. The unused ones are determined as follows.

Proposition 6.3. For distinct i, j, k and ann-component surface linkF, we
have:
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(i) dji([F ]) = −dij([F ]);
(ii) tiji([F ]) = tjij ([F ]) = λ(dij([F ])), whereλ : Z 4 → Z 2 is the natural

projection;
(iii) tijk([F ]) = tkji([F ]); and
(iv) tjik([F ])+ tijk([F ])+ tikj([F ]) = 0.

Proof. It is sufficient to prove (i) and (ii) whenF is as in Lemma 6.1. We shall
use Lemma 4.2. We havetiji([F ]) = pij ∈Z 2 if i < j andtiji([F ]) = pji ∈Z 2 if
i > j. On the other hand, we havedij([F ]) = pij ∈ Z 4 if i < j anddij([F ]) =
−pji ∈ Z 4 if i > j. Hence, we haveλ(dij([F ])) = tiji([F ]). Similarly, since
dij([F ]) = pij ∈ Z 4 anddji([F ]) = −pij ∈ Z 4 for i < j, we havedij([F ]) =
−dji([F ]). Parts (iii) and (iv) are proved in [11, Thm. 3.2].

We consider the homomorphismf : L4,n → UL4,n induced by the map that
ignores the orientations of surface links. For an orientedn-component surface
link F, we can define two kinds of bordism invariants: double linking invariants
Dij : L4,n → Z 2 = Z/2Z; and triple linking invariantsTijk : L4,n → Z (cf. [1]).
Then Sanderson’s isomorphism,

H : L4,n→ (Z 2⊕ · · · ⊕ Z 2︸ ︷︷ ︸
n(n−1)

2

)⊕ (Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
n(n−1)(n−2)

3

),

is given byH = (⊕
i<j Dij

) ⊕ (⊕i<j<k or i<k<j Tijk
)
. From the definitions of

these invariants, the forgetful mapf is regarded as(⊕
0
)⊕ (⊕ κ

)⊕ (⊕ν
)
:
(⊕{0})⊕ (⊕Z 2

)⊕ (⊕Z
)

→ (⊕
Z
)⊕ (⊕Z 4

)⊕ (⊕Z 2
)

under the isomorphismsU andUH, whereκ : Z 2 → Z 4 is the natural inclusion
andν : Z → Z 2 is the natural projection.
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