Bordism of Unoriented Surfaces in 4-Space

J. Scott Carter, Seifchi Kamada, Masahico Saito, \& Shin Satoh

1. Introduction

Sanderson [9;10] studied the group $L_{m, n}$ of bordism classes of "oriented" closed ($m-2$)-manifolds of n components in \mathbf{R}^{m}. He showed that $L_{m, n}$ is isomorphic to the homotopy group $\pi_{m}\left(\bigvee_{i=1}^{n-1} S^{2}\right)$; in particular, the bordism group $L_{m, n}$ for $m=4$ is given as follows.

Theorem 1.1 (Sanderson).

$$
L_{4, n} \cong(\underbrace{\mathbf{Z}_{2} \oplus \cdots \oplus \mathbf{Z}_{2}}_{\frac{n(n-1)}{2}}) \oplus(\underbrace{\mathbf{Z} \oplus \cdots \oplus \mathbf{Z}}_{\frac{n(n-1)(n-2)}{3}})
$$

In particular, we have $L_{4,1} \cong\{0\}, L_{4,2} \cong \mathbf{Z}_{2}$, and $L_{4,3} \cong \mathbf{Z}_{2}^{3} \oplus \mathbf{Z}^{2}$.
Similarly, there is a group of bordism classes of "unoriented" closed $(m-2)$ manifolds of n components in \mathbf{R}^{m}. We denote the group by $U L_{m, n}$. The aim of this paper is to determine the bordism group $U L_{m, n}$ for $m=4$ via purely geometric techniques.

An n-component surface link F is a closed surface embedded in \mathbf{R}^{4} (smoothly, or PL and locally flatly) such that an integer in $\{1, \ldots, n\}$, called the label, is assigned to each connected component. We denote by $\alpha(K)$ the label of a connected component K of F. The i th component of F is the union of the connected components of F that have label i. The i th component may be orientable or not, and it could be empty. We often denote an n-component surface link F by $F_{1} \cup \cdots \cup F_{n}$, where each F_{i} is the i th component of F. Two n-component surface links F and F^{\prime} are unorientedly bordant if there is a compact 3-manifold $W=$ $\bigcup_{i=1}^{n} W_{i}$ properly embedded in $\mathbf{R}^{4} \times[0,1]$ such that $\partial W_{i}=F_{i} \times\{0\} \cup F_{i}^{\prime} \times\{1\}$ for $i=1, \ldots, n$. In this paper, $F \simeq_{B} F^{\prime}$ means that F and F^{\prime} are unorientedly bordant, and $F \cong_{A} F^{\prime}$ means that they are ambient isotopic in \mathbf{R}^{4}. The unoriented bordism classes of n-component surface links form an abelian group $U L_{4, n}$ such that the sum $[F]+\left[F^{\prime}\right]$ is defined to be the class $\left[F \amalg F^{\prime}\right]$ of the split union $F \amalg F^{\prime}$. The identity is represented by the empty $F=\emptyset$ and the inverse $-[F]$ is represented by the mirror image of F. The following is our main theorem.

Theorem 1.2.

$$
U L_{4, n} \cong(\underbrace{\mathbf{Z} \oplus \cdots \oplus \mathbf{Z}}_{n}) \oplus(\underbrace{\mathbf{Z}_{4} \oplus \cdots \oplus \mathbf{Z}_{4}}_{\frac{n(n-1)}{2}}) \oplus(\underbrace{\mathbf{Z}_{2} \oplus \cdots \oplus \mathbf{Z}_{2}}_{\frac{n(n-1)(n-2)}{3}})
$$

In particular, we have $U L_{4,1} \cong \mathbf{Z}, U L_{4,2} \cong \mathbf{Z}^{2} \oplus \mathbf{Z}_{4}$, and $U L_{4,3} \cong \mathbf{Z}^{3} \oplus \mathbf{Z}_{4}^{3} \oplus \mathbf{Z}_{2}^{2}$.
This paper is organized as follows. In Section 2, we give definitions of three kinds of unoriented bordism invariants-normal Euler numbers, double linkings, and triple linkings-by the projection method. In Section 3 we study 1-component surface links. In Section 4, we introduce a family of surface links; the elements of the family are called necklaces. Section 5 is devoted to the study of crossing changes that produce necklaces. In Section 6, we prove Theorem 1.2.

2. Unoriented Bordism Invariants

All of our bordism invariants will be defined using the diagram of a knotted or linked surface. We begin by recalling this notion. Consider a surface link F. We may assume that the restriction $\left.\pi\right|_{F}: F \rightarrow \mathbf{R}^{3}$ of a projection $\pi: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ is a generic map; that is, the singularity set of the image $\pi(F) \subset \mathbf{R}^{3}$ consists of double points and isolated branch/triple points. See Figure 1. The closure of the self-intersection set on $\pi(F)$ is regarded as a union of immersed arcs and loops, which we call double curves. Branch points (or Whitney umbrella points) occur at the end of the double curves, and triple points occur when double curves intersect.

Figure 1 Generic intersections of surfaces in 3-space

By a surface diagram of F we mean the image $\pi(F)$ equipped with over/underinformation along each double curve with respect to the projection direction. To indicate such over/under-information, we remove a neighborhood of a double curve on the sheet (the lower sheet) that lies lower than the other sheet (the upper sheet). See Figure 2. Notice that the removal of this neighborhood is merely a convention in depicting illustrations. In particular, we still speak of "double curves" and triple points, and we locally parametrize the surfaces using immersions.

There are seven kinds of local moves on surface diagrams, called Roseman moves (analogues of Reidemeister moves for classical knots) that together are sufficient to relate diagrams of ambient isotopic surface links (cf. [3;4;8]). Specifically,

Figure 2 The broken surface diagrams at intersection points
two diagrams represent ambiently isotopic surface links if and only if one can be obtained from the other by means a finite sequence of moves taken from the list of Roseman moves. We remark that the Roseman moves are used here only in relation to their effect on the cobordism invariants.

For a surface knot K (i.e., a connected closed surface embedded in \mathbf{R}^{4}), Whitney defined the normal Euler number $e(K)$ of K to be the Euler number of a tubular neighborhood of K in \mathbf{R}^{4} considered as a 2-plane bundle (see [7; 12]). It is known [5; 7] that
(i) $e(K)=0$ if K is orientable,
(ii) (Whitney's congruence) $e(K) \equiv 2 \chi(K)(\bmod 4)$, and
(iii) (Whitney-Massey theorem) $|e(K)| \leq 4-2 \chi(K)$,
where $\chi(K)$ denotes the Euler characteristic of K. For a 1-component surface link F, we define the normal Euler number $e(F)$ of F to be the sum of $e(K)$ for the connected components K of F. The normal Euler number $e(F)$ can be calculated by use of a projection of F in \mathbf{R}^{3}; it is equal to the number of positive type branch points (see Figure 2) minus that of negative type ones [2].

Let $F=F_{1} \cup F_{2}$ be a 2-component surface link and D a surface diagram of F. A double curve of D is said to be of type (i, j) if the upper sheet belongs to F_{i} and the lower belongs to F_{j}, where $i, j \in\{1,2\}$. If a double curve is an immersed arc, then its endpoints are branch points and hence the type is $(1,1)$ or $(2,2)$. Let $C=$ $c_{1} \cup \cdots \cup c_{m}$ be the set of double curves of type $(1,2)$ on the surface diagram D. Each double curve c_{i} is an immersed loop in \mathbf{R}^{3}.

We take a 2-disk B^{2} and a union of intervals X in \mathbf{R}^{2} as follows:
(i) $B^{2}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$;
(ii) $X=\{(x, y) \mid-1 \leq x \leq 1, y=0\} \cup\{(x, y) \mid x=0,-1 \leq y \leq 1\}$.

For a regular neighborhood $N\left(c_{i}\right)$ of c_{i} in \mathbf{R}^{3}, the pair $\left(N\left(c_{i}\right), D \cap N\left(c_{i}\right)\right)$ is regarded as the image of an immersion, say φ, of one of the following manifold pairs:
(i) $\left(B^{2}, X\right) \times[0,1] /(x, 0) \sim(x, 1)$ for $x \in B^{2}$; or
(ii) $\left(B^{2}, X\right) \times[0,1] /(x, 0) \sim(-x, 1)$ for $x \in B^{2}$.

Let c_{i}^{\prime} be a loop or a pair of loops immersed in $N\left(c_{i}\right)$ such that $c_{i}^{\prime}=\varphi(\{z,-z\} \times$ $[0,1] / \sim)$ for some $z \in B^{2} \backslash X$. We give orientations to c_{i} and c_{i}^{\prime} such that $\left[c_{i}^{\prime}\right]=$ $2\left[c_{i}\right] \in H_{1}\left(N\left(c_{i}\right) ; \mathbf{Z}\right)$. See Figure 3. We put $C^{\prime}=c_{1}^{\prime} \cup \cdots \cup c_{m}^{\prime}$. Since C and

Figure 3 The double curve push-offs
C^{\prime} are mutually disjoint 1 -cycles in \mathbf{R}^{3}, the linking number $\mathrm{Lk}\left(C, C^{\prime}\right)$ between C and C^{\prime} is defined; let d be a 2-cycle in \mathbf{R}^{3} with $\partial d=C$ such that d and C^{\prime} intersect transversely. Then $\operatorname{Lk}\left(C, C^{\prime}\right)$ is the algebraic intersection number of C^{\prime} with d. This number is well-defined modulo 4; it does not depend on a choice of $z \in$ $B^{2} \backslash X$ and an orientation of c_{i} for each i. Furthermore, its congruence class modulo 4 remains unchanged under the Roseman moves. Hence, the mod 4 reduction of $\operatorname{Lk}\left(C, C^{\prime}\right)$ is an ambient isotopy invariant of $F=F_{1} \cup F_{2}$.

Definition 2.1. The double linking number between F_{1} and F_{2}, denoted by $d\left(F_{1}, F_{2}\right)$, is the value in $\mathbf{Z}_{4}=\mathbf{Z} / 4 \mathbf{Z}=\{0,1,2,3\}$ that is the linking number $\operatorname{Lk}\left(C, C^{\prime}\right)$ modulo 4 .

It is proved later that the double linking number is asymmetric: $d\left(F_{1}, F_{2}\right)=$ $-d\left(F_{2}, F_{1}\right)$.

Let $F=F_{1} \cup F_{2} \cup F_{3}$ be a 3-component surface link. At a triple point on a surface diagram of F there exist three sheets-called top, middle, and bottom (with respect to the projection direction). A triple point is of type (i, j, k) if the top sheet comes from F_{i}, the middle comes from F_{j}, and the bottom comes from F_{k}, where $i, j, k \in\{1,2,3\}$. Let $N(i, j, k)$ denote the number of the triple points of type (i, j, k). The mod 2 reduction of $N(i, j, k)$ is preserved under Roseman moves and hence is an ambient isotopy invariant of F, provided $i \neq j$ and $j \neq k$ (though possibly $i=k$) [11].

Definition 2.2. The triple linking number among F_{i}, F_{j}, and F_{k}, denoted by $t\left(F_{i}, F_{j}, F_{k}\right)$, is the value in $\mathbf{Z}_{2}=\mathbf{Z} / 2 \mathbf{Z}=\{0,1\}$ that is the number $N(i, j, k)$ modulo 2 , provided $i \neq j$ and $j \neq k$.

Lemma 2.3. The ambient isotopy invariants e, d, and t are unoriented bordism invariants.

Proof. We take surface diagrams D and D^{\prime} of surface links F and F^{\prime}, respectively. If F and F^{\prime} are unorientedly bordant, then D^{\prime} is obtained from D by a finite sequence of moves from the following list:
(a) an ambient isotopy of \mathbf{R}^{3};
(b) a Roseman move;
(c) adding or deleting embedded 2-spheres in \mathbf{R}^{3} that are disjoint from D;

Figure 4 Attaching 1- and 2-handles
(d) a 1-handle surgery on D in \mathbf{R}^{3} whose core is a simple $\operatorname{arc} \gamma$ with $\gamma \cap D=\partial \gamma$ (see Figure 4);
(e) a 2-handle surgery on D in \mathbf{R}^{3} whose core is a simple 2-disk δ with $\delta \cap D=\partial \delta$.

Recall that Roseman moves do not change the invariants e, d, and t. The other deformations listed do not change the singularity set of the diagram. Hence e, d, and t are unoriented bordism invariants.

3. 1-Component Surface Links

A projective plane embedded in \mathbf{R}^{4} is standard if it has a surface diagram as shown in Figure 5. A nonorientable surface knot is said to be trivial if it is a connected sum of some standard projective planes in \mathbf{R}^{4}. Two trivial nonorientable surface knots F and F^{\prime} are ambient isotopic if and only if $e(F)=e\left(F^{\prime}\right)$ and $\chi(F)=$ $\chi\left(F^{\prime}\right)$. The following lemma is folklore.

Figure 5 The positive and negative projective planes

Lemma 3.1. Two 1-component surface links F and F^{\prime} are unorientedly bordant if and only if $e(F)=e\left(F^{\prime}\right)$.

Proof. The "only if" part is obvious, so we prove the "if" part. It is known (see [5]) that any nonorientable surface link is transformed into a trivial nonorientable surface knot by some 1-handle surgeries. Thus we may assume that F and F^{\prime} are trivial nonorientable surface knots with $e(F)=e\left(F^{\prime}\right)$. By Whitney's congruence,
we have $\chi(F) \equiv \chi\left(F^{\prime}\right)(\bmod 2)$. Doing 1-handle surgeries if necessary, we may assume that $\chi(F)=\chi\left(F^{\prime}\right)$. Then F and F^{\prime} are ambient isotopic. Thus the original 1-component surface links F and F^{\prime} are unorientedly bordant.

4. Necklaces

We introduce a family of surface links, called necklaces, that is used to prove Theorem 1.2. In the upper 3-space $\mathbf{R}_{+}^{3}=\{(x, y, z) \mid z \geq 0\}$, we take a 3-ball

$$
B^{3}=\left\{(x, y, z) \mid x^{2}+y^{2}+(z-2)^{2} \leq 1\right\} .
$$

Let $f=\left\{f_{t}\right\}_{0 \leq t \leq 1}$ and $g=\left\{g_{t}\right\}_{0 \leq t \leq 1}$ be ambient isotopies of B^{3} that present a 180° rotation around the z-axis and a 360° rotation around the axis $(y=0, z=2)$. We put a Hopf link $k_{1} \cup k_{2}$ in B^{3} as in Figure 6 so that $f_{1}\left(k_{i}\right)=k_{i}$ and $g_{1}\left(k_{i}\right)=$ k_{i} for $i=1$, 2. By a motion of $k_{1} \cup k_{2}$ we mean an ambient isotopy $h=\left\{h_{t}\right\}_{0 \leq t \leq 1}$ of B^{3} with $h_{1}\left(k_{1} \cup k_{2}\right)=k_{1} \cup k_{2}$. Two motions h and h^{\prime} are equivalent if there is a 1-parameter family of motions between h and h^{\prime}.

Figure 6 Spinning the Hopf link in two directions

We consider that \mathbf{R}^{4} is obtained by spinning \mathbf{R}_{+}^{3} around $\partial \mathbf{R}_{+}^{3}$ by use of a map $\mu: \mathbf{R}_{+}^{3} \times[0,1] \rightarrow \mathbf{R}^{4}$ defined by $((x, y, z) \times\{t\}) \mapsto(x, y, z \cos 2 \pi t, z \sin 2 \pi t)$. For integers p, q we construct a 2 -component surface link $S^{p, q}=T_{1} \cup T_{2}$, called a strand, as follows:

$$
T_{i}=\mu\left(\bigcup_{t \in[0,1]}\left(f^{p} \cdot g^{q}\right)_{t}\left(k_{i}\right) \times\{t\}\right) \subset \mathbf{R}^{4} \quad(i=1,2)
$$

Each $T_{i}(i=1,2)$ is homeomorphic to a torus (resp., a Klein bottle) if p is even (resp., odd).

Lemma 4.1. (i) Strands $S^{p, q}$ and $S^{p+2 q, 0}$ are ambient isotopic.
(ii) If $p \equiv p^{\prime}(\bmod 4)$, then two strands $S^{p, q}$ and $S^{p^{\prime}, q}$ are ambient isotopic.

Proof. By the belt trick (see [6]), the motion g is equivalent to f^{2}, and f^{4} is equivalent to the identity. The result follows.

The preceding lemma implies that ambient isotopy classes of strands are represented by $S^{p, q}$ with $q=0$ and $p \in \mathbf{Z}_{4}$. We shall abbreviate $S^{p, 0}$ to S^{p}.

Lemma 4.2. For a strand $S^{p}=T_{1} \cup T_{2}$, we have:
(i) $e\left(T_{1}\right)=e\left(T_{2}\right)=0 \in \mathbf{Z}$;
(ii) $d\left(T_{1}, T_{2}\right)=-d\left(T_{2}, T_{1}\right)=p \in \mathbf{Z}_{4}$; and
(iii) $t\left(T_{1}, T_{2}, T_{1}\right)=t\left(T_{2}, T_{1}, T_{2}\right)=p \in \mathbf{Z}_{2}$.

Proof. (i) For each $i=1$, 2, we take a 2-disk D_{i} embedded in B^{3} with $\partial D_{i}=k_{i}$ and $f_{1}\left(D_{i}\right)=D_{i}$. The image $\mu\left(D_{i} \times[0,1]\right)$ is a 3-manifold whose boundary is T_{i}. Thus $e\left(T_{i}\right)=0$.
(ii) In Figure 7, we illustrate the motion f of the Hopf link $k_{1} \cup k_{2}$. Since we can obtain a diagram of S^{p} by taking p copies of the motion and connecting them, we have $d\left(T_{1}, T_{2}\right)=p$. Similarly, we have $d\left(T_{2}, T_{1}\right)=-p$.

Figure 7 The movie of the strand S^{1}
(iii) The motion in Figure 7 contains two Reidemeister moves of type III. One of them corresponds to a triple point of type (top, middle, bottom) $=\left(T_{1}, T_{2}, T_{1}\right)$ and the other corresponds to that of $\left(T_{2}, T_{1}, T_{2}\right)$. Thus we have $t\left(T_{1}, T_{2}, T_{1}\right)=$ $t\left(T_{2}, T_{1}, T_{2}\right)=p$.

For m numbers $\left\{t_{i}\right\}_{i=1, \ldots, m}$ with $0<t_{1}<\cdots<t_{m}<1$, we consider a surface link defined as follows:

$$
S^{p} \cup \mu\left(\partial B^{3} \times\left\{t_{1}\right\}\right) \cup \cdots \cup \mu\left(\partial B^{3} \times\left\{t_{m}\right\}\right) .
$$

We call such a surface link a necklace and a spherical component $B_{i}=\mu\left(\partial B^{3} \times\right.$ $\left\{t_{i}\right\}$) a bead of the necklace.

Lemma 4.3. Let $S^{p} \cup B_{1} \cup \cdots \cup B_{m}$ be a necklace with the strand $S^{p}=T_{1} \cup T_{2}$. For each $i=1, \ldots, m$, we have

$$
\begin{aligned}
& t\left(T_{2}, T_{1}, B_{i}\right)=t\left(B_{i}, T_{1}, T_{2}\right)=1 \\
& t\left(T_{1}, T_{2}, B_{i}\right)=t\left(B_{i}, T_{2}, T_{1}\right)=1 \\
& t\left(T_{1}, B_{i}, T_{2}\right)=t\left(T_{2}, B_{i}, T_{1}\right)=0
\end{aligned}
$$

Proof. In a surface diagram, a bead introduces four triple points $\tau_{1}, \ldots, \tau_{4}$ as shown in Figure 8. The top, middle, and bottom sheets around τ_{1} come from T_{2}, T_{1}, and B_{i} (respectively). For τ_{2} they are T_{1}, T_{2}, and B_{i}; for τ_{3} they are B_{i}, T_{1}, and T_{2}; and for τ_{4} they are B_{i}, T_{2}, and T_{1}.

Figure 8 The local picture of a bead on a strand

We denote by $N^{p}\left(i, j ; k_{1}, \ldots, k_{m}\right)$ an n-component surface link that is a necklace $S^{p} \cup B_{1} \cup \cdots \cup B_{m}$ with the strand $S^{p}=T_{1} \cup T_{2}$ such that $\alpha\left(T_{1}\right)=i, \alpha\left(T_{2}\right)=j$, and $\alpha\left(B_{1}\right)=k_{1}, \ldots, \alpha\left(B_{m}\right)=k_{m}$, where $\alpha(K)$ stands for the label of a connected component K.

Lemma 4.4. (i) $N^{p}\left(i, i ; k_{1}, \ldots, k_{m}\right)$ is unorientedly null-bordant.
(ii) $N^{p}\left(i, j ; k_{1}, \ldots, k_{m}\right) \cong{ }_{A} N^{-p}\left(j, i ; k_{1}, \ldots, k_{m}\right)$.
(iii) $N^{p}\left(i, j ; k_{1}, k_{2}, k_{3}, \ldots, k_{m}\right) \simeq_{B} N^{p}\left(i, j ; k_{3}, \ldots, k_{m}\right)$, provided $k_{1}=k_{2}$.
(iv) $N^{p}\left(i, j ; k_{1}, k_{2}, \ldots, k_{m}\right) \simeq_{B} N^{p+2}\left(i, j ; k_{2}, \ldots, k_{m}\right)$, provided $k_{1}=i$.
(v) $N^{p}\left(i, j ; k_{1}, \ldots, k_{m}\right) \amalg N^{p^{\prime}}\left(i, j ; k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right) \simeq_{B} N^{p+p^{\prime}}\left(i, j ; k_{1}, \ldots, k_{m}, k_{1}^{\prime}\right.$, $\left.\ldots, k_{l}^{\prime}\right)$.
(vi) $N^{0}(i, j ; \emptyset)$ is unorientedly null-bordant.

Proof. (i) Consider an annulus A in int B^{3} with $\partial A=k_{1} \cup k_{2}$ and $f_{1}(A)=A$. The image $\mu(A \times[0,1])$ is a 3-manifold whose boundary is the strand $S^{p}=T_{1} \cup T_{2}$. Thus, we can remove S^{p} and then all the beads $B_{i}(i=1, \ldots, m)$ up to unoriented bordism.
(ii) By a 180° rotation of B^{3} around the axis $(y=0, z=2)$, the components k_{1} and k_{2} are switched. Then the direction of the rotation f is reversed.
(iii) We can remove the beads $B_{i}=\mu\left(\partial B^{3} \times\left\{t_{i}\right\}\right)(i=1,2)$ from F by a 3-manifold $\mu\left(\partial B^{3} \times\left[t_{1}, t_{2}\right]\right)$.
(iv) We perform a 1-handle surgery between K_{1} and B_{1} as shown in Figure $9(1) \rightarrow(2)$. The diagram illustrated in (2) is ambient isotopic to that in (3). This surface is realized by a motion as in (4), which is the 360° rotation around the axis $(x=0, z=2)$. This motion is equivalent to f^{2}.
(1)

\checkmark a 1-handle surgery

(2)
ζ an ambient isotopy

Figure 9 The movies of surgeries and isotopies
(v) We connect the strands of $N^{p}\left(i, j ; k_{1}, \ldots, k_{m}\right)$ and $N^{p^{\prime}}\left(i, j ; k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)$ up to unoriented bordism, which yields $N^{p+p^{\prime}}\left(i, j ; k_{1}, \ldots, k_{m}, k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)$ (see [1, Lemma 2.3]).
(vi) Consider the Hopf link $k_{1} \cup k_{2}$ to use the definition of a strand. Let $\gamma_{i}(i=$ $1,2)$ be disjoint simple arcs in \mathbf{R}_{3}^{+}connecting k_{i} and $\partial \mathbf{R}_{+}^{3}$ in an obvious way. Then the 2-handle surgeries along the 2-disks $\mu\left(\gamma_{1} \times[0,1]\right)$ and $\mu\left(\gamma_{2} \times[0,1]\right)$ make S^{0} a split union of 2-spheres.

5. Crossing Changes

In this section, we study a crossing change along a double curve of a surface diagram. The idea is similar to a crossing change for a classical link in \mathbf{R}^{3}. For a

Figure 10 A movie of a crossing change and the resulting surface
classical link, a crossing change can be realized by 1-handle ($=$ band) surgeries as shown in Figure 10(i). Hence, any classical link $k_{1} \cup \cdots \cup k_{n}$ is bordant to a split union: $k_{1} \amalg \cdots \amalg k_{n} \amalg$ (Hopf links).

Lemma 5.1. Any n-component surface-link $F_{1} \cup \cdots \cup F_{n}$ is unorientedly bordant to a split union: $F_{1} \amalg \cdots \amalg F_{n} \amalg$ (necklaces).

In a surface diagram, we use a symbol E (as in Figure 10(ii)) for a local diagram that is obtained from Figure 10(i) by regarding it as a movie.

Let c be a double curve of a surface diagram such that it is an immersed loop in \mathbf{R}^{3}. As mentioned in Section 2, a regular neighborhood $N(c)$ of c is regarded as the image of an immersion φ of $B^{2} \times[0,1] / \sim$. See Figure 11. For each c, we choose a pair of diagonal regions Y of $B^{2} \backslash X$ and put $R(c)=\varphi(Y \times[0,1] / \sim)$.

Figure 11 A neighborhood of a double curve

Let A_{1} and A_{2} be the sheets that intersect along the curve c such that A_{1} is higher than A_{2} with respect to the projection direction; in other words, c is of type (upper, lower) $=\left(A_{1}, A_{2}\right)$. To prove Lemma 5.1, we introduce four kinds of local deformations under which unoriented bordism classes are preserved.

1: Local crossing change. Consider two 1-handle surgeries as shown in Figure 12 in the motion picture method. We call this a local crossing change along c. We always assume that the "local strand" (Hopf link) $\times[0,1]$ obtained by a local crossing change is in the specified region $R(c)$. Let t be a triple point on c and let H be a sheet that is transverse to c at t. If H is a top or bottom sheet, then we

(i)

(ii)

Figure 12 The local crossing change

Figure 13 A local crossing change near a triple point
can perform a local crossing change along the curve c as in Figure 13. For example, if H is a top sheet, then the type of t is changed from (top, middle, bottom) $=$ $\left(H, A_{1}, A_{2}\right)$ to $\left(H, A_{2}, A_{1}\right)$, and the local strand goes under the sheet H.

2: End change. Consider a composite of three ambient isotopies as shown in Figure 14. We call this an end change of a local strand. This deformation moves an end part of the local strand into the diagonal region of $R(c)$. The new local strand has additional intersections with A_{1} and A_{2}. In the bottom of Figure 14, the boxed " f " means a local diagram corresponding to a 180° rotation of the Hopf link.

3: Canceling adjacent ends. Assume that two adjacent ends of local strands are in the same region of $R(c)$. Consider the deformation illustrated in Figure 15, which is realized by two 2-handle surgeries on A_{1} and A_{2}. We call this a canceling of adjacent ends of local strands along c.

$\zeta \cong$

Figure 14 The movies and diagrams determining an end change

Figure 15 Canceling adjacent ends for a crossing change

4: Making a bead. Assume that a strand intersects a sheet H transversely. If the strand is under H then we consider a 2-handle surgery on H, as shown in Figure 16. This deformation makes the strand over H while producing a bead.

In a surface diagram of an n-component surface link $F=F_{1} \cup \cdots \cup F_{n}$, we say that a double curve of type (i, j) is preferred if $i \leq j$; a triple point of type (i, j, k) is preferred if $i \leq j$ and $j \leq k$.

Proof of Lemma 5.1. Consider a surface diagram of $F=F_{1} \cup \cdots \cup F_{n}$. If there is a nonpreferred double curve without triple points (i.e., an embedded loop), we apply a local crossing change along the curve followed by canceling adjacent ends

Figure 16 Making a bead
of the local strand. This makes the double curve preferred and yields a strand (necklace without beads) that is separated from F. Hence we may assume there is at least one triple point on any nonpreferred double curve of the surface diagram.

For each nonpreferred triple point t of type (i, j, k), we perform local crossing changes so that t changes into a preferred triple point as follows.
(a) If $j<i \leq k$, then we perform a local crossing change along the double curve of type (i, j) over the bottom sheet labeled k.
(b) If $i \leq k<j$, then we perform a local crossing change along the double curve of type (j, k) under the top sheet labeled i.
(c) If $k<i \leq j$, then we perform a local crossing change along the double curve of type (j, k) and then perform another along the curve of type (i, k).
(d) If $j \leq k<i$, then we perform a local crossing change along the double curve of type (i, j) and then perform another along the curve of type (i, k).
(e) If $k<j<i$, then we perform a local crossing change along the double curve of type (i, j), next along the curve of type (i, k), and then along the curve of type (j, k).
Figure 17 shows the case of $k<j<i$.

Figure 17 A 3-fold crossing change at a triple point of type $k<j<i$

All the local crossing changes just described are performed along nonpreferred double curves. After applying suitable end changes, we can cancel all the adjacent ends of local strands along nonpreferred double curves. Then we obtain a surface diagram of $\left(F_{1} \amalg \cdots \amalg F_{n}\right) \cup$ (strands) for which any double curves between F_{i} and F_{j} are preferred. By making beads if necessary, we can split necklaces from $F_{1} \amalg \cdots \amalg F_{n}$. Thus F is unorientedly bordant to $F_{1} \amalg \cdots \amalg F_{n} \amalg$ (necklaces).

Lemma 5.2. $\quad N^{0}(i, j ; k) \simeq{ }_{B} N^{0}(k, i ; j) \amalg N^{0}(k, j ; i)$.
Proof. Consider a surface diagram of $N^{0}(i, j ; k)$ that contains the local diagram illustrated in Figure 8. In the local diagram, along the double curves of type (i, k) and (j, k), we perform (global) crossing changes as in the proof of Lemma 5.1. Then $N^{0}(i, j ; k)$ is unorientedly bordant to a split union of $N^{0}(i, k ; j) \cong{ }_{A} N^{0}(k, i ; j)$ along the curve of type $(i, k), N^{0}(j, k ; i) \cong{ }_{A} N^{0}(k, j ; i)$ along the curve of type (j, k), and a surface link F obtained by the crossing change. Then F is a split union of $S^{0}(i, j)$ and a trivial 2 -sphere labeled k, which is unorientedly null-bordant by Lemma 4.4(vi).

6. Proof of Theorem 1.2

Let P_{+}and P_{-}be the standard projective plane in \mathbf{R}^{4} with $e\left(P_{+}\right)=2$ and $e\left(P_{-}\right)=$ -2 , respectively (see Figure 5). We denote by P^{m} the connected sum of m copies of P_{+}if $m>0,-m$ copies of P_{-}if $m<0$, and the empty set if $m=0$. Regarding P^{m} as an n-component surface link with a label $\alpha\left(P^{m}\right)=i$, we denote it by $P^{m}(i)$. Regarding a strand $S^{p}=T_{1} \cup T_{2}$ as an n-component surface link such that $\alpha\left(T_{1}\right)=i$ and $\alpha\left(T_{2}\right)=j$, we denote it by $S^{p}(i, j)$. Then $S^{p}(i, j)=N^{p}(i, j ; \emptyset)$ in the notation used in Lemma 4.4.

Lemma 6.1. Any n-component surface link F is unorientedly bordant to a split union

$$
\left(\coprod_{i \in \Gamma_{1}} P^{m_{i}}(i)\right) \coprod\left(\coprod_{(i, j) \in \Gamma_{2}} S^{p_{i j}}(i, j)\right) \coprod\left(\coprod_{(i, j, k) \in \Gamma_{3}} N^{0}(i, j ; k)\right) .
$$

Here, $\Gamma_{i}(i=1,2,3)$ is a subset of the i-fold Cartesian product of $\{1, \ldots, n\}$, $m_{i} \in \mathbf{Z}\left(i \in \Gamma_{1}\right)$, and $p_{i j} \in \mathbf{Z}_{4}\left((i, j) \in \Gamma_{2}\right)$ satisfying:
(i) $m_{i} \neq 0$ for any $i \in \Gamma_{1}$;
(ii) $i<j$ and $p_{i j} \neq 0$ for any $(i, j) \in \Gamma_{2}$;
(iii) $i<j<k$ or $i<k<j$ for any $(i, j, k) \in \Gamma_{3}$.

Proof. By Lemma 5.1, any n-component surface link $F=F_{1} \cup \cdots \cup F_{n}$ is unorientedly bordant to $\left(F_{1} \amalg \cdots \amalg F_{n}\right) 山 F^{\prime}$, where F^{\prime} is a split union of necklaces. Put $\Gamma_{1}=\left\{i \mid e\left(F_{i}\right) \neq 0\right\}$ and $m_{i}=e\left(F_{i}\right) / 2 \in \mathbf{Z}\left(i \in \Gamma_{1}\right)$. By Lemma 3.1, we see that $F_{1} \amalg \cdots \amalg F_{n}$ is unorientedly bordant to $\coprod_{i \in \Gamma_{1}} P^{m_{i}}(i)$ satisfying condition (i).

Because a necklace $N^{p}\left(i, j ; k_{1}, \ldots, k_{m}\right)$ is unorientedly bordant to $S^{p}(i, j) \amalg$ $N^{0}\left(i, j ; k_{1}\right) \amalg \cdots \amalg N^{0}\left(i, j ; k_{m}\right)$ by Lemma 4.4(v), it follows that F^{\prime} is unorientedly bordant to $F^{\prime \prime} \amalg F^{\prime \prime \prime}$ such that $F^{\prime \prime}$ is a split union of some $S^{p}(i, j)$ and $F^{\prime \prime \prime}$ is a split union of some $N^{0}(i, j ; k)$.

We may assume that $i<j$ for any $S^{p}(i, j)$ appearing in $F^{\prime \prime}$ by Lemma 4.4(i) and (ii). Moreover, by Lemma $4.4(\mathrm{v})$ and (vi), we see that there exist a subset $\Gamma_{2} \subset\{1, \ldots, n\}^{2}$ and $p_{i j} \in \mathbf{Z}_{4}$ such that (a) $F^{\prime \prime}$ is unorientedly bordant to $\coprod_{(i, j) \in \Gamma_{2}} S^{p_{i j}}(i, j)$ and (b) condition (ii) is satisfied.

By parts (i), (ii), (iv), and (vi) of Lemma 4.4, we may assume that $i<j$, $i \neq k$, and $j \neq k$ for any $N^{0}(i, j ; k)$ appearing in $F^{\prime \prime \prime}$. Applying Lemma 5.2 for
$N^{0}(i, j ; k)$ with $k<i<j$, we may assume that (i, j, k) satisfies condition (iii) for any $N^{0}(i, j ; k)$ appearing in $F^{\prime \prime \prime}$. By parts (iii), (v), and (vi) of Lemma 4.4, we see that there exists a subset $\Gamma_{3} \subset\{1, \ldots, n\}^{3}$ such that (a) $F^{\prime \prime \prime}$ is unorientedly bordant to $\coprod_{(i, j, k) \in \Gamma_{3}} N^{0}(i, j ; k)$ and (b) condition (iii) is satisfied.

For the unoriented bordism group $U L_{4, n}$, we consider three types of homomorphisms $e_{i}(i=1, \ldots, n), d_{i j}(i \neq j)$, and $t_{i j k}(i \neq j, j \neq k)$ as follows:

$$
\begin{aligned}
e_{i}: U L_{4, n} \rightarrow \mathbf{Z} & \text { for }[F] \mapsto e\left(F_{i}\right) / 2, \\
d_{i j}: U L_{4, n} & \rightarrow \mathbf{Z}_{4} \\
t_{i j k}: U L_{4, n} & \rightarrow \mathbf{Z}_{2}
\end{aligned} \quad \text { for }[F] \mapsto d\left(F_{i}, F_{j}\right), ~ 子 t\left(F_{i}, F_{j}, F_{k}\right), ~ \$
$$

where $F=F_{1} \cup \cdots \cup F_{n}$.
Lemma 6.2. For an n-component surface link F, let $\Gamma_{i}(i=1,2,3), m_{i} \in \mathbf{Z}(i \in$ $\left.\Gamma_{1}\right)$, and $p_{i j} \in \mathbf{Z}_{4}\left((i, j) \in \Gamma_{2}\right)$ be as in Lemma 6.1. Then the following statements hold.
(i) $e_{i}([F])=m_{i}$ if $i \in \Gamma_{1}$ and $e_{i}([F])=0$ if $i \notin \Gamma_{1}$.
(ii) For $i<j: d_{i j}([F])=p_{i j}$ if $(i, j) \in \Gamma_{2}$ and $d_{i j}([F])=0$ if $(i, j) \notin \Gamma_{2}$.
(iii) For $i<j<k: t_{i j k}([F])=1$ if $(i, j, k) \in \Gamma_{3}$ and $t_{i j k}([F])=0$ if $(i, j, k) \notin$ Γ_{3}.
(iv) For $i<k<j: t_{i j k}([F])=1$ if $(i, j, k) \in \Gamma_{3}$ and $t_{i j k}([F])=0$ if $(i, j, k) \notin$ Γ_{3}.

Proof. (i) Since $e\left(P^{m}\right)=2 m$, we have $e_{i}([F])=m_{i}$ if $i \in \Gamma_{1}$ and otherwise $e_{i}([F])=0$.
(ii) This follows from Lemma 4.2(ii).
(iii), (iv) Note that $(j, i, k),(j, k, i),(k, i, j),(k, j, i) \notin \Gamma_{3}$. Since

$$
t_{i j k}\left(\left[N^{0}(i, j ; k)\right]\right)=1 \quad \text { and } \quad t_{i j k}\left(\left[N^{0}(i, k ; j)\right]\right)=0
$$

by Lemma 4.3, it follows that $t_{i j k}([F])=1$ if and only if $(i, j, k) \in \Gamma_{3}$.
Proof of Theorem 1.2. Consider a homomorphism

$$
U H: U L_{4, n} \rightarrow(\underbrace{\mathbf{Z} \oplus \cdots \oplus \mathbf{Z}}_{n}) \oplus(\underbrace{\mathbf{Z}_{4} \oplus \cdots \oplus \mathbf{Z}_{4}}_{\frac{n(n-1)}{2}}) \oplus(\underbrace{\mathbf{Z}_{2} \oplus \cdots \oplus \mathbf{Z}_{2}}_{\frac{n(n-1)(n-2)}{3}})
$$

defined by $U H=\left(\bigoplus_{i=1}^{n} e_{i}\right) \oplus\left(\bigoplus_{i<j} d_{i j}\right) \oplus\left(\bigoplus_{i<j<k \text { or } i<k<j} t_{i j k}\right)$. This homomorphism is injective by Lemma 6.2. Also, $U H$ is surjective; indeed, $U H\left(\left[P^{1}(i)\right]\right)$ $(i=1, \ldots, n), U H\left(\left[S^{1}(i, j)\right]\right)(i<j)$, and $U H\left(\left[N^{0}(i, j ; k)\right]\right)(i<j<k$ or $i<$ $k<j$) are generators of $\mathbf{Z}, \mathbf{Z}_{4}$, and \mathbf{Z}_{2}, respectively.

In the definition of the homomorphism $U H$, we do not use all double linking numbers and triple linking numbers. The unused ones are determined as follows.

Proposition 6.3. For distinct i, j, k and an n-component surface link F, we have:
(i) $d_{j i}([F])=-d_{i j}([F])$;
(ii) $t_{i j i}([F])=t_{j i j}([F])=\lambda\left(d_{i j}([F])\right)$, where $\lambda: \mathbf{Z}_{4} \rightarrow \mathbf{Z}_{2}$ is the natural projection;
(iii) $t_{i j k}([F])=t_{k j i}([F])$; and
(iv) $t_{j i k}([F])+t_{i j k}([F])+t_{i k j}([F])=0$.

Proof. It is sufficient to prove (i) and (ii) when F is as in Lemma 6.1. We shall use Lemma 4.2. We have $t_{i j i}([F])=p_{i j} \in \mathbf{Z}_{2}$ if $i<j$ and $t_{i j i}([F])=p_{j i} \in \mathbf{Z}_{2}$ if $i>j$. On the other hand, we have $d_{i j}([F])=p_{i j} \in \mathbf{Z}_{4}$ if $i<j$ and $d_{i j}([F])=$ $-p_{j i} \in \mathbf{Z}_{4}$ if $i>j$. Hence, we have $\lambda\left(d_{i j}([F])\right)=t_{i j i}([F])$. Similarly, since $d_{i j}([F])=p_{i j} \in \mathbf{Z}_{4}$ and $d_{j i}([F])=-p_{i j} \in \mathbf{Z}_{4}$ for $i<j$, we have $d_{i j}([F])=$ $-d_{j i}([F])$. Parts (iii) and (iv) are proved in [11, Thm. 3.2].

We consider the homomorphism $f: L_{4, n} \rightarrow U L_{4, n}$ induced by the map that ignores the orientations of surface links. For an oriented n-component surface link F, we can define two kinds of bordism invariants: double linking invariants $D_{i j}: L_{4, n} \rightarrow \mathbf{Z}_{2}=\mathbf{Z} / 2 \mathbf{Z}$; and triple linking invariants $T_{i j k}: L_{4, n} \rightarrow \mathbf{Z}$ (cf. [1]). Then Sanderson's isomorphism,

$$
H: L_{4, n} \rightarrow(\underbrace{\mathbf{Z}_{2} \oplus \cdots \oplus \mathbf{Z}_{2}}_{\frac{n(n-1)}{2}}) \oplus(\underbrace{\mathbf{Z} \oplus \cdots \oplus \mathbf{Z}}_{\frac{n(n-1)(n-2)}{3}})
$$

is given by $H=\left(\bigoplus_{i<j} D_{i j}\right) \oplus\left(\bigoplus_{i<j<k \text { or } i<k<j} T_{i j k}\right)$. From the definitions of these invariants, the forgetful map f is regarded as

$$
\begin{aligned}
&(\oplus 0) \oplus(\oplus \kappa) \oplus(\bigoplus v):(\bigoplus\{0\}) \oplus\left(\bigoplus \mathbf{Z}_{2}\right) \oplus(\bigoplus \mathbf{Z}) \\
& \rightarrow(\bigoplus \mathbf{Z}) \oplus\left(\bigoplus \mathbf{Z}_{4}\right) \oplus\left(\oplus \mathbf{Z}_{2}\right)
\end{aligned}
$$

under the isomorphisms U and $U H$, where $\kappa: \mathbf{Z}_{2} \rightarrow \mathbf{Z}_{4}$ is the natural inclusion and $\nu: \mathbf{Z} \rightarrow \mathbf{Z}_{2}$ is the natural projection.

Acknowledgments. JSC is supported by NSF Grant no. DMS-9988107. SK is supported by Fellowships from the Japan Society for the Promotion of Science. MS is supported by NSF Grant no. DMS-9988101. The authors would like to thank Uwe Kaiser for providing helpful information.

References

[1] J. S. Carter, S. Kamada, M. Saito, and S. Satoh, A theorem of Sanderson on link bordisms in dimension 4, Algebr. Geom. Topol. 1 (2001), 299-310.
[2] J. S. Carter and M. Saito, Canceling branch points on projections of surfaces in 4-space, Proc. Amer. Math. Soc. 116 (1992), 229-237.
[3] ——, Reidemeister moves for surface isotopies and their interpretations as moves to movies, J. Knot Theory Ramifications 2 (1993), 251-284.
[4] ——, Knotted surfaces and their diagrams, Amer. Math. Soc., Providence, RI, 1998.
[5] S. Kamada, Non-orientable surfaces in 4-space, Osaka J. Math. 26 (1989), 367-385.
[6] L. H. Kauffman, Knots and physics, World Scientific, River's Edge, NJ, 1991.
[7] W. S. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143-156.
[8] D. Roseman, Reidemeister-type moves for surfaces in four dimensional space, Knot theory (Warsaw, 1995), Banach Center Publ., 42, pp. 347-380, Polish Acad. Sci., Warsaw, 1998.
[9] B. J. Sanderson, Bordism of links in codimension 2, J. London Math. Soc. (2) 35 (1987), 367-376.
[10] ——, Triple links in codimension 2, Topology. Theory and applications, II (Pecs, Hungary, 1989), pp. 457-471, North-Holland, Amsterdam, 1993.
[11] S. Satoh, Triple point invariants of non-orientable surface-links, Topology Appl. (to appear).
[12] H. Whitney, On the topology of differentiable manifolds, Lectures in topology, pp. 101-141, Univ. of Michigan Press, Ann Arbor, 1940.
J. S. Carter
University of South Alabama
Mobile, AL 36688
carter@mathstat.usouthal.edu
M. Saito

University of South Florida
Tampa, FL 33620
saito@math.usf.edu

S. Kamada
Osaka City University
Osaka 558-8585
Japan

kamada@sci.osaka-cu.ac.jp
S. Satoh

Kyoto University
Kyoto 606-8502
Japan
satoh@kurims.kyoto-u.ac.jp

