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A Generalization to theq-Convex Case of a
Theorem of Fornæss and Narasimhan

Anca Popa-Fischer

1. Introduction

Fornæss and Narasimhan proved (in [8, Thm. 5.3.1]) that, for any complex space
X, the identity WPSH(X) = PSH(X) holds, where WPSH(X) denotes the weakly
plurisubharmonic functions onX and PSH(X) denotes, as usual, the plurisubhar-
monic functions onX.

WhenX has no singularities, this identity is clear. For the singular case, how-
ever, the inclusion WPSH(X) ⊆ PSH(X) is no longer trivial; one must find locally
a plurisubharmonic extension to the ambient space of an embedding ofX.

In this paper we give another proof for this identity (Theorem 3.3). It is shorter
and easier and has the advantage that it can be generalized toq-plurisubharmonic
functions (Theorem 4.16). However it has the disadvantage that it works only for
continuous functions. Theq-plurisubharmonic functions were introduced by Hunt
and Murray in [10] (see also [9]), but we will call hereq-plurisubharmonic what
they call(q −1)-plurisubharmonic.

We also obtain a generalization of a theorem of Siu [16]; namely, we show
(Lemma 4.18) that everyq-complete subspace with corners of a complex spaceX

admits a neighborhood inX that isq-complete with corners. This will be needed
in the proof of our main result.

The results and proofs of this paper have been announced in [13]. This paper is
part of the author’s doctoral thesis written in Wuppertal. I thank Prof. M. Col¸toiu
and Prof. K. Diederich for many helpful discussions during the whole time of pre-
paring my thesis. I thank the Department of Mathematics of the University of
Wuppertal for providing me a nice working atmosphere.

2. Preliminaries

LetX be a complex space (with singularities). We denote by PSH(X) the plurisub-
harmonic functions onX. We use SPSH(X) to denote thestrongly plurisubhar-
monic functionsonX, that is, those PSH functions for which we have: for every
θ ∈ C∞0 (X,R), there exists anε0 > 0 such thatϕ+ εθ ∈PSH(X) for 0 ≤ ε ≤ ε0.

We will denote by WPSH(X) the class ofweakly plurisubharmonic functions
onX (as they are defined in [8]), that is, the class of upper semicontinuous func-
tionsϕ : X → [−∞,∞) such that, for any holomorphic functionf : 1 → X
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(where1 denotes the unit disc inC), the compositionϕ Bf is subharmonic on1.
We use SWPSH(X) to denote thestrongly weakly plurisubharmonic functionson
X, that is, those WPSH(X) functions for which we have: for everyθ ∈ C∞0 (X,R),
there exists anε0 > 0 such thatϕ + εθ is in WPSH(X) for 0 ≤ ε ≤ ε0.

In our alternative proof of Fornæss–Narasimhan’s theorem, we will use an ex-
tension theorem of Richberg (see [15, Satz 3.3]).

Theorem 2.1 (Richberg). LetX be a complex space andY a closed complex
subspace ofX. Then, for every functionψ onY that is continuous(resp. smooth)
and strongly plurisubharmonic, there exist a neighborhoodV of Y and a function
ψ̃ on V that is continuous(resp. smooth), strongly plurisubharmonic, and such
that ψ̃ |Y = ψ.
We also shall need a theorem by Col¸toiu in [3].

Theorem 2.2 (Colţoiu). LetX be a complex space that admits a strongly pluri-
subharmonic exhaustion functionϕ : X→ [−∞,∞). ThenX is 1-convex.

Remark 2.3. If ϕ in Theorem 2.2 is supposed to be real-valued, as remarked in
[3], then it follows that the exceptional set ofX (i.e., the maximal compact ana-
lytic subset) is empty, henceX is Stein. This had been proved before by Fornæss
and Narasimhan in [8, Thm. 6.1].

3. Another Proof of Fornæss–Narasimhan’s Theorem

We first prove a lemma that shows the interplay between SWPSH and SPSH func-
tions on a complex space under certain conditions.

Lemma 3.1. Let� be an open subset of a reduced Stein spaceX with dimX <

+∞ and such that� admits a SWPSH exhaustion functionϕ : �→ R. Then�
is Stein.

Proof. Without loss of generality, we may assume thatϕ > 0. The proof is by
induction onn = dimX.

If n = 0 thenX has only isolated points and is therefore a manifold, so there is
nothing to prove.

Suppose now that the lemma is true for all complex spacesY with dimY ≤
n − 1, and let dimX = n. ConsiderY = Sing(X), the singular locus ofX. We
have dimY ≤ n−1 and, sinceϕ|Y∩� ∈SWPSH(Y ∩�) is an exhaustion function
for Y ∩ �, by the induction hypothesis it follows thatY ∩ � is Stein. SoY ∩ �
admits a smooth SPSH exhaustion function, which we shall denote byψ1.

Now Theorem 2.1 yields a SPSH and smooth extension ofψ1 to an open neigh-
borhoodV of Y ∩� in �, denoted byψ̃ : V → R. By shrinkingV, if necessary,
we can suppose that̃ψ is defined in a neighborhood of̄V (the closure being in�)
and that{x ∈ V̄ | ψ̃(x) ≤ c} is compact inV̄ for all real numbersc.
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However, sinceY is a closed analytic subset of a Stein spaceX, there exist
f1, . . . , fm ∈ O(X) such thatY = {x ∈X | f1(x) = · · · = fm(x) = 0}. If we
definep := log(|f1|2 + · · · + |fm|2) thenY = {x ∈X | p(x) = −∞}.

Let nowχ : (0,∞)→ R be a smooth, convex, rapidly increasing function (to
be made precise later), and define

ψ =
{

max(ψ̃, χ B ϕ + p) on V,

χ B ϕ + p on �\V.
We chooseχ such that:

(1) χ B ϕ + p > ψ̃ on ∂V (the border being considered in�); and
(2) ψ is an exhaustion function of�.

These two conditions can be achieved for a suitable choice ofχ, for example, in
the following way.

Consider a sufficiently small open neighborhoodW of Y ∩ � in � such that
W̄ ⊂ V and such that̃ψ > χ B ϕ + p on W̄. Let (cn)n be a strictly increasing se-
quence of nonnegative numbers withc0 = 0 and limn→∞ cn = +∞, and consider
the relatively compact sets given by

Ai := {x ∈� | ci ≤ ϕ(x) < ci+1}, i ∈N.
All we need in order to satisfy our conditions (1) and (2) is the existence of a

convex, smooth, and strictly increasing functionχ : (0,∞)→ R that satisfies

χ |[ci,ci+1) > max(Mi, ci+1+ Li),
where the positive constantsMi andLi are chosen so that|p| < Li onAi\W and
Mi ≥ ψ̃ − p onAi ∩ ∂V. The existence of such aχ is a well-known fact.

Now, to finish the proof of Lemma 3.1 we observe that, by the definition ofψ

and our choice ofχ, obviouslyψ ∈ PSH(�). If now τ > 0 is a smooth strongly
plurisubharmonic function onX, thenψ+τ |� ∈SPSH(�) andψ+τ |� is exhaus-
tive. By Theorem 2.2,� is Stein and the proof of our Lemma 3.1 is complete.

The next result needed is due to Siu [16].

Theorem 3.2. LetY be a closed Stein subspace in a complex spaceX. ThenY
has a Stein open neighborhood inX.

Now we are ready to give our proof of Fornæss-Narasimhan’s theorem for the case
of continuous functions.

Theorem 3.3. On any reduced complex spaceX, any continuousWPSH(X)
function is aPSH(X) function.

Proof. Because the problem is local, we may assume thatX is a closed analytic
subset in some Stein open subsetU of Cn.

Let ϕ ∈WPSH(X) be continuous. Consider̃X := X × C, which is Stein, and

� := {(z, w)∈ X̃ | ϕ(z)+ log|w| < 0}.
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We notice that� is itself Stein. Indeed, to see this, chooseg > 0 a smooth, SPSH
exhaustion function forX × C and define

h(z,w) = g(z,w)− 1

ϕ(z)+ log|w| ,
which is in SWPSH(�) and exhausts� (here we need the continuity ofϕ). By
Lemma 3.1,� is Stein. We have� ⊂ X×C ⊂ U ×C ⊂ Cn+1. Consider now an
open setW in Cn+1 with the property thatW ∩ (X ×C) = �. By [16, Thm. 3.2]
applied to� ⊂ W, it follows that there exists an open Stein setV in Cn+1 with
V ∩ (X×C) = �. SinceV is Stein, we have that−logδw is plurisubharmonic on
V,whereδw denotes the boundary distance ofV in thew-direction (or the Hartogs
radius ofV with respect tow). To defineδw, fix a point (z0, w0) ∈ V and look
at all polydiscs of the form|zi − z0

i | < ri, i ∈ {1, . . . , n}, |w − w0| < rn+1, that
are subsets ofV. Thenδw(z0, w0) is the supremum over all suchrn+1. Identifying
X with X × {0}, it follows at once from the definition of� = V ∩ (X × C) that
−logδw|X = ϕ and so we have the required plurisubharmonic extension ofϕ.

4. A Generalization to theq-Convex Case

4.1. General Setup

In generalizing Fornæss-Narasimhan’s theorem to theq-plurisubharmonic case
(but for continuous functions only) we will follow the general ideas of the proof in
Section 3. But first of all we will give the precise definitions ofq-plurisubharmonic
(in notation,q-PSH) and weaklyq-plurisubharmonic(q-WPSH) functions on
complex spaces. We recall the definitions for open sets inCn.

Definition 4.1 (see e.g. [9]). An upper semicontinuous functionϕ : D →
[−∞,∞), whereD ⊂ Cn is an open subset, is calledsubpluriharmonicif, for
every relatively compact subsetG ⊂⊂ D and for every pluriharmonic functionu
defined on a neighborhood ofḠ, the inequalityϕ|∂G ≤ u|∂G impliesϕ ≤ u onḠ.

Remark 4.2. One may verify that a functionϕ ∈ C2(U,R), whereU ⊂ Cn is
an open subset, is subpluriharmonic if and only if its Levi form has at least one
nonnegative(≥0) eigenvalue at every point ofU.

Definition 4.3 [10]. A function defined onD ⊂ Cn and with values in [−∞,∞)
is calledq-plurisubharmonic(1≤ q ≤ n) in D if it is upper semicontinuous and
if it is subpluriharmonic on the intersection of everyq-dimensional complex plane
with D.

Remark 4.4. The notionn-plurisubharmonic means subpluriharmonic, and 1-
plurisubharmonic means plurisubharmonic.

Now we define theq-plurisubharmonic functions on an arbitrary complex space.

Definition 4.5. LetX be a complex space and letϕ : X → [−∞,∞) be an
upper semicontinuous function onX. Thenϕ is calledq-plurisubharmonic on
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X if for every pointx ∈ X there exists a local embeddingi : U ↪→ Ũ ⊂ Cn,
whereU is a neighborhood ofx, Ũ an open subset ofCn, and there exists aq-
plurisubharmonic functioñϕ on Ũ such thatϕ̃ B i = ϕ.
Remark 4.6. Even ifϕ in Definition 4.5 happens to be continuous, we do not
requireϕ̃ to be continuous; it is always only assumed to be upper semicontinuous.

We also define the weaklyq-plurisubharmonic functions on complex spaces as
follows.

Definition 4.7. LetX be a complex space. An upper semicontinuous func-
tion ϕ : X → [−∞,∞) is calledweaklyq-plurisubharmonic onX if for every
holomorphic functionf : G→ X, whereG is open inCq, the functionϕ B f is
subpluriharmonic onG.

Remark 4.8. 1. If a function is weaklyq-plurisubharmonic, then it also is weakly
q ′-plurisubharmonic for everyq ′ ≥ q.

2. A real-valuedC2-function defined on an open setD in Cn is weakly q-
plurisubharmonic(1 ≤ q ≤ n) if and only if the Levi form ofϕ has at least
n− q + 1 nonnegative eigenvalues at every point ofD. Note that eachq-convex
function, in the sense of Andreotti and Grauert [1], is weaklyq-plurisubharmonic.

3. It is known that, on a complex manifold, the two classesq-WPSH and
q-PSH coincide (see a remark in [11] about a preprint of Fujita). In the manifold
case, the nontrivial inclusion isq-PSH⊆ q-WPSH. This inclusion generalizes
at once to the singular case. However, in the singular case the other inclusion,
q-WPSH⊆ q-PSH, becomes nontrivial. This is because we must now find locally
aq-plurisubharmonic extension of the respective function to the ambient space of
an embedding.

4. ForD open inCn, weaklyq-plurisubharmonic functions onD are what Fu-
jita [9] called “pseudoconvex functions of ordern− q”.

We may define theq-SPSH andq-SWPSH functions on a complex spaceX in a
similar way to that in Section 2.

We denote byFq(X) the set of theq-convex functions with corners onX, as
they were introduced by Diederich and Fornaess [6; 7]. Theorem 2.1, which was
needed in Section 3, must in theq-convex case be replaced by the following.

Theorem 4.9 [4]. LetX be a complex space,A ⊂ X a closed analytic subset,
f ∈ Fq(A), and η > 0 a continuous function onA. Then there exists an open
neighborhoodV ofA in X and f̃ ∈Fq(V ) such that|f̃ − f | < η onA.

We will also need the following approximation result due to Bungart [2].

Theorem 4.10 (Bungart). LetX be a complex manifold andϕ : X→ R a con-
tinuousq-SPSH(X) function. Then, for any continuous functionη : X→ (0,∞),
there exists a functioñϕ ∈Fq(X) such that|ϕ̃ − ϕ| < η onX.

Remark 4.11. In fact, Bungart proved this result only whenX is an open sub-
set of some Euclidian spaceCn. But as Matsumoto [11] remarked, this result still
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holds whenX is a complex manifold. For the sake of completeness we give here
a proof for the manifold case, using Bungart’s theorem.

Proof of Theorem 4.10.Fix three locally finite open coverings(Ui)i∈N, (Vi)i∈N,
(Wi)i∈N of X such thatUi ⊂⊂ Vi ⊂⊂Wi ⊂⊂ X for all i ∈N and such that each
Wi is the domain of a biholomorphic mapi : Wi → W̃i, whereW̃i is an open set
in Cni.

For each indexi ∈ N, consider a functionθi ∈ C∞0 (X,R) such thatθi ≡ −1
on ∂Vi, θi ≡ 1 on Ūi, andθi ≡ 0 onX\Wi. Let εi > 0 be small enough so that
2εiθi ≤ η andϕ + εiθi is still q-SPSH.

SinceV̄i ⊂Wi ' W̃i, we can apply Bungart’s theorem to obtain, for alli ∈N,
a functionϕi ∈Fq(Wi) with the property that

|ϕ(x)+ εiθi(x)− ϕi(x)| < min

(
εi,
η(x)

2

)
on a neighborhood of̄Vi.

It follows that we haveϕi < ϕ on ∂Vi andϕi > ϕ on Ūi . Hence we may de-
fine ϕ̃ : X→ R by ϕ̃(x) := max{ϕi(x) | x ∈Vi}. Clearlyϕ̃ ∈Fq(X), ϕ ≤ ϕ̃, and
ϕ̃ < ϕ + η as desired.

We shall also use the following result due to Fujita [9, Thm. 1].

Theorem 4.12 (Fujita). LetD be an open subset ofCn that isq-complete with
corners, letw ∈ Cn (‖w‖ = 1), and denote byδw the boundary distance func-
tion ofD along thew-direction. Then−logδw is weaklyq-plurisubharmonic on
D and thus alsoq-plurisubharmonic.

Remark 4.13. In fact, Fujita proves this result for the more general case of
“pseudoconvex domains of order(n− q)”.
Finally, we also will use a theorem of Peternell ([12, Lemma 5]; see also [5]). For
this we need the following.

Definition 4.14. LetX be a manifold. A functionv : X→ [−∞,∞) is called
almost plurisubharmonicif it can be written locally as a sum of a plurisubhar-
monic and a smooth function. IfX is a complex space, we require thatv can be
locally extended as an almost plurisubharmonic function in the ambient space of
an embedding.

Theorem 4.15 (Peternell). If Y is a closed analytic subset in a complex space
X, then there exists an almost plurisubharmonic functionv onX such thatv ∈
C∞(X\Y ) andY = {x ∈X | v(x) = −∞}.

4.2. The Equivalence ofq-WPSH andq-PSH Functions

We can now state our main result as follows.

Theorem 4.16. Every continuousq-WPSH function on a reduced complex space
X is aq-PSH function onX.
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In order to prove this theorem, we first show the following two lemmas.

Lemma 4.17. LetX be a reduced complex space of finite dimension for which
there exists a continuous exhaustion functionϕ : X→ R that is inq-SWPSH(X).
Then there exists aq-convex function with cornersψ : X→ R, exhaustingX.

Proof. We may assume thatϕ > 0. In the regular case (i.e., ifX is a complex
manifold) then this lemma is a direct consequence of Bungart’s approximation
theorem, because in the manifold case the inclusionq-SWPSH⊆ q-SPSH is triv-
ial. In the singular case, the proof is by induction onn = dim(X).

The casen = 0 is obvious. Now suppose that Lemma 4.17 holds for all com-
plex spacesY with dimY ≤ n−1, and let dimX = n.

ConsiderY = Sing(X), the singular locus ofX. Because dimY ≤ n − 1 and
ϕ|Y satisfies the conditions of our lemma, we conclude that there exists an exhaus-
tion functionψ1 : Y → R that isq-convex with corners. By Theorem 4.9, we can
find a neighborhoodV of Y in X and aψ̃1 ∈Fq(V ) such that|ψ̃1−ψ1| < 1 onY.

By shrinkingV if necessary, we can suppose thatψ̃1 is defined on a neighbor-
hood ofV̄ and that{x ∈ V̄ | ψ̃1(x) < c} is relatively compact in̄V for all real num-
bersc. By Peternell’s theorem, there exists an almost plurisubharmonic function
θ : X → [−∞,∞) such thatθ |Reg(X) is smooth and such thatY = {x ∈ X |
θ(x) = −∞}.

Now letχ : [0,∞)→ R+ be a continuous, convex, increasing function that is
linear on segments. This means that there is a division 0= a0 < a1 < · · · < an <

· · · of [0,∞) such that, on [ai, ai+1], we haveχ(t) = Ait +Bi with Ai > 0, and
the convexity ofχ givesAi+1 ≥ Ai.

If χ increases rapidly at infinity then(χBϕ+θ)|Reg(X) is inq-SWPSH(Reg(X)).
This can be seen as follows. Take a locally finite open covering(Uj )j∈N, Uj ⊂⊂ X,
ofX such that, for eachj on a neighborhood of̄Uj,one hasθ = θ1,j+θ2,j with θ1,j

smooth andθ2,j plurisubharmonic. Then, if the constantsAi > 0 in the definition
of χ are chosen large enough,χ Bϕ+ θ1,j is q-SWPSH onUj .We can thus findχ
as before so that(χ Bϕ+ θ)|Reg(X) is inq-SWPSH(Reg(X))⊂ q-SPSH(Reg(X)).
Also, if χ increases rapidly then we may assume that(χ B ϕ + θ)|∂V > ψ̃1|∂V and
that(χ B ϕ + θ)|X\V exhaustsX\V.

By Bungart’s approximation theorem, there is a functionu : Reg(X)→ R that
is q-convex with corners and such that:

(1) |u− (χ B ϕ + θ)| < 1 on Reg(X);
(2) u|∂V > ψ̃1|∂V .
We define nowψ : X→ R as follows:

ψ =


max(ψ̃1, u) on V \Y,
ψ̃1 on Y,

u on X\V.
Then clearlyψ is an exhaustion function onX andψ is q-convex with corners.
Hence our lemma is proved.
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The second needed statement is the following generalization of Siu’s theorem
(previously formulated as Theorem 3.2).

Lemma 4.18. Let S be a closed analytic subset of a complex spaceX, and as-
sume thatS is q-complete with corners. Then there exists an open neighborhood
V of S in X such thatV is q-complete with corners.

Proof. SinceS ⊂ X is a closed complex subspace, by Peternell’s theorem there
exists an almost plurisubharmonic functionλ onX such thatS = {x ∈X | λ(x) =
−∞} and such thatλ|X\S ∈ C∞(X\S).

Denote byψ : S → R a positive,q-convex exhaustion function with corners.
Applying Theorem 4.9, we deduce that there exists aq-convex function with cor-
ners,ψ̃, in a neighborhoodU of S such that|ψ̃ − ψ | < 1 onS. We can assume
that ψ̃ > 0. We may suppose, by eventually shrinkingU, that ψ̃ is defined on a
neighborhood ofŪ and thatψ̃ exhaustsŪ.

Considerχ : [0,∞)→ R, a continuous, convex, increasing function that is lin-
ear on segments and such that:

(1) if V = {x ∈U | χ B ψ̃(x)+ λ(x) < 0}, then∂V ∩ ∂U = ∅; and
(2) the functionϕ := max(−1/(χ B ψ̃ + λ), ψ̃) defined onV is q-convex with

corners.

The choice ofχ satisfying (2) is possible as in Lemma 4.17. Wealso can real-
ize condition (1) by choosing a sequence of real numbers(λn)n ↘ −∞ such that
{x ∈ U | ψ̃(x) < n, λ(x) < λn} is relatively compact inU and requiring that
χ : [0,∞)→ R additionally satisfyχ |[n−1,n) ≥ −λn for all n∈N.

It then follows that the setV = {x ∈ U | χ B ψ̃(x) + λ(x) < 0} is an open
q-complete with corners neighborhood ofS, whereϕ is the exhaustion function;
hence, Lemma 4.18 is proved.

We are now in a position to prove Theorem 4.16.

Proof of Theorem 4.16.Because the problem is local, we can assume (without
loss of generality) thatX is a closed analytic subset in a Stein open setU ⊂ Cn.
Let ϕ ∈ q-WPSH(X) be continuous.

We haveX × C ⊂ U × C ⊂ Cn+1 and consider� ⊂ X × C, the open set
given by

� = {(z, w)∈X × C | |w| < e−ϕ(z)}.
On� there exists a continuousq-SWPSH exhaustion function. Indeed, denote
by s : X × C → R a smooth, SPSH(X × C), positive exhaustion function and
consider

s(z, w)− 1

ϕ(z)+ log|w| : �→ R.

This function has the desired properties, so that for� we can apply Lemma 4.17
and thus obtain aq-convex with corners exhaustion functionψ : �→ R. But this
means that� is q-complete with corners.
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Consider now an open setW in Cn+1 with the property thatW ∩ (X×C) = �.
Then Lemma 4.18 can be applied for the situation� ⊂W. We conclude with the
existence of an open set�̃ ⊂ Cn+1 that isq-complete with corners and for which
�̃ ∩ (X × C) = � holds.

Now it is enough to considerδw, the distance to the boundary of�̃ along the
w-direction. By Theorem 4.12,−logδw is aq-PSH(�̃) function (not necessarily
continuous). By the definition of�, it follows that−logδw|X = ϕ and so we have
the desired conclusion thatϕ is aq-PSH(X) function.

Remark 4.19. In the manifold case, the standard proof for the inclusion PSH⊆
WPSH can not be used to prove thatq-PSH⊆ q-WPSH forq > 1 because the
class ofq-plurisubharmonic functions is not additive forq > 1.

However, using the methods just described, one can show for a manifold that
the inclusionq-PSH⊆ q-WPSH holds for continuous functions. Then we can
also get rid of the continuity condition by using an approximation result of Slod-
kowski [17].

More precisely, to proveq-PSH(M) ⊆ q-WPSH(M) for continuous functions
whenM is a manifold, letϕ ∈ q-PSH(M). Because the problem is local, we can
suppose (without loss of generality) thatM = U is an open Stein set inCn. As in
the proof of Theorem 4.16, we introduce the set

� = {(z, w)∈U × C | |w| < e−ϕ(z)}
and observe that now the function

s(z, w)− 1

ϕ(z)+ log|w| : �→ R

is continuous, exhaustive, andq-SPSH. Applying Theorem 4.10, it follows that�
is q-complete with corners. Using Theorem 4.12, as before it follows that−logδw
is q-WPSH on�̃. Its restriction toU, which coincides withϕ, is therefore also
q-WPSH, as desired.

Now, if ϕ is no longer continuous then we apply a result of Slodkowski[17,
Rem. 2.10]. Namely, everyq-PSH functionϕ on an open setU ⊆ Cn can be ap-
proximated (on a compact setK) by a pointwise convergent and nonincreasing
sequence(ϕn) of continuousq-PSH functions (defined on a neighborhood ofK).

Now, since the(ϕn) are continuous andq-PSH functions, they are alsoq-WPSH
functions. But it is known (see e.g. [9]) that the pointwise limit function of a non-
increasing sequence ofq-WPSH functions is itselfq-WPSH.

Note that the reverse inclusion,q-WPSH⊆ q-PSH, is trivial in the manifold
case. We thus have the equalityq-WPSH(M) = q-PSH(M) on each manifoldM.
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