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Topological Classification aZ i Actions
on Surfaces

ANTONIO F. CosTA & SERGEI M. NATANZON

1. Introduction

Let G be a group isomorphic 6}, wherep is a prime integer. Abelian group ac-
tions on surfaces constitutes a classical subject (see [E; J1; J2; Nal; N; S; Z]). In[E;
J1; J2; Z], a connection is established between the topological equivalence classes
of actions and the second homology of the group that is acting. But some attempts
to use these results for the classification of abelian actions give wrong results in
some cases (cf. [E, Rem. 4.5] with Corollary 12 in our Section 4). The full classi-
fication has been found in the cyclic case by Nielsen in [N] andfpin [Nal].

In this paper we present a direct and complete way to deal with the topological
classification o i actions, where is a prime intege(Zg =7, & - "o Z,and
Z,=172/pZ). The main idea of our work is the fact that a fixed pomt—free action

of Zy provides an alternating bilinear form &'

We give the full description of strong equivalence classes, in particular. In the
case of fixed point—free actions, every actiorGodn a surface define an alternat-
ing bilinear form(-, -): G* x G* — Z,,, whereG* is the group of forms ofs on
Z, (see Definition 7). Two actions @ are strongly equivalent if and only if the
actions define the same bilinear form (Theorem 8). All possible such actions are
described in Theorem 9. The case of actions having elements with fixed points is
considered in Theorems 13 and 14.

SinceG is a finite group, it is possible—given an actiofy /) of G—to con-
struct an analytic structure ofisuch thatf(G) is a group of automorphisms of
S. Hence all the actions considered in this paper appear as automorphism group
actions of complex algebraic curves.

A motivation for our study is the description of the set of connected compo-
nents in the moduli spacde " of pairs(C, G), whereC is a complex algebraic
curve andG = Z is a group of automorphisms 6f. According to [Na2], the de-
scription of connected components?-™ is reduced to the description of topo-
logical classes of pairsS, K), wherek is a group of autohomeomorphismsSbf
and wherekX is isomorphic taZjy. We con5|de|(S K) and(S’, K’) to be equw-
alent if there exists a homeomorphlsﬁn S — S’ suchthatk’ = g o K oL
These equivalence classes are in one-to-one correspondence with classes of weak
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equivalence (in the terminology of Edmonds [E]). In Theorem 16 we describe the
weak equivalence classes of actiongobn surfaces.
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2. Algebraic Preliminaries

Let us consider the standard latti£é: = Z @ 2, @ Z with the standard basis
(e)) = ((0,...,19, ..., 0)). We define the alternating bilinear form -): Z2¢ x
7% 57 by (e, €j) = 8i+j,2g+l fori < j.

We consider also the groub,%g =Zp® 2 ®Z,, wherep is a prime and
Z,=1{0,12....,p—1. Let p: Z% — Z3¢ be the natural projection defined
by ¢(e;) = ¢;, wheree; = (0,...,1?, ..., 0). Then we have an alternating
bilinear form (-, -),: Z3¢ x Z3¢ — Z, defined by(e;, &) = (p(e), ¢(e))), =
(e;, ej) modp.

Let Sp2g, Z) and Sp(2g, Z,) be the subgroups of the automorphism groups
of Z2¢ andZ3¢ that preserve the bilinear forngs ) and(-, -),,, respectively. The
natural projectiony: Z2¢ — Z3¢ induces a homomorphism, : Sp2g,Z) —
Sp,(2¢.Z,) suchthaip,(f)op =g o f forall f € Sp2g,Z).

The following result is known.

THEOREM 1 [Ne, Thms. VII.20, VI1.21]. The following equality holds
¢«(Sp(2g,2)) = Sp, (28, Z,).

Proof (Sketch). We say that an element@fs is primitiveif ¢ # nf for all n €

Z — {1} and f € Z%. For everya, € Z3¢ there is a primitive: € Z?¢ such that

p(a) = a,.

The proof makes use of the following two claims.

(1) Assume thatas, a,) is a subgroup oZ,%g such that{as, ap) = Z,% and the
bilinear form restricted tod,, a,) is not trivial. Then there exist primitive ele-
mentsay, as € Z2¢ such thai(ay, ao) = 1 ande(ar), ¢(az) € (ai, a).

(2) Leta,b € Z2, p(a) # 0, p(b) # 0, and(a, b) = mp with m € Z. Then
(pa)) = (@(D)).

Using induction together with claims (1) and (2), it is easy to prove the follow-
ing. LetG be a subgroup oZ3. Then, fori =1,...,randj =1,...,k <
(wherek may be 0), there exists A = (a;, b;) C Z2¢ such thatp(A) generates
G, Ais linear independentg;, a;) = (b;, b;) = 0, and(a;, b;) = §;;.

From this fact and induction, the theorem follows. O

We shall also need the following results of symplectic geometry.

LeEmMA 2 (see[A,Thm.3.8]). LetH = Z§ and(-,-): HxH — Z,beanalter-
nating bilinear form. LeA = (a; i =1,...,r), b; (j =1,...,k)) C H be aset
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of linear independent elemers may bed) such that(a;, a;) = (b;, b;) = 0and
(a;, bj) = &;. Thenthere is abasis &f, (@ (i =1,...,1), b; (j =1,...,5)),
such that(a[,aj) = (b[,bj) =0, (Cl[,bj) = 8,‘j, a =a; (i =1...,r), and
bi=b; (i=1...k).

Proof (Sketch). Let us consider all system§ = (a; (i = 1,...,1), b; (j =
,8)) such thai(a;, a;) = (b;, bj) =0, (a;, b;) = 8;j, a] = a; (l =1....r),

andb’ =b; i =1, ..., k). Between them we choose a systanwnh maX|maI

t+s. ThenAisa basis with the conditions that we need. O

THeoreM 3 (Witt’'s Theorem; see [A, 3.9]). LetG, G’ be subgroups oZ,%g and
let : G — G’ be an isomorphism su~ch thair(a), v (b)), = (a,b)p for all
a, b e G. Then there is an automorphisgne Sp,(2g, Z,) such thaty restricted
toGisy.

3. Strong Classification of Fixed Point—Free
Orientation-Preserving Actions
of Z% on Surfaces

In this section we shall consider (orientation-preserving) fixed point-free actions.
Let S be a closed (compact without boundary) oriented surface with genauasl
let G be a group isomorphic 8}, wherep is a prime integer.

DEFINITION 4 (Strong Equivalenge  Two actions(S, f) and(S’, f') are called
strongly gquivalenif thereis a pomeomorphisnjf, S — ~S’, sending the orien-
tation of S to the orientation o8’ and such thay'(h) = ¥ o f(h) o ¢ for all
hegG.

We are interested in finding all strong equivalence classes of actidfi$.of

We denote by = §/f(G) and byy = ¢(f): § — S the natural projection. We
shall consider first the case wheiiz) has no fixed points for any € G — {id},
that is, when the action @f, 1) is fixed point—free. The general case will be con-
sidered in Section 5. Then the projectipy): S — S is an unbranched covering
with deck transformation group(G).

Let us considerr1(S) as the group of deck transformations of the universal cov-
ering of S. Then we have

w(§ f):m(S) — 7T1(S)/711(§) = f(G) ﬁ) G.

The resulting eplmorphls(S f):m(S) = G = Zy isthe monodromy epi-
morphism of the coverlng(f) S — S.The eplmorphlsm)(S fim(S) - G
induces the eplmorphlsﬁ),(S )i Hi(S,Z,) — G, sinceG is abelian.

Conversely, given an epimorphiséy: Hi(S,Z,) — G, there is an action
(S, f) such thato, = 6,(S, f). To obtain $ it is enough to consider the mon-
odromyw: m1(S) — Hi(S,Z,) LN G andther§ = U/kerw, whereU isthe uni-
versal covering of and the action o is given byG = m1(S)/kerw.

DerFINITION 5. Let S and S’ be two surfaces. Then two epimorphisms
Hy(S,Z,) — Gandd’': Hi(S', Z,) — G are calledstrongly equivalenif there is
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an orientation-preserving homeomorphigm S — §’ inducing an isomorphism
Y, Hi(S,Z,) — Hi(S',Z,) suchthat =0’ o .

THEOREM 6 [S]. Two actlons(S ) and(S’ ') are strongly equivalent if and
only if the epimorphisma, S, ) ando, (8’, f') are strongly equivalent.

DEFINITION 7. Let (S, f) be an action ofG, let S = S/f(G), and letd =
6,(S, f): Hi(S,Z,) — G be the epimorphism defined by the actiéh f). Now
consider the spaces of homomorphis@is= {e: G — Z,} and HX(S,Z,) =
{e: Hi(S,Z,) — Z,}. Thené generates a monomorphisfri = 6* (S, f):

G* — HYXS,Z,). The intersection fornt-, -), = (-, )5 on Hi(S, Z,) induces
an isomorphismi: H(S, Z,) — Hi(S,Z,) defined by(a -y — a and a form
(). G* x G* — Z, such thaa, b) 5 ;) = (i 0 60*(a). i 0 0*(b)),.

THEOREM 8. Two~action~s(§, f)and(S’, ') of the groupG are strongly equiv-
alent if and only ifS and S’ have the same genus a(}d-)(gyf) =)@,y

Proof. Let S andS’ denoteS/f(G) andS’/f'(G), respectively. Assume the, f)
and(S’, /) are strongly equivalent. Then, according to Theorem 6, there exists a
homeomorphisny : § — §’, which induces an isomorphisih, : Hi(S,Z,) —
Hy(S',Z,) such thatd = 6’ o y,. Becausey, is induced by a homeomor-
phism, it follows thaty, preserves the intersection form and induces an isomor-
phismy*: HYS’, Z,) — HS,Z,) such that(a, b)lf' = (Y*(a), y*(b)); and

0%(S, f) = ¥* 0 0*(S', f'). Hence, fora, b € G*,

(@, b) s, p) = (i 00%(S, f)(@), i ©0%(S, [)(b))y
= (i oy 00§, f)a), ioy* o 0%S, f)(B))
= (" 00§, f)@). i' 0 0*(S, fHB)S = (@. D)z -
Assume now that:, V6 = C)@ s and consider the isomorphisms
Q: HYS.Z,) — (ZF. ()., Q' HYS.Z,) — (Z§. (. ),

such that(Q(a), 0(b)), = (a,b)j and (Q'(a"), Q'(b")), = (a/, b/)j for any
a,be HXS,Z,) anda’, b’ € H\(S', Z,,).

We noteG = 0 0 6%(S, f)(G*) C Z3¢ andG' = Q' 0 6*(S', f')(G*) C ZZ.
Lety: G — G’ be the isomorphism given by = Q' Q=L Then, for every
a,beG, we have(y(a), v (b)), = (a, D). From~ Theorem 3 it follows that
there is ay € Sp,(2¢, Z) such thaty restricted toG is ¥. Consider nowd =
O toyoQ': HXS,Z,) — HXS,Z,). Sinceyr € Sp,(2g,Z), we see that
W comes from an isomorphisin,: Hi1(S,Z) — Hi(S’, Z) sending the intersec-
tion form of Hy(S, Z) to the intersection form off1(S’, Z) (Theorem 1). Then,
by a classical result of H. Burkardt in 1890 (see [MKS, p. 178]), there exists a
homeomorphismy : § — S’ inducingy,, and¥; by constructionp*(S, f) =
W o 6*(8’, f). Then, by Theorem 6, the action$, f) and(S’, f') are strongly
equivalent. O
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THEOREM 9. LetG =7y, let(-,-): G* x G* — Z, be an alternating bilinear
form, and letc = dim{k € G*: (h, G*) = 0}. Then there exists an actiat, f)
such that(-, ) = (-, )5, andg = g(8/f(G)) if and only ifg > 5(m + k) for
k = mmod2andk < m.

Proof. First we construct the action from the form and the numerical conditions.
Applying Lemma 2 yields a basis @*, (a; (i =1,...,r), b7 (j =1...,5)),

0 < s < r, such thatia}, a*) = (b}, j) =0, (af, b*) = SU, ands —r = k Let

(@ =L1....,r,b; (j =1 ...,5)) be the dual baS|s of the one just described.
Now consider a surfacg of geI‘IUSg and a basis off1(S,Z,), (o; ( =1, ..., 8),

Bi i =1,...,8)). Then we construct the epimorphistn Hi(S,Z,) — G¥
which is defined by

a; ifi<r,
9(“")2{0 if i >r,
and by
b, ifi<s,
e(ﬁ")z{o if i >s.

Then the epimorphisré defines a regular covering — S with automorphism
groupG, and the action o onS satlsﬂes( VG p = ¢

Conversely, if there is an actlc(G f) suchthat., ) = (, VG, ) thenitis ob-
vious thatg = g(S/f(G)) > (m + k) fork = mmod 2 andk < m. O

4. Weak Classification of Fixed Point—Free
Orientation-Preserving Actions
of Z;’ on Surfaces

In this section we shall continue to consider only fixed point—free actions.

DEFINITION 10 (Weak Equivalende Let (S, f ) and(S’, f') be two actions of
agroupG = Zy. We shall say thatS, 7) and(S’, /) areweakly equivalenif
there is a homeomorph|sm. S — S’ and an automorphism € Aut(G) such
that /' ca(h) = ¥ o f(h) oY L heG.

The next theorem solves the problem of weak classification of actioAg ain
surfaces.

Tueorem 11. Let (S, £) and (§', f) be two actions of a grou = Zj. Let

Cs ), o and (-, ), ) be the alternating bilinear forms induced by the two ac-
tions, k(S, f) = dim{h € G* : (h, G* )(S n=0 andk(S’, f') = dim{h € G* :

(h, G") 1 1y = = 0}. Then the actionsS, f) and (S’, f') are weakly equivalent if
and only ifg(S/f(G» = g(&/1(G)) andk(S, f) = k(S', f).

Proof. Let us putS = S/f(G) andS’ = S/f'(G), and letg = g(S) andg’ =
g(8"). Let 6*(S, f) and6*(S’, f) be the epimorphisms defined by the two ac-
tions, letG be the image o6 * in Hy(S, Z,,) by 6*(S, f), and letG’ be the image
of G* in Hy(S", Z,) by 6*(S", f).
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Assumethag(S) = g(S")andk(S, f) = k(S', f'). Sincek(S, f) = k(S', f").
there exists an isomorphisin: G’ — G such that

W@, y®) i ) = (@, b)g 5

Then, using Theorem 3 ang(S) = g(§'), there is an isomorphisny:
HYS',Z,) — HXS,Z,) giving by restrictionys and sending the intersection
form of H(S’, Z,) to the intersection form oH1(S, Z,). By [MKS, p. 178],
there exists a homeomorphigm S — S’ inducingy, on cohomology. Then, by
Theorem 6, the actionsS, 7) and(S, 9o f’ o ¢) are strongly equivalent. The
isomorphismy defines an automorphism 6f, giving the weak equivalence be-
tween(S, f) and(S’, f). O

The following corollary is one of the main results of this paper.

CoroLLARY 12. Weak equivalence classes 6ff actions are in bijection with
the set of pairs of positive integetk, g) such thatt < m, k =mmod 2 andg >
1

s(m + k).

2

Proof. Theorem 11 tells us that each pélr, g) determines a weak equivalence
class. By Theorem 9, each pair of numbeérsg) satisfying the conditions in the
corollary defines a nonempty weak equivalence class. O

ExampLE. By Corollary 12, there are four weak equivalence classes of fixed
point—freeZ $ actions on surfaces of genus 3649 (cf. [E, Rem. 4.5]); in this case,
by the Riemann—Hurwitz formula, the numhein the corollary is 6. We shall
construct a representative for each action. We take a Fuchsian surfacd gobup
genus 6 acting conformally on the complex di3cThe groupl” has a canonical
presentation

6
<Al’, B,‘, i = :L ey 6; l_I[Ai’ B,] = 1>
i=1

We consider the epimorphisriis T — 2§ = @° (g : g3 =1), j =0,2,4,6,
defined by:

0;(A)) =g, 0;(B))=0, i=1...,],

O(A) =goij1, O;(B)=gaij, Jj<i<iy,

0;(A) = 0;(B) =0, 3°<i<6

The Riemann surface3/kerd; admit automorphism groups representing each

weak equivalence class of fixed point—f@?aetions.

5. Classification of Orientation-Preserving Actions of 2
with Elements Having Fixed Points

Let G be a group isomorphic ', and let(S, f) be an action of5 on an ori-
ented closed surfacg By Grx we denote the subgroup 6f generated by the
elements off (G) having fixed points.
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The projectiony = ¢(f): § — S = §/f(G) is a covering branched on a finite
set of pointsB = {b1, ..., b,}. The coveringp is now determined by an epimor-
phismé, (S, f): Hi(S — B,Z,) — G.

LetX; (i =1, ...,r) denote the element df1(S — B, Z,) represented by the
boundary of a small disc i§ around the branched poiht, and with the orien-
tation given by the orientation . Then the sewp(S, )(X;)} is a topological
invariant for the actiorS, /). We have

Op(S. XD, i =1 ....r) = Gix.
Then we have an epimorphisfit Hi(S, Z,) — Gtree, defined by
H\(S,Z,) = Hi(S—B,Z,)/{X;, i =1...,r) > G/Giix = Grree.

In fact, the epimorphisn# is the epimorphism defined by the fixed point-free
action defined by the unbranched coverig(Gsix) — S. If Gree = G/Giix then
¥ defines, as in Section 2, a bilinear fofm-) 5 /) Gfiee X Gfree = Zp-

Tueorem 13.  Two actions(S, f) and (S, ') of the groupG = Z} are strongly
equivalent if and only if the following statements hold.

(1) S andS’ have the same genus. i i
(2) The number of branched poings = #85) of the coveringd — S = S/f(G) is
the same as the number of branched points= #5’) of the coverings’ —
S = S//F(G).
3)  [6p(S, )(X2), 0,(S, f)(X2), ..., 6,(S, f)(X,)]
= [6,(5, (XD, 6,(S, /)(X2), ..., 6,(S, /HX)],
where[., ..., -] is used to denote unordereetuples of elements @t — {id}.

Asa consequenc@,f’;ee = Gf{ee = Gtree-
(4) Theintersection forms ofizee induced byf and f’ are the same, VS, =

('9 ‘)(§Qf/)~
Proof. Using Dehn twists along curves around the branched points (seel&l, p.
move (6)]), it is possible to obtain abasis; ( =1,...,¢), B, i =1,...,2),
X; (i =1...,r)of H(S — B, Z,) such that
0p(S, f)(A:) € Grree:  0p(S, )(B) €Grree, i=1...,¢;
(Ai,A)) =0, (B;,Bj) =0, (A;, B)=4;.

In the same way, we can constructa badis(i =1,...,¢), B/ i =1..., g),

X/ (i=1...,r)of H(S — B Z,) such that
6p(S', f')(A}) € Griee, 6,(S', f)(B)) € Grree, i=1,....¢;
Note that, by conditions (1) and (2,= ¢’ andr =r".

By condition (4) and Theorem 8, it follows that the fixed point—free action
of Gyee ON S/f(Giix) given by f and the fixed point—free action @ee ON
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S'/f'(Gsx) given by f' are strongly equivalent. Then there exists an orientation-
preserving homeomorphisg: S — S’ inducing on homology an isomorphism
Y Hi(S,Z,) — Hi(S', Z,) and, by the proof of Theorem 8, we can constguct
such thaty(A;) = A andy(B;) = B;. We now consider a disD on S contain-

ing B and a discD’ on S’ containing53’. Then we can modify by composing
with an isotopy inS’ in order thatp(D) = D’ and¢(b;) = by, Whereo is a
permutation of1, ..., r} such that

(S, )X, 0,(S, £)(X2),...,0,(S, £)(X,))
= 0,(S, N Xo@) 0p(S, F)Xo@)s -+ 0p(S, ) Xo())-
Now ¢ defines an isomorphisn: Hy(S — B, Z,) — Hi(S'—B',Z,) such

that ¥(A;) = A}, ¥(B;) = B/, and ¥/(X;) = X/, S06,(S, f) = 0,(S', f') o p.
Hence the actionés, ) and(S’ f) are strongly equalent O

As a consequence of Theorem 13 and Theorem 9, we have the following.

THEOREM 14. LetG = Zp, and letH = Z} be a subgroup o&. Assume that
[Cy,...,C], r = n,isan unordered element afHH — {0})", where{Cy, ..., C,}
generates and )_; C; = 0. Let (-, -) be an alternating bilinear form oﬁ;/H
and letk = dim{h € (G/H)* : (h, (G/H) ) = 0}. Then, forg > 2(m —n+k)
and only for suclg, there is an action(S, ) withg = g(S/f(G)) and(-, ) =
)G ) where (-, VG ) is the bilinear form induced by the fixed point—free
action onG/H, the elements acting with fixed points generdteand

[6,(S, £)(X1), 0,(S, £)(X2), ..., 0,(S, /H(X)] =[Cy, Ca, ..., C,].

ReEMARK. The unordered elements Bf are in one-to-one correspondence with
the functionsF: H — (Z,)? % From [Cy, Ca, ..., C,] we define F(h) =
(k1, ko, ..., k,_p) ifthe element’ appearg; timesin [Cy, Co, ..., C,]. The func-
tion F gives the topological type of the action &f.

THEOREM 15.  Two actions(S, f) and (S, ') of the groupG = Z} are weakly
equivalent if and only if the following statements hold.

(1) S andS’ have the same genus. i )
(2) The number of branched poinis = #5) of the covering§ — S = S/f(G) is
the same as the number of branched points= #5’) of the coveringS’ —

S = S/f(G).
(3) (0,(S. /)(X1).0,(S. /)(X2).....0,(S. [)(X,))
= (¥ 20,(S. ) Xo@): ¥ ©0p(S. )Xo ¥ 2 0,(S. ) X))
whereo is a permutation off1, ..., r} and y is an automorphism of.
(4) dim{h € Gfee: (h, Gied) 5. ) = O} = dim{h € Gfoe * (h, Gfe) 57 1) = O

Proof. Similar to the proof of Theorem 13. O
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THEOREM 16. LetG = Z}. Then the weak equivalence classes of actiorn, of
such that there are points in the surface where the action takes place that are fixed
forelements of;, are in bijection with the set of triple%, g, Aut(G)[Cy, ..., C/]),
where

(1) k andg are integers such that, if > 0, then there is an integet (n > 1)
suchthatt <m —n, k = (m —n)ymod2 andg > 2(m —n +k) forr > n;
and

(2) [Cy, ..., C/] is an unordered--tuple of nontrivial elements aff such that
{Cy, ..., C,} generates a group isomorphic & and ) "; C; = 0.

Proof. Theorem 15 tells us that each triple determines a weak equivalence class
and, by Theorem 14, each triple satisfying the conditions in Theorem 16 defines a
nonempty weak equivalence class. O

ExampLE. There is only one weak equivalence class of actioi@&afn surfaces

of a fixed genus such that there is exactly one fixed point for some of the elements
of Z,%. In this situation, where: = 2 andr = 1, we haven = 1 andk = 1, and

there is only one class of nontrivial elements under the action of ®utA rep-
resentative for the weak equivalence class, whienl, can be constructed in the
following way. We take a Fuchsian grolipwith signaturg(g, [ p]). The groupl’

has a canonical presentation

8
<Ai, Bi.i=1..g X: X[[[A.B]=1 X" :1>.
i=1

We construct an epimorphisfn I' — Z3 = (g1) ® (g») defined byd(A;) = g1,
0(A;) =0(B;) =0fori # 1, andf(X) = g». The Riemann surface uniformized
by ker6 has a group of automorphisms representing the weak equivalence class
that we are looking for.

Let MP™ be the space of pailsk, G), whereR is a Riemann surface ar@
is a group of automorphisms &. The coveringR — R/G defines a projection
p: MP" — M, whereM is the moduli space of Riemann surfaces. The projec-
tion p: M»™ — M gives a topology o/ ”", the weakest topology whepeis
continuous.

From Theorem 16 and [Na2, Sec. 6], we have the following.

CONSEQUENCE. There exists a one-to-one correspondence between the con-
nected components &f”:™ with such topology and the triples

(k, g, Aut(G)[Cy, ..., C,])

described in Theorem 16. Each connected componeit’df is homeomorphic
to the quotientR”/Mod of a vector spac&k” by the discontinuous action of a
groupMod.
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