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AN ALGEBRA RELATED TO THE ORTHOGONAI GROUP - -
Wm. P. Brown

INTRODUCTION

I wish to express my sincere gratitude to Professor R, M. Thrall, under whose
guidance the work presented here was done. I am also grateful to Professor R.
Brauer, who suggested the problem, and to Professor H. Weyl. The extent to which
I relied upon their earlier work will be apparent.

The question of commuting algebras of representations of classical groups over
tensor space has been discussed by Brauer [2] and Weyl [5, Chapters III, IV and V].
In the case of the general linear group, the algebra concerned is the group algebra
of the symmetric group. Much information concerning the representation theory
of the general linear group is obtained from the corresponding theory of the sym-
metric group. Brauer [1] has defined a number of algebras which replace the
symmetric group algebra when the general linear group is replaced by certain
subgroups.

This paper is concerned with the algebra which arises in the case of the
o1thogonal group. Its definition by means of diagrams is taken from Brauer’s
paper [2]. In the first three chapters, results concerning the structure of the
algebra are obtained directly. The fourth chapter makes contact with Weyl’s re-
sults concerning the representation of the algebra in tensor space [5, Chapter V,
Section B].

CHAPTER 1

THE ALGEBRA w?

1.1. A REPRESENTATION OF G, BY DIAGRAMS

A permutation 0 € &y, the symmetric groupon f symbols, may be repre-
sented by a diagram consisting of two rows of f dots, the dots of each row being
associated with the integers 1, 2, ---, i, from left to right, and dot i of the lower
row being joined to dot oi of the upper row (i = 1, 2, ---, f). Multiplication of
diagrams to obtain 70 is performed by placing a diagram for 7 with its lower
row of dots coincident with the upper row of dots of the diagram for o¢. In this
way a composite diagram (7, o) is obtained in which dot i of the lower row joins
dot oi of the middle row, which in turn joins dot 7(0i) of the upper row. If
multiplication of permutations is performed from right to left, then the new dia-
gram, obtained by deleting the middle row and joining dot i directly to dot 7(oi),
is the diagram for 70. Suppose for example that 7 = (13) €S, and 0= (132) € S;;
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then the diagrams for 7 and ¢ are shown by Figures 1a and 1b, respective
Figures 1c and 1d show the composite diagram and the corresponding new ¢
gram, respectively.

It is seen that composition of diagrams corresponds to the calculation c
cycle product from right to left.

C.
d.
Figure 1,

1.2. A GENERALIZATION OF DIAGRAMS

Henceforth, the term ‘diagram’ is used to denote two rows of f dots in~
every dot is joined to exactly one other dot by a ‘line’ or a ‘bar’. The word
is used to denote the join of two dots of different rows, and the word ‘bar’ t
note the join of two dots of the same row. The number of such diagrams is

N(@) = 2f - 1)(2f - 3) -+ 5.3-1,

since there are 2f - 1 ways of joining the first dot to another, then 2f - 3 v
joining the next unconnected dot, etc. Composition of two diagrams is perfc
in 2 manner similar to that described above. A clear picture is most easil;
by means of an example. Let Figures 2 and 3 be ‘diagrams’ U and V resp
Then Figures 4 and 5 are respectively the composite diagram (U, V) and tb
responding new diagram UV (2). The figure (2) following UV is a temporar
tion. It indicates the number of “cycles” occuring in the composite from wl
is derived. By a cycle is meant a sequence of dots on the middle row of a ¢
posite diagram, say D,, D,, :--, Dy, such that D, joins D,, D, joins D, *-,

joins D,.

The following properties of diagrams and their composition are importa

P,. A diagram has the same number of bars in its upper and lower row:
may therefore refer to a diagram having r bars in each row as an ‘r-bar d
gram’,
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o——0 o~ o 0 0—o0 0—0
Aﬁ_/o o——:\ 0——0 0—o0
Figure 2,

o— D0 O —0 0 0—0 0—0 / 0—0
D/O o~ O0._0 o0 o0—=0 o~_d o o—o0
Figure 3.

o—o0 o a 0 0—0 0—0
0——0

O\_bd_/o O0——o0 0~_9 0 o0——o0

Figure 4.

0—o0 @——0 0—0
0~_0-..0 0 0——o0 ~_0 O 0——>0
' Figure 5,

P). The same is true relative to lower bars of V in a product UV.

P,. The number of cycles occuring in the composite (U, V) of two r-bar dia-
grams is at most r. It is exactly r when the bar structures of the lower row of
U and the upper row of V are identical. Otherwise the number is less than r.

P,. If by U we denote the diagram obtained by inverting U, then U/\\f = V0.

1.3. THE DEFINITION OF w?

Let U,, U,, ---, Uy, (N = N(f)) be a basis for a vector space of dimension N(f)
over a field K of characteristic zero. To each basis element assign a diagram of
the type described in §1.2. The diagram assigned to U; will now be denoted by
the symbol U;. If the composite (U;, U;) yields a diagram Uy(q) and has q
cycles, then we define the product of the basis elements to be

U; U; = n9Uy,

where n is an integer. It is not quite clear that the multiplication so defined is
associative. This does however follow from the origin of the definition to be
found in [2], where the set of diagrams is given as a2 model for a set of matrices,
with multiplication defined isomorphically. Multiplication is extended to arbi-
trary elements of the vector space in accordance with the distributive laws. In
this way the vector space is given the structure of an algebra.

The algebra defined in this way is designated by of.
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1.4. SUBSPACES OF o}

The set of basis elements corresponding to r-bar diagrams spans a line
subset which will be denoted by %,. The algebra w} has therefore the dec
sition

W= B+ Byt Bp4eed By

as a direct sum of subspaces. The symbol m is used to denote the integral
of £/2: m =[f/2].

We now calculate the dimension of the subspace B.. Let M{, r) denoi
number of ways in which r bars may be placed on a row of f dots. The fir
may have one end placed in any one of f positions and the other end placed i
one of the remaining f - 1 positions. Since we do not distinguish between tl
ends of a bar, the number of positions in which it may be placed is f(f - 1)/
For the second bar the same argument is valid with f replaced by f - 2, gi
(f - 2)(f - 3)/2 possible positions. Finally, the rth bar may be placed in
(f - 2r + 2)(f - 2r + 1)/2 positions. However, the order in which the bars a
placed in position is immaterial; they may be permuted in r! ways without
ing the bar structure. Hence the r bars may be placed in position in M(f, 1
ways, where

_ff-1)(E-2).- E-2r+1) f!
M, r) = 2% r! 2% (f - 2r)ry”

The dimension N, r) of $B, may now be derived. It is the number of
diagrams. Since there are M(f, r) possible bar arrangements for each row
since the remaining f - 2r dots in each row may be joined by lines in (f - 2
ways, we see that

(f1)?
r!)Z (f - 2r)!

N(, ) = [M@, r)? (- 20)t = 7

THEOREM 1.4A. The algebra wi has the decomposition
WP = B+ B+ + By++ By (m=[1/2])
as a divect sum of vector subspaces B,.. By is the subspace of w? spar

by basis elements whose diagrams have exactly r bars. The dimension of
is N(i, r).

1.5. A CHAIN OF IDEALS IN w{

Properties P, and P} of the composition of diagrams (§1.2) show that i
basis element of %, is multiplied by any other basis element of the algebr
product is an element of 8, with s > r. It follows that the subspace

A¥= BV, + By + -+ B, (direct)

is a two-sided ideal of wi*. It may be described as the ideal spanned by all
elements whose diagrams have r or more bars. In particular, 8,, = Ak,
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two-sided ideal. By the definition of %} and the decomposition given in Theorem
1.4A, we see that w} possesses a chain of ideals

(1) wf = WD Ak e A¥X DD AR,

1.6. A NOTATION FOR BASIS ELEMENTS

We now consider the construction of a diagram upon a skeleton consisting of
two rows of f dots. In §1.4 we have seen that r bars may be arranged on f dots
in M = M(, r) ways. We may therefore assign indices 1, 2, ---, M, one to each
possible arrangement. Such a scheme of indices will be referred to as an “r-bar
scheme”. The bar structure of a diagram corresponding to a basis element of

B
structure of the upper row has the index i and that of the lower row has index j.

r 1is therefore specified by a pair of indices (;) which indicate that the bar

We may also say that the corresponding basis element has bar structure ( ;)

Now consider the construction of lines. Suppose that in each row of an incom-
plete diagram there is a set of s unoccupied dots. In each row we number these
dots 1, 2, -+-, s from left to right. A diagram for a permutation 0 of &, may
then be constructed upon these dots by joining dot k of the lower set to dot ok
of the upper set, for 1 <k <s. We then say that the diagram possesses the
permutation o of & 5 on the two sets of 5 dots and, when there.is no fear of
confusion, that the diagram, or the corresponding basis element, possesses the
permutation ¢ of &Sg.

The element whose bar structure is (;) and which possesses the permutation

o of &¢ 5, is anelement of B.. A complete basis for %, is obtained by al-
lowing i and j to range through the r-bar scheme and o to range through &;_, .
Elements possessing the identity permutation will be called special elements

We will denote by U} the basis element of B, whose bar structure is ( ;)

and which possesses the identity permutation of &;_,,. To help the description
we consider examples of 1-bar elements in the case f = 5. The bar arrange-
ments 1, 2, -, M (M = M(5, 1) = 10) are shown in Figure 6. The basis element
U2 is shown in Figure 7 >

| 0—0 0 0 0 6 o o 0 o )

2 o~ 0 ~0 o0 o 7 o o—0 o0 —0°

3 o—0o o0 o 0 8 o 0 0—o0 o
4 ) 0 0 S o o o 0 o
5 0 0——o0 0 o) IO o 0 o) 0—0

Fig, 6, One-bar scheme: f = 5,
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o~ o a o

Oo——-0
Figure 7.

The elements Ul of B r do not provide a complete basis when i and j
through the r-bar scheme. We now develop a notation for the remaining ele

If i is an index of the r-bar scheme and if 0 € G¢_,,, then we define ¢
that element of 8 , whose diagram is constructed as follows.

(i) The identity permutation of & ,, is_constructed upon those dots whi
the end points of bars in the diagram for Uj.

(ii) The permutation 0 of &¢_j, is constructed upon those dots which
end points of lines in the diagram for Uj.

It is now seen that O'iU} is the basis element of 8 . whose bar structuw

and whose permutation is ¢ of & ;_,,. Since U}- possesses the identity pe:
of &;_,. and since the identity commutes with every other permutation, it

that o; U} = U; 0;. The set of elements oriUJi forms a complete basis for 8
¢ ranges through &; , . and i, j take all values in 1, 2, --*, M = M(f,r).

As an example we consider the element (132), U3 of 8, in w?. The di

Figure 8,

(132), is represented in Figure 8. We form the composite of this with the .
U? (Figure 7) and obtain the product diagram (Figure 9).

o o_ o o

Oo———oO
Figure 9.

This possesses the bar structure (g) and the per'mutation (132) of &,.

1.7. MULTIPLICATION OF BASIS ELEMENT OF 3.

The elements ¢;, 7; and so forth correspond to diagrams, and therefort
products in which they occur are associative. This helps in obtaining a rule
multiplication of basis elements:
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(oiu}) (TP UE) - (oiuj)(ug Tq)
= O'i(U; Ug) Tq.

We consider now the product U} Ug of special elements.
Let U} and Ug be special elements of B .. We assume first that their product
Ug Ug is again an element of 8 ,.. Then it possesses bar structure (:l) (by P, and

P}, §1.2). It may also possess a permutation of &¢_p, which need not be the iden-
tity, and a power of n may be introduced. It is not difficult to prove that the per-
mutation and the power of n that occur depend only upon the bar structure of the
lower row of U} and of the upper row of Ug; that is, they depend upon the indices
(j p), but not upon the indices (i q). We denote the power of n by v(j p) and the
permutation by o (j p). Their product is an element of the group algebra Il;_,, of
© ¢_,, over K, and we denote it by ¢*( p) = v(j p)o(j p). We may now write the
product as

U}Ug =07 (G p) Uy (o*(j p)e Hf-Zr)'

The multiplication rule becomes

(Uiué) (TP Ug)

* (- i
O'i O'i (] p) TiU](;{

1

(co*( p) 'r)iUil.
For any element 7 of &, ,.. and a basis element o; U} of B _, we define
T (01 U}) =Ti (Oi U;)
If the definition is extended to the whole of the space ‘8 by linearity, we see that

we have a representationof &¢_2, on 8 ,,i.e.forany pand 7 of G¢.2, and U
of B, p(rU)= (p7)U. It is sufficient to check this for basis elements o; U}:

o7 (0103))

]

i i
p (Tio'i U}) =pi Ti0iUj

i i
(p 7)i0iUj = pT (Gin) .

Since by our definition oU_ii = 03 Uji, we may now drop the suffixes on permutations.
We now have

RY. o(TU)=(07)U (0, T € G52, Ue B;).
The multiplication rule may be rewritten as
RY. (O'U_%) (T Ug) =oco*(jp) T Ua,

and we observe that this rule is still only a partial rule, valid when UjiUE € B ..
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1.8. THE OPERATORS o*(j p)

For multiplication in %, the operators o*(j p) have only been defined
ducts U} Ug that are again in % .. It is convenient for our later purposes t
0 *(j p) to be a zero operator for products that are not in % ... In this case
P, and P} (§1.2) ensure that the products will be in B, with s> r,

The o0*(j p) may be computed by forming composites of special diagramn
shows the values of o*(j p) in the case of %, in wj. The identity element
represented by 1.

TABLE 1
N2 a3y | s e v | s|a]t
Cobma oo T sy 1+ U [(1s)] o o | o
A Lol 0 @) | v | o | o [(G2)[(3)] O
3 )Y Jwa |t |0 | o ()| o [G32)
hojeay @) | 1 [ w o | o ( o |(2)|Gs
§ \ \ o [ o [w.a| t [(a3) 1 [(23)| o
6 ()| o ( ) (I B ! | o |(=3)
T |[tax)] o o | (=23)] “.t| O 1 | (r3)
& o [(2y[[2)]| o | ! I N !
1 o [Ga3)| o [GLxY[(23)]| o 1 I{mal o
o | o 0 [123)[(2)| o [@3)|[(@3)]| I -

We use the table to calculate the product ((12)U3°) ((123)U2). By rule I
equals (12)(23)(123)U%° = (13 2)U. The multiplication is illustrated by Fig
and 11, which correspond to the composite ((12)U°, (123)U2) and the produc
(13 2)U%° respectively.

The following simple properties of 0*(j p) are useful; as before, we wrif
o*(Gp)= v({ploGp).
S, v(ip)= v(pij.
S;. o*(Jp)=0==0*pj)=0.
S;. o*(jp)t 0=>0(p) =0@j?.
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o—o0

0—_ 9 "o _©

Figure 10

S

Figure 11

S,. o*Gj) = v(ij)e =n"¢,
where € denotes the identity permutation.

S;. »(j p) = n* or zero, and 0<k<r for j+ p.

Properties S,, S, and S; are consequences of the following three observations:

(i) Whereas o*(j p) arises from the composite ( U;, Ug), o *(p j) arises from
the composite (Ug, UY).

(ii) The two composites in (i) are obtained from one another by an inversion,
that is, by the operation “ ~ ” described in P, (§1.2).

(i) I o is a permutation diagram, then & is its inverse.

Properties S, and S; are consequences of the following two observations:

(iv) 0 *(j j) arises from the composite (Iﬁ, U’ )', where the bar structure of the
lower row of U} and the upper row of UJ are identical. There are then r cycles,
and the permutation which arises is the identity.

(v) The numerical parts of S, and S; are consequences of P, (§1.2).

CHAPTER II

FACTOR ALGEBRAS OF w{

The factors of the chain

O %
Ha%

WE=AFD A¥D oD A¥D .0 uX (m:[f/z])

will be denoted by Ay =¥%/¥Ey; (O <r < m).
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2.1. MULTIPLICATION IN THE FACTOR ALGEBRAS A .

Since A ¥ = B, + A%, (direct sum) by definition, a basis for 9 ,, take
o ¥ r+1, Serves as a baeus for the res1due class algebra A.. For the moment
note the residue class modulo 9 ¥, of an element U of 2[ by (U|. The n
multiplication

|0'U1| ITUpl Iaa*(j p) TUH

is now a complete rule in A ., for when Uj Ug does not lie in B, it lies in
B s C A¥X ) since s> r. It follows that its residue class is zero. This is
W1th the special definition o*(j p) = 0 given at the beginning of §1.8.

Using the direct decomposition %= 8. + %%, we can extend the dor
the operators o of ©¢_, to the whole of A* by defining them to operate a
tity transformations on ¥ }¥;;. Then we may use the usual definition of an o
on a residue class, namely ’

g Jy_l =
Writing IEJ V}, we obtain cha oU_ii . We now have three rules for the

these operators in A.: .
R!. o(rV)=(0TV (0,7 € G ,.; Ve A).

1
R,. (aV})(TV&): o0 *(j p)TV(i1 for basis elements.
R;. V)V, = p(ViVy) (pe Gf.2r5 Vi, Vo€ Ay

R and R}, are the forms which R} and R} take in A,. R; is an immediate
quence of R; and R;. Indeed, for basis elements oV§ and 7VE we have

s ))(:rVP) = ((poIV ) ((Tvp)) (by RY)
=poo*(ip)TVL  (byRY)

and . .
p(@Vi)7VD) = poo*Gp)TVE)  (by RY)

=poo*(ip)TVYL (oy RY).

All these rules may be extended to elements of the group algebra. For a, a
azin Iy 5. and V, V, and V, in A, they become

R,. a, (a,V) = (a,a,)V.
R,. (a v.i)(a s ) @,0*(] p)azvl
R,. @V, )V, = a(V, V,).

2.2, THE DECOMPOSITION OF A,

Young’s theory of the decomposition of the group algebra of the symmet:
into simple ideals is well known [4]. A corresponding decomposition of A,
tained in this section. We first outline the relevant parts of Young’s theory.

There is a one-to-one correspondence between the partitions () of f ar
simple ideals d) of the group algebra Il of &; over afield K of chara
tic zero. Il is a direct sum of these simple ideals:
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I = E 0 o (@irect),

where the summation extends over all partitions (A) of f. The simple ideal II ™ is
a total matrix algebra over the ground field K. Iis dimension f§ can be stated in

closed form. A basis e,&JL may be chosen for II (7‘), where a,8=1,2,f,. If this

is done for each partition (A) of f, then the whole set forms a basis for the algebra
II¢. The basis elements have the multiplication properties

gg (1) _ =0 forall @,B,v,06, if (A)# (W,
t(z)}i) )(f)g Gﬁ'y gg: where GB ¥ is the Kronecker delta.

Each element § € II; has an expression of the form

g—): 2 sg‘g & (s®) e k).

ap
It is a consequence of this that

ey
“ap

) _

(A ()
7] =g ©

By ad’
()

trary field K of characteristic zero. In particular, the full reduction is valid over
the field of rational numbers. In what follows, f is replaced by f-2r.

THEOREM 2.2A. The linear subset of A, spanned by the elements

O LV

te

. This theory is valid in an arbi-

(2)
a

I3 8 will be called the ap coefficient of £ in II

apVi (<@ B<fy;1<i,j<ME 1)
is a two-sided ideal A(}) of Ay, and A, is a direct sum of these ideals:

1) A, = 2(A)A(r") (d@irect).

Proof: Rule R, (§2.1) states that (a, V Ne,Vg) = ot 0 *(j p)aZVq If the first

factor on the left side lies in A(A) then a; € II(A), and therefore the expression on

AW

the right side lies in . The same is true if the second factor of the left side lies

in Ag.l) .

The second result (1) follows from the fact that the set of elements e(lﬁ) VJ forms
a basis for A, when (A) ranges through all partitions of f - 2r, a,8=1, -, f 2 and

i, j =1, -+, M{, r).

We now take a particular ideal A(A), where there is no fear of confusion, we drop

) _
aﬁ—eaﬁ’

the index (A), that is,we write e and so forth. We denote the B8y coefficient
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of 0% p) in I py G*JBI;. Let e, 3V§ = E;E‘, These elements form a ba
A(}) . With this new notation, the multiplication rule

V.i‘ vP) - Vi
(eaﬁ J)(eyﬁ q) - ea,Bo *( p)eyb q
becomes

ij q _ P niq
EaﬁEga‘o*ﬁyEatS‘

We now simplify the system of indexing. We replace the double indices ( ;)
( P ) and (q) by single indices i, j, p and q. When the capitals E are repla

Y ]
small letters e, the rule becomes

. = o*. . *x
R,. &j€pq = Tjp €iq (o %p€ K).

Algebras which possess a basis {elJ} with a multiplication property of
R, are the subject of an earlier paper [3]. They have been called “generaliz
trix algebras.” Let A be such an algebra, and let the range of i and j be f:
to n, so that the dimension of A is n2 We denote the matrix (0f) by &. "
lowing properties of such algebras will be used.

1) Either (i) A is simple, or (ii) A possesses a radical N # 0 and the r
class algebra A/N is simple.

2) A is simple if and only if it possesses an identity element.

3) If & has rank r, then the dimension of the radical of A is n2 - r2. 1
of nilpotence of the radical is at most 3.

4) A is simple if and only if - & is non-singular.

2.4. A SUFFICIENT CONDITION FOR THE SEMISIMPLICITY OF A

The algebras A(I.A) are generalized matrix algebras. The multiplication
of AQ‘) is

® - 2~ (o 25
j

that is, the element of the (;) row and the ( 8

) column is

*i - y(ii)oid
o* V(l])Ua

B

This quantity is an element of K and is the a8 coefficient of o*(i j) in the ic
o) of ¢ _,.. Since AQ) is simple if and only if the matrix & (}) is non-
we consider the determinant of this matrix.

The diagonal submatrices of & are obtained by fixing i = j and letting a
range through 1< a,p <f,. S, of §1.8 shows that o (i i) is the identity per:
tion. It follows that a;; =35, 8 (the Kronecker delta). The numerical part i
v (ii) =n% (8,) so that each diagonal submatrix of & is n*-1, where I is f
matrix of order f, Xf,. The off-diagonal submatrices with i+ j have the nu
part (i j) equal to zero or to nk with k < r. Hence the main diagonal term

g
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provides us with a power of n in the determinant that is strictly higher than the
power of any other term of the expansion. Hence det ® is a non-zero polynomial in
n with coefficients in K. The integral roots of the polynomial are then the values of
n for which the algebra is non-semisimple. For all other integers the algebra is
simple. Since det & has only a finite number of roots, the algebra is simple for all
sufficiently large n.

The algebras A(l}) are two-sided ideals of A,. Since A, is a direct sum of a
finite number of them, the result extends to the semisimplicity of A,.

THEOREM 2.4A. For a given integer £, the algebra A, is semisimple for all
sufficiently lavge n.

2.5. THE EMBEDDING OF H¢_, IN A,

When ¢ ranges through ©_2,, the elements %,ovi of A, form a group iso-

morphic to & ¢_2,. However if we denote such elements by g, we do not have
agreement between the operation of ¢ as an operator and ¢ as an element of the
algebra; that is, in general gV # oV. In this section we show that when A, is
semisimple, a satisfactory type of embedding may be obtained.

Let A, be semisimple; then in particular there exists an identity element e, in
Ar. We define 0 = oer. The mapping 0->0 is a homomorphism of ' s_,,. onto a
subgroup of A,. Indeed,

o7 = (0e . )NTey)
=0 (ex(7er)) (by Ry)
=0(Tey)=(07)e, (byR,)
=0T

The mapping is an isomorphism, since the further mapping

is onto a group isomorphic to ‘G¢_;...

The embedding is now extended to elements a of the group algebra, by defining
g = aer.
2.6. THE STRUCTURE OF A, IN THE SEMISIMPLE CASE

In Theorem 2.2A we have obtained an expression of A, as a direct sum of two-
sided ideals:

(1) A= 3 (MA(}) (direct).

The ideals A(A) are generalized matrix algebras, so that in the semisimple case this
is the full decomposition of A, into simple ideals. The Ar") are indeed total matrix
algebras over the ground field K. A()‘) has degree f, - M(f, r) over K.
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Since O'VJ = O'VJ, we may regard the products O’V as a basis for Ay,
any basis {ai of Hf_p, provides a basis {a Vj} for Ar, where 1<, j <

The ideal A is then spanned by the products on , P re @ = o€y, o €
1<4,j< M(f r). The set of elements o with « 1n n'** form a subalgeb:

of A, which is isomorphic to H(A) Hence H(A) is a total matrix algebra

f, that is a subalgebra of the total matrix algebra A(A) of degree f, - M(f,
follows that A( ) contains a total matrix subalgebra C¥ A of degree M(f, r)
such that A(A) may be written as a direct product:

(2) AW - Wy,
(1) may now be rewritten as

(3) Ay, = E( )n( )xc(") (direct).
A

While the C(,)‘) are not unique, we may select one in each A(rl). Since each .
matrix algebra of degree M(f, r) over K, they are all isomorphic. Let C,
algebra which is isomorphic to them. Since II;_, . has the decomposition

0 o= Y " o™ @irect).

a corresponding decomposition can be given for the direct product of II¢_ 5.
So we have

s, XC, = (Z(A) H(A))x C,

X ( nmxcr),

(A

where both sums are direct. (
Let o e Il ,. and o = z(h)a (A), where o™ ¢ 1M for each (A). Fc

(A) we will denote by v and 'yo‘) elements of C.. and C(I.A) which corresponc
the isomorphism. T}len the mapping given by

y=(XaVpy > Za®Wy > o™, W

is an isomorphism between Il f_2,. XC; and A;. Under this mapping the set
IOf.2: X1, where I, is the identity element of Cy, corresponds to the subal
¢ 2. of Ar. ¥ €, denotes the identity element of IIf_2;, then we denote
corresponding to €, XCy by Cy, and we have

Ar = Ef-ergr-
THEOREM 2.6A. In the semisimple case the algebra Ar contains an isc

copy of the group algebra of the symmetric group U s_py, and a total matrix
C, of degree M(t, r) over K; and it is the divect product of them.
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CHAPTER III

THE STRUCTURE OF wy

3.1. THE SEMISIMPLICITY OF w?

LEMMA 3.1A. If an algebra U possesses an ideal A  that is semisimple, and
if /%, is semisimple, then the algebra A is semisimple.

Proof. Let R be the radical of % ; then A,N N is contained in the radical of
%,. Since %, is semisimple, it follows that ¥,NN = 0.

In the canonical mapping of % onto the residue class algebra % /%, the radi-
cal is mapped onto (%, + N)/%, By the third isomorphism theorem, this is iso-
morphic to N/(A,NA) =N, since A,n N =0. Hence N is mapped isomorphically
onto an ideal of ¢ /% ,. The semisimplicity of % /%, shows that % must be zero.

In §1.5 we obtained a chain of ideals of wf, namely:

W = uFoUAFD D UAXD D AKX (m=[f/2]).
The factors of this chain are the residue class algebras A, = 4%/ %¥,;. The result
of Lemma 3.1A may be applied inductively to these factors. wp is therefore semi-
simple if and only if each factor of the chain is semisimple. Since there are only a
finite number of factors, the result of Theorem 2.4 A applies to w? and we have

THEOREM 3.1B. For a given integer £, the algebra w} is semisimple for all
sufficiently lavge n.

3.2. THE STRUCTURE OF w} IN THE SEMISIMPLE CASE

Theorem 3.1 B shows that, for suitable values of the integers n and f, the alge-
bra w? is semisimple. In such cases the structure theory given in Chapter II for
the algebras A, provides a complete structure theory for wf. The structure theory
in the non-semisimple cases appears to be much more difficult and is not considered
in this paper.

We suppose then that wf‘ is semisimple. Let & ¥ be the identity element of the
ideal %¥* of wf (§1.5). We define ¢, = ¢% - g¢*,]. &, is then the identity element
for an ideal %, of w?, and %, is the complementary ideal of «¥,; in %« ¥, that is,

A¥ =9, + A¥,, (direct sum).

This amounts to taking the Peirce decomposition of % ¥ (see [1, Theorem 4.48]).
Then we have that %, = A, =% ;‘;/ %*,;. This decomposition leads inductively to an
initial decomposition of wjf':

Wf = g+ Ay + o+ Ay + o+ + Ay - (direct sum).

Since the summands in this decomposition are isomdrphic to the corresponding fac-
tors in the chain (§1.5), that is, since %, = A, we may apply the structure theory

(2)

of Chapter II to them. We denote by %A ..~ that ideal of A, which is isomorphic to

A(r’\) . The results of Chapter II which may now be applied to w? are summarized in

the following theorem.



16 Wm. P. BROWN

MAIN THEOREM 3.2A. In the semisimple case the algebrva wi may b
pressed as

m m
wi = 2 Ay @ivect) = 2 (Hf_zl_)x c r) (divect),
=0 r=0

wheve m =[f/2]. Iy 5. is a subalgebra of . that is isomovrphic to the gi
algebra of the symmetvic group Ss¢_,.. €, is a tolal matrvix algebra of d
M(f, r) over the ground field. Each summand is a two-sided ideal of wy, ¢
has the furthey decomposition

2
Mg ppX Gy = ), 1V ¢,

Ay =
oy
= 2 A 9) (direct).
(A)
Each % 9) = (A)X €, is a simple two-sided ideal of U ... H()\) is that sir

ideal of 1I;_ which corvesponds to the pavtition (A) of f - 2r. The sumn
over all partitions (A).

The dimension of the simple ideal U (3) is ff - [M(, r))?, where f, ist
gree of 11 () over the gvound field, and M(, r) is the degree of G ,:

f1

M, r) = z—rrl(% T

CHAPTER IV

REPRESENTATIONS OF w} AND O(n) ON TENSOR SPACE

4.1. INTRODUCTION

Let P be a vector space of dimension n over K. At the outset, a basis

e, €, ***, €, is chosen in P. A scalar product (x,y) is defined for elemeni
and y of P: if

n n
x=2 xe; and y=2 yie
i=1 i=1

then (x, y) = Ei X;y;. The group O(n) of orthogonal transformations on P

fined, relative to this scalar product, as the set of those nonsingular linear t
mations A of P, x> Ax, for which (Ax, Ay) = (x, y) for all x and y in P.

Let Pys be the space of tensors of rank f over P. We take as basis for t
the “products” e ei, - eig, where each index i has the range 1 to n. We d
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these products by &€(i, i, *-- ig) or simply by ¢ [i], [1] denoting the f-tuple
(i, i, --* if). A tensor F of Py may then be written in terms of its components as

F =2[.]F[1] £[i]. A scalar product of tensors F and G in P; is defined as
1

2 g Frileh]

If a linear transformation A of O(n) is performed in P, the components of a
general tensor of rank f undergo a linear transformation A The set of transfor-
mations {Af} corresponding to elements A of O(n) forms a representation of O(n).
For our present purposes, since bases for P and P¢ have been chosen, an element
A of O(n) may be regarded as an orthogonal matrix, and the corresponding element
Af ag its Kronecker f'? power AXAX...xA ( times).

In using f-tuples such as [i] as suffixes for the components of tensors or ma-
trices, we will need some method of ordering them. If the range of the i’s is 1 to
n, then there are nf distinct f- tuples [i]= (i, i, -.- ig). We assume that lexicographic
ordermg has been selected. The entry in the [1] row and []]t column of the ma-
trix of any linear transformation of P¢ may be written

a(il, [i]) = a(i, i, - ig; §yda e Jf)’
and the matrix itself may be written as [a(i], [j])]. I Af- [a(i], [§])], then

a(il, D=3, ; a

LR PR
11, 1e)f

where a;; is the element of the ith row and jth column of A. Symbols such as F
will be used to represent both a tensor of P; and the column vector whose [j]th
component is F[j]. Then, for any linear transformation U of P, UF will denote
both the transform of the tensor ¥ by U and the product of the nfxnf matrix U
by the nfx1 matrix F. So if U =[u(i], [j])], we have

WP = 3wl [DF[]

[3]

For wf the representation on P; which we consider has been described by
Brauer [ 2, Section 5]. The correspondence between a dlagram U and the matrix U
by which it is represented is as follows: f indices 1i,, i,, -+, if are associated with
the dets in the upper row of the diagram, and f indices j,, jz, ++s, j§ with the dots of
the lower row; and

U([i], [i]) = 8(k, k;) 8(ky ky) -+ 0k | Kyp),

where k,, k,, ***, k¢ are the indices i,, i,, ---, if, j,, ***, jf, arranged in such a way
that the dots corresponding to k,;_; and k,; are joined in U.

The importance of w? arises from the fact that, for a given n, its representa-
tion on P¢ consists of all matrices which commute with every matrix of the repre-
sentation of O(n) on P;. It follows that if U denotes an element of wn and the
transformation by which it is represented, then UP¢ = {UF |F € P¢} 'is an invariant
subspace in Pg for the representation of O(n). Indeed if A e O(n), we have

Af(UF) = (AfU)F = (UAD)F = U(ATF) e UP;.
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4.2, WEYL’S DECOMPOSITION OF TENSOR SPACE

A subspace of tensor space which is invariant under the representation
will in the future be called simply an invariant subspace. The concluding g
of §4.1 shows that, for each U in w?, UPy¢ is an invariant subspace.

In Chapter V, §6 og [6], Weyl obtains a decomposition of tensor space I
invariant subspaces Ps. The subspaces are obtained by “trace operations’
present chapter we will identify Pf with the invariant subspace & .Pf, whe
is the identity element of the ideal % ,. Consequently we assume the existe
% and of its identity element. This assumption is not valid in general, so
section of our theory is mcomplete Nevertheless, Weyl’s decomposition ¢
it is made without reference to wf¥, is valid as a d1rect decomposition of P
variant subspaces, for any values of n and f. The remainder of this sectic
description of Weyl’s decomposition.

.The 12-trace of a tensor F of Py is a tensor F,, of Ps_, whose comj
are obtained from those of F by contraction with respect to the first pair ¢
In terms of components:

n
Fyolig ig + ig) = Y Fliidg - ip).
i=1

More generally, the ag-trace of F is defined for 1< o, g8 <{as the tensor
with components

Faﬁ (g oor | oor | oer i) = E 6(iy jB)F(iliz...jf)
a . .
B iy iy
(a stroke like | means that the argument i, is missing). The set of tenso

o
whose traces are all zero is an invariant subspace P‘f’ of P;.

The subspace P%* (which Weyl denotes by PfT) is defined as the space
tensors & whose components are of the form
(1) B[i] = 6(i, i) F12(ig iy ** i) + -

e 4 5(iaiﬁ)FaB(i1 I IR I R
a B

There are f(f-1)/2 summands corresponding to all choices of a, g in 1 <
Each F2B is an element of P¢_,. Weyl shows that the expressmn

(2) , P, = P + P}*

gives a direct decomposition of P; into invariant subspaces. The subspace
then treated in a similar way. A subspace P1 is taken, of tensors of type ¢
but with the additional restriction that each ténsor FaB of P¢_» which occu
have its traces zero, that is, F@8 ¢ P2_,.
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The definition proceeds. Pf* is defined as the subspace of P¢ spanned by tensors
whose components are of the type

(3) 4] (ia], iaxl) v 6(iar 1a3'[‘)¢(1ﬁ1 162 s I'BV).
Here ¢ is any tensor of rank v =f - 2r, that is, ¢ € Py,.

|a1 o) Iaz a, I Iar o IB1 [ Bvl

is any dissection of the row of indices 1, 2, --- f into r portions of length 2 and one
of length v; the arrangement of the r portions of length 2 and the order of the indi-
vidual members within each portion are immaterial.

Pf is defined as the subspace of P;* for which the tensors ¢ in (3) are sub-
jected to the restriction that all their traces vanish, that is, that ¢ belongs to P%
rather than to P,. Weyl gives the name “tensors of valence r” to the elements of
P{. Each P§ and P{* is an invariant subspace of P, and the expressions

4) Pf=P‘f’+P%+---+P§ +---+P§n (m =[1/2])
and
(5) P =PI +PITl 4.y

are direct decompositions of P; and P§* into invariant subspaces.

If FePs;and FaB in P¢_p is the aB-trace of F, we may call Fyg “a first
trace” of F. A trace of FozB may then be called “a second trace” of F, and by re-

peated contraction we may define an r*" trace. Indeed, if |, af |, o} |- } o, a&]
are 2r distinct integers of the set 1, 2, *-+, f, then the tensor of P;_, whose com-
ponents are given as

©) F(a)(iﬁl ti) = }(Z)es(ia1 ia,l) 5(iaria.r)F(il i, e i)
(8

is an rtP trace of F.

By the definition of the space Pf , any of its elements may be written as a sum
of elements of type (3), with ¢ in P2 , . It is easy to show that, for s > r, every
s® trace of an element of P} is zero.

4.3. THE SUBSPACES ¢ ,P¢

We will assign specific bar arrangements to the indices 1 and M = M(f, r) of the
r-bar scheme. These are most easily represented diagrammatically (see Figure 12).

1 0——0 O—0--+-0——0 - « = = ~ + - 0 0 0

M 0 0 0 - - - - - - .. 0—0----0— o0—0

Figure 12,
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LEMMA 4.3A. If Ue u%, then UPC PL*,

Proof. The subspace B, of w’f‘ has a basis of diagram elements oU_ij.
show that, for any U in %% and each F in Py, the tensor UF can be writte
form

UL F, + U3F, + - + UMF,,,

with Ug in 8, and Ug F, in PJ* for each « in [1, M].

An element U of %¥ is a linear combination of basis elements whose dia
have r or more bars. If aUg € B, where s > r, then the upper row of it
gram has s bars, and to any subset consisting of r of these bars correspor

index o of the r-bar scheme. Since Ug € B has this bar arrangement in
its rows, and since it possesses the identity permutation of S¢_,,., we see

p_1
O'Uq_

T Ug (oUg). Any element U of %} may therefore be written as

U=UiU, + UZU, + - + UI\I\;IIUM,

where the U have been defined and U, -+, Uy are elements of % *. In ge
the expression is not unique. We now have that, for any F in Py,

M
= o _ o
UF _(2 U2 Ua)F = J UGF,,
a=l1
where F, = Uy, F. We now show that Ui F € Pf* for every F in P;.

UF)[] = 2o 665, ip)e+- 6lizp_y inp)d(y Jo) e Sy 1 izs)
[i]
* Bippr1 Jors1) o 0l i F(y p o ip
= 0(iy ip)eer 002,y ipp) Blipppy o ig),

where ¢(iz,.4p ** if) = 2 F(i, iy ip ip ++ iy iy ip,.4q ++- ig). The summation i
repeated indices. ¢ is seen to lie in P¢_,,., so that Ul F lies in P§*. The :
showing that, for each F, Ug F lies in Pf * is not essentially different. He:
UF € P{*, and the lemma is proved.

LEMMA 4.3B. Each tensor & in P may be written in the form
®=ULF, + USF, + - + Ut Fp,

wheve Uy € Brand Fy e Ps for 1< a <M.

Proof. @& is a linear combination of tensors of the type occurring in for
(3) of §4.2. If o is the index of the r-bar scheme which is associated with t
arrangement in which bars join dot o; and dot o for 1 <i<r, then

(Ug Fil = 80y, ia.l) e 0lig :‘la.r)F(m)(iB1 g, " ig ),

v
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where F(y) is given by components in formula (6) of §4.2. It is easy to show that the
mapping F > F(y) is of Py onto P¢_5,, so that F can be chosen in such a way that
F(a) = ¢, for any ¢ in Pf_;...

THEOREM 4.3C. If the identity element € ¥ of the ideal U % exists, then
Pr* =& *Pf

Proof. (i) Let Fe e ¥Pyg; then F= ¢fF e Pf* by Lemma 4.3A, since ¢} e 9}
Hence & XP;C Pf*.
(ii) Let F ¢ Pf*. By Lemma 4.3B, F = Ea UZF, with UZ in ®,c u%. Hence

€ ¥*F = F, and therefore F ¢ £*P;. Hence Pf*C £XP , which with (i) gives the re-
quired result.

4.4. THE SUBSPACES ¢ .Pg¢

The mapping GU}'—> o~? Ui] = 60U} of w? onto itself has been mentioned in §1.2,
where it was introduced by the inversion of diagrams. We saw in P, that for basis
elements it is an involution. By 11nea.r1ty it may be extended, as an involution, to
the whole algebra. If an element U of wf' has the matrix [u([1] []])] , then U has
the matrix [u((jl, [i])], i.e. the matrix for U is the transpose U7 of the matrix for
U. It follows that if F and G are elements of P, and if U is an element of w§,
then

(UF, G) = (F, UTG) = (F, 0G), )
where (F, G) is the scalar product defined in §4.1. We will, in the remainder of this
chapter assume the semisimplicity of % ¥*. This will imply the semisimplicity of
[, and A ¥, and the existence of 1dent1ty elements ¢ %, ¢, and g¥%,,.

LEMMA 4.4A. ¢ %= £ ol

Proof. Since the involute of an s-bar d1agram is again an s-bar dlagram
{* = o ¥. In particular, £ ¥ e A% Since g ¥ is an identity element for & X, itis
also an identity for % }. The uniqueness of a two-sided identity element gives the
result,

COROLLARY 4.4B. ¢, = ¢,.

This is an immediate consequence of the lemma, since ¢, = ¢¥ - g¢%¥;;. Now
it follows that, for any F and G in P, (£ _.F, G) = (F, &.G).

Weyl’s method of obtaining the decomposition of tensor space [(§4.2, formula (4)]
amounts to showing that

(1) PI* =PI + PFtix

is a direct decomposition of an invariant subspace Pf* mto invariant subspaces P§
and Prﬂ* For this Weyl shows that, over a real field, P; is the orthogonal com-
plement of PFt1* in PF* relative to the scalar product (F, G). An irrelevance
argument shows that the decomposition is direct for an arbitrary field of character-
istic zero.

THEOREM 4.4C. ¢ ,.Ps=Ps.

We first assume that the field K is real. We also assume Weyl’s result that P§
is the orthogonal complement of P tlx in Pf*
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By Theorem 4.3C, and by the fact that ¢¥= ¢,.+ ¢¥,;, we have
(2) Pf*=€rPf+€’;+1P£.
In addition, we have Weyl’s decomposition

* — +1%
(1) PI* =PI + PItl¥,
Since P§ tlk = ¢ %, Py, the subspace Pf“ * is common to both decomposit
Over a real field, the orthogonal complement is unique. It is therefore suff
to show that every element of € .P; is orthogonal to every element of

r
Pe* = ¢1,) Py

This is so since (&, F, €¥,1G)=(F, e, ¢*,,G)=0forall F and G in P
when the field is real, € ,.P;=Pjf.

The whole theory up to this point is valid for any field K of characteris
In particular, the construction of identity elements ¢ ,. goes through in the 1
rationals. The validity of our theorem over the rationals ensures that it is
over any extension.

Weyl has shown [5] that the algebra is semisimple for n > 2f. For this
makes use of certain properties of the representation of the algebra. A mo:
application of his method can be used to show that the algebra is semisimpl
only if n > f - 1. It is expected that a paper exhibiting this result will be pt
shortly in the Annals of Mathematics.
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