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Davis’s Inequality for Orthogonal Martingales
under Differential Subordination

Ropr1GO BANUELOS & GANG WANG

1. Introduction

Consider twdH-valued semimartingale¥ andY, whereH is a separable Hilbert
space with nornj-| and inner product, -). We denote byF = {F;},-0 their com-
mon filtration, which is a family of right-continuous subields in a probability
spac€ 2, A, P}. We also assume th&f, contains all the sets of probability zero.
We use the notationX], Y] = {[X, Y],};>0 to denote the quadratic covariation
process betweeX andY (see e.g. [DM]). Unless otherwise stated, we assume
that all semimartingales have right-continuous paths with left limits (r.c.l.l.). For
notational simplicity, we useX] = {[X].}:>0 to denote K, X].

Since all the results in the paper are invariant under Hilbert space isomorphisms,
we can restrict to the spaces of square integrable sequences.

We say that is differentially subordinatéo X if [ X], —[Y ], is nondecreasing
and nonnegative as a function ofA slightly weaker notion of martingale dif-
ferential subordination was first introduced by Burkholder for discrete-time mar-
tingales and certain stochastic integrals (see [Bul; Bu2; Bu3; Bu4; Bu5; Bu6]
for connections and applications to various settings in Banach spaces). For con-
tinuous parameter martingales with continuous paths, this definition was intro-
duced by Bafiuelos and Wang [BW1] and for continuous parameter martingales
by Wang [W]. With this definition of subordination, Bafiuelos and Wang [BW1]
and Wang [W] extended various sharp martingale inequalities of Burkholder
[Bul-Bu5] from the discrete-time and certain stochastic integral settings to gen-
eral continuous parameter martingales. In particular, the following theorem was
proved in Wang [W] (see also [BW1]). We use the notatjpti||, to denote
SUR. oll X -

THEOREM 1.1. LetX andY be twoH-valued continuous-time parameter martin-
gales such that is differentially subordinate t&. Then, forl < p < oo,

YN, < (p* = DIXIlp- (€Y

This inequality is sharp, and it is also strictjf# 2and0 < || X, < oo.
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This sharp martingale inequality has many important applications in analysis. For
example, leB: LP(C) — L?(C) be the Beurling—Ahlfors operator defined by

1
Bf(Z) = _; F)V[C (f

Using (1.1) and theepresentation of this operator as the conditional expectation
of certain stochastic integrals, it was proved in [BW1] that

IBfll, =4(p" =DIfll,, 1<p <oo,

wherep* = max{ p, ¢} with ¢ the conjugate op. The interest in estimatingBl||,
comes from the now well-known conjecture of Iwaniec [I1] which asserts that
| Bll, = p* —1 This conjecture has many applications in partial differential equa-
tions, quasi-conformal mapping, and complex analysis (see [A; IK; IM; IMNS]).
The constant ép* — 1) is the best-known upper bound fB||,. Furthermore,
there is no analytic proof of this bound available. An extension of this estimate to
the Beurling—Ahlfors operator in several dimensions is presented in Bafiuelos and
Lindeman [BL].

Another interesting application of martingale differential subordination in analy-
sis is to the norms of the Riesz transforRis L?(R") — L?(R"), j =1,...,n,
defined by

f(&)
— 7 dm(z).

X;— y;
R; = Cnf |xj_—y|nj+lf(y) dy, 1.2)
wherex = (xy, ..., x,) € R" and
n+1
e
n T[(’H‘l)/z.

In order to calculate the nornii; ||, (1 < p < o0), we need to introduce another
definition. We say that twdl-valued martingaleX = (X3, X»,...) andY =

(Y1, Yo, ...) are orthogonal if, for each j, [X;, ¥;]; = O for allz > 0. This def-
inition was introduced in [BW1], where the following theorem was proved when
both X andY have continuous paths. The result for general continuous parameter
martingales is contained in [BW2]. Ford p < oo, set

T g
C, =cot 2 and E,=cs 2 )

THEOREM 1.2. LetX andY be twoR-valued continuous-time orthogonal mar-
tingales such that is differentially subordinate t&. Then, forl < p < oo,

IYll, = ColiXNl, and [VXZ+Y2| < E,lX],. (1.3)

These inequalities are sharp, and they are strict unless 2 or ||X||, = oo.
Moreover, ifl < p < 2thenX may be taken to bE-valued, and if2 < p < oo
thenY may be taken to bE-valued.

The best constants in these inequalities are not known whenXathd Y are
H-valued. The inequalities (1.3) are martingale versions of the inequalities of
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Pichorides [P] and Essén [E] for conjugate harmonic functions. Using (1.3) and
the representation of the Riesz transforms as conditional expectation of martin-
gale transforms [B1; B2], it was proved in [BW1] thiR;||, = C, and that
I/1R; 12+ |I|2Hp = E, forl < p < oo, wherel denotes the identity operator.
The first of these results had been proved earlier by lwaniec and Martin [IM] using
the Calderon—zZygmund method of rotations.

Several weak-type inequalities analogous to Theorem 1.1 are also well known.
The following inequality was first proved by Burkholder [Bu2] for discrete-time
martingales and certain stochastic integrals and by Wang [W] for general contin-
uous parameter martingales.

THeEoOREM 1.3. LetX andY be twoH-valued continuous-time parameter martin-
gales such that is differentially subordinate t&. Then, for any. > 0,

AP(IX|+ 1Y =2) <21 X1 (1.4)
the inequality is sharp.

Inequality (1.4), and all the similar weak-type inequalities to follow, should be
interpreted as

AP(SUB(X, |+ Y,) = ) < 21Xl
>0

As in theL? cases, this inequality has important applications to systems of con-
jugate harmonic functions. The following theorem is due to Burkholder [Bu3;
Bub].

THEOREM 1.4. Letu andv be twoH-valued harmonic functions on a domain
D c R". Let Dg be a bounded subdomain Bfsuch thatoDy C D, whereaDy
denotes the boundary @fy. For & € Dy, assume

)] < [u®)l, (1.5)
[Vv| < |Vu| on D. (1.6)
Then, forr > 0,
el + 1ol =0 <2 [ juldu @7
dDo

wherep is the harmonic measure diDg with respect t&. Moreover, the in-
equality is sharp because it is already sharp in the inequality

uevl =0 <2 [l du. L8)
dDg

If the harmonic functiong andv satisfy conditions (1.5) and (1.6), we say that

is differentially subordinate to (as defined in [Bu3]). If the harmonic functian

is the conjugate function of and if v(§) = u(&), then conditions (1.5) and (1.6)

are satisfied. In addition, the Cauchy—Riemann equations implWwtha¥v = 0.
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The analog of inequality (1.8) is the Kolmogorov weak-type inequality for conju-
gate functions. The best constant for this inequality was obtained by Davis [Da],
who showed that—i§ = 0, v(0) = 0, and Dy is the unit disk—then

Awo(lvl = 2) < K | |uldpo; 1.9)
dDg

here (and for the rest of this paper)
b ptg gt
I E A
Furthermore, the inequality is sharp.
The inequality (1.9) was recently generalized by Choi [C] to an arbitrary pair
of harmonic functions andv which satisfy the differential subordination and the
orthogonality condition but which are not necessarily conjugates of each other.

Following the martingale definition, we say that two real-valued harmonic func-
tionsu andv defined onD areorthogonalif

Vu-Vv=0 onD.

Choi's result is as follows.

THeoreM 1.5 [C]. Letu andv be twoR-valued harmonic functions on a domain
D C R". Let Dy be a bounded subdomain Bfsuch thatoDg C D. For & € Dy,

assume
@I < [u®)l,
[Vv| < |Vu| on D,
Vu-Vv=0onD.
Then, forA > 0,

aelvl =) < K [l du.
dDg

The inequality is sharp.

The interplay between martingales and harmonic functions is very rich and broad.
In almost all situations, sharp inequalities for harmonic functions correspond to
sharp martingale inequalities under the appropriate setting. In this paper we will
establish this relationship for Theorem 1.5. Namely, we will prove the analog of
Theorem 1.5 in the martingale setting, which can also be viewed as an analog of
Theorem 1.3 with the extra condition of orthogonality. This result is motivated by
the fact that the orthogonal martingales arising in the representations of the Riesz
transforms are not simply harmonic functions composed with Brownian motion.
Hence, knowing only the theorems for harmonic functions gives no information
for the Riesz transforms. The main result of the paper is the following theorem.

THEOREM 1.6. Let X andY be twoR-valued continuous-time—parameter or-
thogonal martingales such thitis differentially subordinate t&. Then, for any
A >0,



Davis’s Inequality for Orthogonal Martingales 113

AP(|Y] = 4) < K[| X1,

whereK is the constant itf1.9). The inequality is sharp. Moreovek, can beH-
valued andy can be a nonnegative supermartingale.

ReEMARK 1.7. The numerator in the expression #rcan be written a§§(2),
wherez (2) is the Riemann zeta function evaluated at 2. The value of this expres-
sion is?/8. The denominator, as pointed out to us by the referee, is the famous
Catalang(2) constant (see [AbS]), which arises in several settings and whose
value is 0.9159655... (Itisinteresting that the connection between Davis’s con-
stant and Catalan’s constant had not been noticed before, as far as we know.)

REMARK 1.8. The extremal case is already covered by the classical case of con-
jugate harmonic function composed with Brownian motion. Note also that, under
the condition of Theorem 1.6 (as shown by Lemma 2.1), the martirgaleces-
sarily has continuous paths.

The results just discussed, as well as the methods employed in proving them,
have raised several interesting problems related to singular integrals and also to
guasi-convexity and rank-1 convexity—notions that arise in the calculus of vari-
ations. We refer the reader to [BaM; BL; 12], where many of these connections
and problems are discussed. Here, we just mention a few problems condefning
estimates for some basic and classical singular integrals.

The Beurling—Ahlfors operator and the composition of two Riesz transforms
R;R; are examples of a singular integral of even kernel. It follows from Theorem
l1lthat, forl< p < oo, |RiR;|l, < (p*—Dforanyi, j =1,..., n(see [BWI]).

This inequality is not sharp. However, it is interesting that, as in the upper bound
for the Beurling—Ahlfors operator discussed previously, there is no analytic proof
available for this bound. These are all examples of singular integrals of even ker-
nels for which the analytic techniques available give no useful information about
their L” constants. For example, the best one can say with the classical Calderon—
Zygmund method of rotations is thgR, R; ||, < cot?(r/2p*). This constant does

not even have the correct behaviorpas> oo or 1.

Another interesting open problem is the identification of the best conStant
the weak-type inequality

C
mi{x R f ()l = A = — [ ]l

At this point, nothing seems to be known ab6@ubutside of what follows from the
general theory of singular integrals. It is not even known if the congtaran be

taken as independent of the dimension; this problem is raised in [S2]. The reason
we cannot make any conclusions abouffrom Theorem 1.6 and the representa-
tion of the Riesz transforms as conditional expectations of orthogonal martingales)
is that—unlike theL? inequalities—weak-type inequalities are not preserved by
the conditional expectation operator. Nevertheless, we believe there is now con-
siderable information toonjecturethat the best constant for the Riesz transforms
should not be larger than that for the Hilbert transform—that is, Davis’s contant
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2. Proof of Theorem 1.6

Let X andY be two semimartingales that are r.c.l.I. We denote the “jump process”
of X andY by

AX = {AXz}zzO ={X; - Xr—}tzo
and

AY = {AYz}rzO ={Y, - Yt—}rzo,

respectively. We also usg® = {X¢},-0 andY ¢ = {¥,°},>0 to denote the contin-
uous part ofX andY, respectively. Lemma 1 in [W] shows that, for every
0, |AY,| < |AX,|if Y is differentially subordinate t&. If X andY are orthog-
onal, then Lemma 1 in [BW2] shows thea X,, AY,) = O for everyr > 0. If Y
is one-dimensional then, for every> 0, eitherAX, = 0 or AY, = 0. Thus,
|AY;| = Oforallr > Qif Y is differentially subordinate t&. Therefore, combin-
ing the two lemmas yields the following observation.

LemMma 2.1. Let X be anH-valued semimartingale, and |&t be a real-valued
semimartingale in the same filtration. Thé&nis differentially subordinate and
orthogonal toX if and only if [X¢], — [Y¢], is a nondecreasing and nonnega-
tive function ofz, X andY ¢ are orthogonal |Yy| < | Xo|, andY has continuous
paths.

We now assume tha&f is anH-valued martingale and th&tis a real-valued mar-
tingale such that is differentially subordinate t& and thatX andY are orthog-
onal. In order to prove that

APlsupy,| > 2} < KX,
>0
we may assume that= 1. Also, by a “stopping time” argument (see [W]) it is
enough to prove that
P{|IY,| >} < K|X;|ly forall r=>0. (2.1)
Since
P{Y:| = 1} — KX/l = E(yy, =1 — KIX:]),

proving (2.1) is equivalent to proving that

EV(X,, Y) <0, (2.2)
whereV: H x R — R:
1-K|x| if [y[=1,
Vi(x,y) ={ .
—K|x| if |y] <1

To prove (2.2), we introduce a new functigh: HxR — RgivenbyW(x, y) =
W( x|, |y]), whereW : R? — R is defined by

|x] if [yl =1

Wi = { Wig(x,y) if [yl <1
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Hereg: S — H is a conformal mapping from the strip = {z = (x,y) :
|y| < 1} into the upper half-planél = Ri ={¢ = (a,B) : B > 0}, given ex-
plicitly by
¢ =9@) = p(x,y) = ie™?* = (P cog 5 (y + 1), e sin(%(y +D));
W(a, B): H — Ris the Poisson integral of the function— §|In|a||. Thatis,
2 (> Blinj

W B =12 /_m (@—12+p2
We first study the functiov. The following properties have been established
in [C].

LEmMA 2.2. The functionW satisfies the following properties.
(a) W is continuous orR? and harmonic everywhere except on the(get y) :
x =0, |y| > 1} and possibly at the boundary §f |y| = 1. Moreover,
Waix(x,y) > 0and Wy, (x,y) <0
inS.
(b) W is symmetric inc and iny. That s,
W(.X, )’) = W(_X, y) = W(.X, _y)
Therefore,
WX(O, y) = Wy(xs O) = ny(x, O) = ny(o, y) =0.
(c) We have that
1 b gttt

=K = .
W(0,0) 1-2+L-L+L—--

(d) W(x,y) > |x| forall (x,y)eR2.
(e) f U(x,y) = 1— KW(x,y), thenU(x,y) < 0if |y| < |x|. Moreover,
V(x,y) < U(x,y) forall (x,y)eR?

By (e) of this lemma and the fact thgty| < |Xg| (which follows from Lemma
2.1), inequality (2.2) is implied by
EU(|X:|, IY:]) < EU(|Xol, [Yol). (2.3)
Define the stopping time as
T =inf{r >0:|Y,| >1}.
LetZ ={Z,};>0 = {U(| X;arl, |Yin7])}s=0. Our goal now is to show that

EU(X:|. |Y:]) < EZ; (2.4)

and that
Z, is a supermartingale. (2.5)
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Clearly, if the two preceding inequalities hold then
EU(IX:|,1Y,) < EZ, < EZo = EU(|Xol, |Yo),

which proves (2.3).
To prove (2.4), note that

EU(X.], YD) = E[UX:1, 1Y, DIy=1] + ELUUX:1, 1Y DI<1y]-

By Lemma 2.2(d)W (X, Y;) > |X,|. SinceX is a martingale|X| is a submartin-
gale. Thus,

E[|X:|Iy=1)] = ECE(|X: | Fr)lu=1)) = E[|X7|Iy=1)].
Consequently,
E[UX, 1Y) y=1)] = E[Q— KW(X;, Y) =71
< E[Q- K|Xt|)1{tzT}]
< E[QA-K|[XrDIy=1)]
= E[1— KW(X1, YT ) ;1=1)]
= E[U(X7|, YD Iy=1)]-
Here we have used the fact th&y| = 1 on{tr > T}, since (by Lemma 2.1} has
continuous paths.
RemARK 2.3. Note that the foregoing argument shows that
EU(X:, |R/]) < EU(|X/asls [Rins]) (2.6)

for any real-valued right-continuous path-adapted proéess {R,};-0, Where
S = inf{t > 0 :|R;| > 1}. In particular, it holds for nonnegative supermartin-
gales with right-continuous paths.

It remains to prove (2.5). This is equivalent to showing that

{WXinr, Yiar)hizo = {W(Xiazl, [YiarDhizo 2.7)

is a submartingale. For this we shall need a few more propertiég. dfhese

are given in the following sequence of lemmas. Most of these are extensions of
the arguments given by Choi. First we observe that the argument given in [C,
Lemma 3] shows the following result.

LEMMA 2.4. We have
lim We(x,y) =1 lim We(x,y)=-1
X—>00 X—>—00

(x,y)€S (x,y)eS
XIE;nOO W\' (xa )’) = 0’ JCETOC W/y (-xa y) = 07
(x,y)esS (x,y)eS

x||—>moo Wie(x,y) = 0, xﬂrpoo Wix(x,y) = 0.
(x,y)eS (x,y)€S
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LemmMma 2.5. Define the functiom(x, y): H — R by
1t oyl
A(x,y) = — —— dt,
&= /_1 G021y
which is the Poisson extension of the functior |f|1;<1. Then
0< liminf Ay(x,y) < limsup A,(x,y) <1

(x,y)—(0,0) (x,y)—>(0,0)
(x,y)eH (x,y)eH
x>0 x>0

—1< liminf A,(x,y) < limsup A.(x,y) <0

(x,y)—(0,0) (x,y)—(0,0)

(x,y)eH (x,y)eH

x<0 x<0
Moreover,
liminf A, (x,y)>0 and Ilimsup A, (x,y) <0.
(x,y)—(0,0) (x,y)—(0,0)

(x,y)€H (x,y)eH

x<0 x>0

Proof. It is easy to see that

TA(x,y) = %(In((x D2+ y) +In((x + D%+ y?) — 2In(x? + y?))

X x—1 x+1
+ x| 2 arctan- — arctan—— — arctan—— ).
y y
Hence,
y y
TA(x,y) = —
B P i R P B
X x—1 x+1
+ 2 arctan— — arctan—— — arctan——
y y
_ y _ y
(xr+D2+y%  (x =D+ y?
2xy X
- arctanﬁ + 2 arctan-.
yé—x¢+1 y

Sincey > 0, we have
0< liminf Ay(x,y) < limsup A,(x,y) <1,

(x,y)—(0,0) (x,y)—(0,0)
(x,y)€eH (x,y)eH
x>0 x>0

—1< liminf A,(x,y) < limsup A,(x,y) <O0.

(x,9)—(0,0) (x,9)—(0,0)
(x,y)eH (x,y)eH
x<0 x<0
If (x, y) € H then we also have
2(x + Dy 2(x =Dy
TA(x,y) = — +
S R (I | AR (R | e
y y 2y

T o121y A1 4y2 2
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and
Axy 2y((x + D3+ 3(x + D2 + xy?)
T[Axxx(x’y):_ 2 AV 2 23
(x%+y°) ((x + D=+ y2)
2y((x =3 = 3(x — D2+ xy?)
(x =D2+y?)3
Thus,
liminf Ay (x,y)>0 and limsupA,,.(x,y) <O0.
(x,5)—(0,0) (x,)—(0.0)
(x,y)eH (x,y)eH
x<0 x>0

These give our next lemma.

LemmMma 2.6. The following hold fow:

0< liminf W.(x,y) <

limsup Wi(x,y) <1,
(x,y)—(0,£1)

(x,y)—>(0,£1)
(x,y)€S (x,y)€S
x>0 x>0

—1< Iliminf Wy(x,y) < limsup W,(x,y) <0,
(x,y)—(0,£1) (x,y)—(0,£1)
(x,y)es (x,y)es
x<0 x<0

0< liminf Wy (x,y), and limsup W, ..(x,y) <O0.
(x,y)—(0,£1) (x,y)—(0,£1)
(x,y)es (x,y)es
x<0 x>0

Proof. We will prove

0< liminf Wy(x,y) < limsup W.(x,y) <1

(x.y)=>(0,-1 (x,y)—(0,-1
(x,y)€s (x,y)es
x>0 x>0
—1< liminf Wc(x,y) < limsup W,(x,y) <0,
(x.y)~>(0,-1 (x,»)—(0,~1
(x,y)€S (x,y)es
x<0

x<0

0< liminf W..(x,y), and

lim sup Wxxx(xv y) = 0.
(x,y)—(0,-1) (x,y)—>(0,-1)
(x,y)eS (x,yeS
x<0

x>0

The other limits are similar (simply replaggx, y+1) in the proof byA(x, y — 1)
and perform a reflection about= 1).

Following the proof of [C, Lemma 5], leB(x, y): S — R be given by
B(x,y)=W(x,y) — A(x,y+ 1.
ThenB is harmonic onS and, for anyjxg| < 1,

lim B(x,y)=0.
(x,y)—(x0,—1) (x.)

(x,y)€S
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Thus, by the reflection principle, there is a harmonic extenBidnw, y) of B(x, y)
on{(x,y):—1<x <1 —3 <y < —1} such that

B*(x,y)=—B(x,—-2—y)=—-B*(x,-2—y), —-1l<y<-3

Since
B*(x,-1) =0,
we have
Bi(x,-1)=0 and B}, (x,-1)=0.
Therefore, the conclusions follow from Lemma 2.5. O

If in the proof we replacei(x, y £ 1) by | x|, we have the following.

LEMMA 2.7.
lim W.(x,y) =1
(x.)=> (x0,£D) 5% )
(x,y)€S
whenxg > 0, and
lim Welx,y)=-1
(x,9)— (x0,£D) x(x )
(x,y)eS

whenxg < 0. Moreover,

lim Wi (x, )’) =0.
(x,y)—>(x0,%x1)
(x,y)es

We may combine these lemmas as follows.

LEMMA 2.8. Let(x,y)eS.Then—1< W, (x,y) <0, Wy (x,y) >0ifx <0
and0 < W (x,y) <1 andW,(x,y) <0ifx > 0.

Proof. We prove the first part; the rest is similar. ClearWy, is harmonic on
{(x,y):(x,y) €S, x <0} and continuous 0. By Lemma 2.7,

lim W,(x,y)=-1 and im Wi (x,y)=0
(x,y)— (x0,%1) (x,y)—>(x0,%1)
(x,y)esS (x,y)es

whenxy < 0. By Lemma 2.4,

lim W.(x,y)=-1 and lim Wy (x,y) =0.
X—>—00 X—00
(x,y)es (x,y)es

Part (b) of Lemma 2.2 implies that
Wi(0,y) =0 and W;(0,y) =0
if —1 < y < 1 Finally, Lemma 2.6 implies that
—1< liminf Wy(x,y) < limsup W.(x,y) <0

(x,y)—>(0,-1) (x,y)—(0,-1)
(x,y)eS (x,y)€S
x<0 x<0

and
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liminf ~ Wy, (x,y) > 0.
(x,»)—(0,-1)
(x,y)eS
x<0
Thus, the maximum and minimum principle for harmonic functions implies that
_15 Wx(x’y)fo and Wxxx(xay)zo

forall (x,y)e S, x <O. OJ
LeEmMa 2.9. Let(x,y) e S. ThenW,(x, y) — xW,(x, y) > Owhenx > O.

Proof. Fix a|y| < 1. Define
G(x) = Wi(x,y) — xWi(x, y).
Then, by Lemma 2.2(b),
G’(0) = W,(0, y) = 0.
If x > 0then J

- Gy(x) = _-XWxxx(-xv y) > 0
dx

by Lemma 2.8; hence, by the mean value theorem,
G’(x) = 0.
This finishes the proof. O
We shall now prove (2.7). Fore H, let
F="if |x/ 0.

| x|
Then, for|x||y| # 0,

BW(x,y) X;

—— = Wu(x], [yD—,
0x; | x|

BW(x,y)

— = Wy (Ix], IYI)—
dy ’ Iyl

Therefore, forh € H andk € R,
(VeW(x, y), h) = W (Ix], [y (%, h),

IW(x,y)
= Wyl Iy k.
dy [yl
Similarly, if |x||y| # 0 then, since
PWx,y) Axl DL — Wl [yDTL i
_— = xx X . 1
oux;0x; Y ||2 Y ||3 /
PWC, ) (oD Wit pp B
——— = Wy (|x X — =
ox? e e /
2W(x, )

3z = Was(lal. 1yD,
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we have
- _ |h)? — (X, h)?
(VEW(x, y)h, h) = Wee(Ix], [y (X, k) + We(]x], 'y')T’
2W(x, y)
szkz = W,y (Ix], [yDk2.
Hence, if|y| < 1and|x||y| # O then, for all» € H andk € R, we have
- 92W(x,
(V2T (x. yyh, by 4+ XY 2
dy?2
. |h|? — (X, h)?
= We(Ix], [yD(E, h)? + W, (x|, D= Way(lal, ly&?
|h|? — (%, h)?
= (Wi(Ixl, [y]) — |x| Wy (| x], |y|))T + Wee(lxl, [yD (1A% — k?)
> Wee(|x], [yD (1A% = K2). (2.8)
Here we have used Lemma 2.9 and the fact Wigt(| x|, [y|) = —W..(Ix[, [y]),

sinceW is harmonic inS.
Next, letx, h e H, |y| < 1, and|x||y| # 0. We want to show that

W(x+h,y)— W(x,y) — (ViW(x, y)h, h) > 0. (2.9)
Write
W(x +h,y) — W(x,y) = (ViW(x, y)h, h)

= W(x + Al Iy — Wxl, IyD — We(Ix|, lyD(x, h),
and let

G(1) = W(lx +thl, |yD) — W(x], [yD) — tWi(lx], [yD(x, h).

First observe that| x|, |y|) € S implies that(|x + th|, |y]) e Sforall0 <t < 1
Now assume that, forall & r <1, |x + th| # 0. Then

G'(t) = We(lx +thl, [yD{x + th, h) — We([x], [y)(%, k)
and, by Lemma 2.2 and 2.8,

\h[2 = (x + th, h)?

G'(t) = Wyn(1x + th], |yD{x + th, h) + Wy(|x + th], |y])
|x + th|

> 0.

Hence, by the mean value theorem and the fact@@ = G’(0) = 0, we have
G () > 0; this is equivalent to

W(x+h,y)— W(x,y) — (V,W(x, y)h, h) > 0.

To complete the proof of (2.9), assume thereisaf) < 1suchthatx+zoh| =
0. The preceding argument shows that

G(to) >0 and G'(ty) > 0.
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Sincelx+1ph| = O, itfollows thath = —(1/to)x. Therefore|x+th| = |t —to]| A
and|h| # 0. Whentg <t <1,

G (1) = W(t —1ol|h], |y]) — tWi([tol| 2], |yDIh] — W(lzol Al |y])

= W(( — to)lhl, |y — tWi(ltollhl, |yDIR] — W(tol|Al, 1¥]).
Thus,
G'(t) = W.((t — to)|hl, lyDIh] — Wi(ltollhl, [y DAl

and, by Lemma 2.2,
G"(t) = W ((t — to)|hl, |yD|R|? > 0.

Once again, the mean value theorem and the factGliat) > 0 andG'(zg) > 0
imply that
GO = G(to).
Combining these, we have
GQ =0,
which proves (2.9).

To finish the proof, note that the range Bfis contained in the closure ¢f,
where the functiorv is C? except possibly at the boundary $for on |x||y| =
0. Applying [BW2, Prop. 1] tof = —W, we have shown (2.7).

If Y is a nonnegative supermartingale then (2.7) also follows by Itd’s lemma and
the convolution argument used in [BW2, Prop. 1], together with the factithat
is nonpositive in{(x, y) € S : x > 0, y > 0}. To see this last fact, simply use the
mean value theoren¥,, < 0in S, andW,(x, 0) = O for all x € R. Therefore,
we have completed the proof of the Theorem 1.6. O
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