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Davis’s Inequality for Orthogonal Martingales
under Differential Subordination

Rodr igo Bañuelos & Gang Wang

1. Introduction

Consider twoH-valued semimartingalesX andY, whereH is a separable Hilbert
space with norm|·| and inner product〈·, ·〉. We denote byF = {Ft }t≥0 their com-
mon filtration, which is a family of right-continuous sub-σ -fields in a probability
space{�,A, P }. We also assume thatF0 contains all the sets of probability zero.
We use the notation [X, Y ] = {[X, Y ] t }t≥0 to denote the quadratic covariation
process betweenX andY (see e.g. [DM]). Unless otherwise stated, we assume
that all semimartingales have right-continuous paths with left limits (r.c.l.l.). For
notational simplicity, we use [X] = {[X] t }t≥0 to denote [X,X].

Since all the results in the paper are invariant under Hilbert space isomorphisms,
we can restrict to the spaces of square integrable sequences.

We say thatY is differentially subordinatetoX if [X] t − [Y ] t is nondecreasing
and nonnegative as a function oft. A slightly weaker notion of martingale dif-
ferential subordination was first introduced by Burkholder for discrete-time mar-
tingales and certain stochastic integrals (see [Bu1; Bu2; Bu3; Bu4; Bu5; Bu6]
for connections and applications to various settings in Banach spaces). For con-
tinuous parameter martingales with continuous paths, this definition was intro-
duced by Bañuelos and Wang [BW1] and for continuous parameter martingales
by Wang [W]. With this definition of subordination, Bañuelos and Wang [BW1]
and Wang [W] extended various sharp martingale inequalities of Burkholder
[Bu1–Bu5] from the discrete-time and certain stochastic integral settings to gen-
eral continuous parameter martingales. In particular, the following theorem was
proved in Wang [W] (see also [BW1]). We use the notation‖X‖p to denote
supt≥0‖Xt‖p.

Theorem 1.1. LetX andY be twoH-valued continuous-time parameter martin-
gales such thatY is differentially subordinate toX. Then, for1< p <∞,

‖Y‖p ≤ (p∗ − 1)‖X‖p. (1.1)

This inequality is sharp, and it is also strict ifp 6= 2 and0< ‖X‖p <∞.
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This sharp martingale inequality has many important applications in analysis. For
example, letB : Lp(C)→ Lp(C) be the Beurling–Ahlfors operator defined by

Bf(z) = − 1

π
p.v.

∫
C

f(ξ)

(ξ − z)2 dm(z).
Using(1.1) and therepresentation of this operator as the conditional expectation
of certain stochastic integrals, it was proved in [BW1] that

‖Bf ‖p ≤ 4(p∗ −1)‖f ‖p, 1< p <∞,
wherep∗ = max{p, q}with q the conjugate ofp. The interest in estimating‖B‖p
comes from the now well-known conjecture of Iwaniec [I1] which asserts that
‖B‖p = p∗ −1. This conjecture has many applications in partial differential equa-
tions, quasi-conformal mapping, and complex analysis (see [A; IK; IM; IMNS]).
The constant 4(p∗ − 1) is the best-known upper bound for‖B‖p. Furthermore,
there is no analytic proof of this bound available. An extension of this estimate to
the Beurling–Ahlfors operator in several dimensions is presented in Bañuelos and
Lindeman [BL].

Another interesting application of martingale differential subordination in analy-
sis is to the norms of the Riesz transformsRj : Lp(Rn)→ Lp(Rn), j = 1, . . . , n,
defined by

Rj = cn
∫
Rn

xj − yj
|x − y|n+1

f(y) dy, (1.2)

wherex = (x1, . . . , xn)∈Rn and

cn =
0
(
n+1

2

)
π(n+1)/2

.

In order to calculate the norms‖Rj‖p (1< p <∞),we need to introduce another
definition. We say that twoH-valued martingalesX = (X1, X2, . . . ) andY =
(Y1, Y2, . . . ) are orthogonal if, for eachi, j, [Xi, Yj ] t = 0 for all t ≥ 0. This def-
inition was introduced in [BW1], where the following theorem was proved when
bothX andY have continuous paths. The result for general continuous parameter
martingales is contained in [BW2]. For 1< p <∞, set

Cp = cot

(
π

2p∗

)
and Ep = csc

(
π

2p∗

)
.

Theorem 1.2. LetX andY be twoR-valued continuous-time orthogonal mar-
tingales such thatY is differentially subordinate toX. Then, for1< p <∞,

‖Y‖p ≤ Cp‖X‖p and
∥∥√X2 + Y 2

∥∥
p
≤ Ep‖X‖p. (1.3)

These inequalities are sharp, and they are strict unlessp = 2 or ‖X‖p = ∞.
Moreover, if1< p ≤ 2 thenX may be taken to beH-valued, and if2 ≤ p <∞
thenY may be taken to beH-valued.

The best constants in these inequalities are not known when bothX andY are
H-valued. The inequalities (1.3) are martingale versions of the inequalities of
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Pichorides [P] and Essén [E] for conjugate harmonic functions. Using (1.3) and
the representation of the Riesz transforms as conditional expectation of martin-
gale transforms [B1; B2], it was proved in [BW1] that‖Rj‖p = Cp and that∥∥√|Rj |2 + |I |2∥∥p = Ep for 1< p < ∞, whereI denotes the identity operator.
The first of these results had been proved earlier by Iwaniec and Martin [IM] using
the Calderón–Zygmund method of rotations.

Several weak-type inequalities analogous to Theorem 1.1 are also well known.
The following inequality was first proved by Burkholder [Bu2] for discrete-time
martingales and certain stochastic integrals and by Wang [W] for general contin-
uous parameter martingales.

Theorem 1.3. LetX andY be twoH-valued continuous-time parameter martin-
gales such thatY is differentially subordinate toX. Then, for anyλ ≥ 0,

λP(|X| + |Y | ≥ λ) ≤ 2‖X‖1; (1.4)

the inequality is sharp.

Inequality (1.4), and all the similar weak-type inequalities to follow, should be
interpreted as

λP
(

sup
t≥0
(|Xt | + |Yt |) ≥ λ

)
≤ 2‖X‖1.

As in theLp cases, this inequality has important applications to systems of con-
jugate harmonic functions. The following theorem is due to Burkholder [Bu3;
Bu5].

Theorem 1.4. Let u and v be twoH-valued harmonic functions on a domain
D ⊂ Rn. LetD0 be a bounded subdomain ofD such that∂D0 ⊂ D, where∂D0

denotes the boundary ofD0. For ξ ∈D0, assume

|v(ξ)| ≤ |u(ξ)|, (1.5)

|∇v| ≤ |∇u| onD. (1.6)

Then, forλ ≥ 0,

λµξ (|u| + |v| ≥ λ) ≤ 2
∫
∂D0

|u| dµξ, (1.7)

whereµξ is the harmonic measure on∂D0 with respect toξ. Moreover, the in-
equality is sharp because it is already sharp in the inequality

λµξ (|v| ≥ λ) ≤ 2
∫
∂D0

|u| dµξ . (1.8)

If the harmonic functionsu andv satisfy conditions (1.5) and (1.6), we say thatv

is differentially subordinate tou (as defined in [Bu3]). If the harmonic functionv
is the conjugate function ofu and if v(ξ) = u(ξ), then conditions (1.5) and (1.6)
are satisfied. In addition, the Cauchy–Riemann equations imply that∇u · ∇v = 0.
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The analog of inequality (1.8) is the Kolmogorov weak-type inequality for conju-
gate functions. The best constant for this inequality was obtained by Davis [Da],
who showed that—ifξ = 0, v(0) = 0, andD0 is the unit disk—then

λµ0(|v| ≥ λ) ≤ K
∫
∂D0

|u| dµ0; (1.9)

here (and for the rest of this paper)

K =
1+ 1

32 + 1
52 + 1

72 + 1
92 + · · ·

1− 1
32 + 1

52 − 1
72 + 1

92 − · · ·
.

Furthermore, the inequality is sharp.
The inequality (1.9) was recently generalized by Choi [C] to an arbitrary pair

of harmonic functionsu andv which satisfy the differential subordination and the
orthogonality condition but which are not necessarily conjugates of each other.
Following the martingale definition, we say that two real-valued harmonic func-
tionsu andv defined onD areorthogonalif

∇u · ∇v = 0 onD.
Choi’s result is as follows.

Theorem 1.5 [C]. Letu andv be twoR-valued harmonic functions on a domain
D ⊂ Rn. LetD0 be a bounded subdomain ofD such that∂D0 ⊂ D. For ξ ∈D0,

assume |v(ξ)| ≤ |u(ξ)|,
|∇v| ≤ |∇u| onD,

∇u · ∇v = 0 onD.
Then, forλ ≥ 0,

λµξ (|v| ≥ λ) ≤ K
∫
∂D0

|u| dµξ .
The inequality is sharp.

The interplay between martingales and harmonic functions is very rich and broad.
In almost all situations, sharp inequalities for harmonic functions correspond to
sharp martingale inequalities under the appropriate setting. In this paper we will
establish this relationship for Theorem 1.5. Namely, we will prove the analog of
Theorem 1.5 in the martingale setting, which can also be viewed as an analog of
Theorem 1.3 with the extra condition of orthogonality. This result is motivated by
the fact that the orthogonal martingales arising in the representations of the Riesz
transforms are not simply harmonic functions composed with Brownian motion.
Hence, knowing only the theorems for harmonic functions gives no information
for the Riesz transforms. The main result of the paper is the following theorem.

Theorem 1.6. Let X and Y be twoR-valued continuous-time–parameter or-
thogonal martingales such thatY is differentially subordinate toX. Then, for any
λ ≥ 0,
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λP(|Y | ≥ λ) ≤ K‖X‖1,
whereK is the constant in(1.9). The inequality is sharp. Moreover,X can beH-
valued andY can be a nonnegative supermartingale.

Remark 1.7. The numerator in the expression forK can be written as34ζ(2),
whereζ(2) is the Riemann zeta function evaluated at 2. The value of this expres-
sion isπ2/8. The denominator, as pointed out to us by the referee, is the famous
Catalanβ(2) constant (see [AbS]), which arises in several settings and whose
value is 0.9159655. . . . (It is interesting that the connection between Davis’s con-
stant and Catalan’s constant had not been noticed before, as far as we know.)

Remark 1.8. The extremal case is already covered by the classical case of con-
jugate harmonic function composed with Brownian motion. Note also that, under
the condition of Theorem 1.6 (as shown by Lemma 2.1), the martingaleY neces-
sarily has continuous paths.

The results just discussed, as well as the methods employed in proving them,
have raised several interesting problems related to singular integrals and also to
quasi-convexity and rank-1 convexity—notions that arise in the calculus of vari-
ations. We refer the reader to [BaM; BL; I2], where many of these connections
and problems are discussed. Here, we just mention a few problems concerningLp

estimates for some basic and classical singular integrals.
The Beurling–Ahlfors operator and the composition of two Riesz transforms

RiRj are examples of a singular integral of even kernel. It follows from Theorem
1.1 that, for 1< p <∞, ‖RiRj‖p ≤ (p∗ −1) for anyi, j = 1, . . . , n (see [BW1]).
This inequality is not sharp. However, it is interesting that, as in the upper bound
for the Beurling–Ahlfors operator discussed previously, there is no analytic proof
available for this bound. These are all examples of singular integrals of even ker-
nels for which the analytic techniques available give no useful information about
theirLp constants. For example, the best one can say with the classical Calderón–
Zygmund method of rotations is that‖RiRj‖p ≤ cot2(π/2p∗). This constant does
not even have the correct behavior asp→∞ or 1.

Another interesting open problem is the identification of the best constantC in
the weak-type inequality

m{x : |Rjf(x)| ≥ λ} ≤ C
λ
‖f ‖1.

At this point, nothing seems to be known aboutC outside of what follows from the
general theory of singular integrals. It is not even known if the constantC can be
taken as independent of the dimension; this problem is raised in [S2]. The reason
we cannot make any conclusions aboutC (from Theorem 1.6 and the representa-
tion of the Riesz transforms as conditional expectations of orthogonal martingales)
is that—unlike theLp inequalities—weak-type inequalities are not preserved by
the conditional expectation operator. Nevertheless, we believe there is now con-
siderable information toconjecturethat the best constant for the Riesz transforms
should not be larger than that for the Hilbert transform—that is, Davis’s constantK.
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2. Proof of Theorem 1.6

LetX andY be two semimartingales that are r.c.l.l. We denote the “jump process”
of X andY by

1X = {1Xt }t≥0 = {Xt −Xt−}t≥0

and
1Y = {1Yt }t≥0 = {Yt − Yt−}t≥0,

respectively. We also useXc = {Xc
t }t≥0 andY c = {Y ct }t≥0 to denote the contin-

uous part ofX andY, respectively. Lemma 1 in [W] shows that, for everyt ≥
0, |1Yt | ≤ |1Xt | if Y is differentially subordinate toX. If X andY are orthog-
onal, then Lemma 1 in [BW2] shows that〈1Xt,1Yt 〉 = 0 for everyt ≥ 0. If Y
is one-dimensional then, for everyt ≥ 0, either1Xt = 0 or1Yt = 0. Thus,
|1Yt | = 0 for all t ≥ 0 if Y is differentially subordinate toX. Therefore, combin-
ing the two lemmas yields the following observation.

Lemma 2.1. LetX be anH-valued semimartingale, and letY be a real-valued
semimartingale in the same filtration. ThenY is differentially subordinate and
orthogonal toX if and only if [Xc] t − [Y c] t is a nondecreasing and nonnega-
tive function oft, Xc andY c are orthogonal,|Y0| ≤ |X0|, andY has continuous
paths.

We now assume thatX is anH-valued martingale and thatY is a real-valued mar-
tingale such thatY is differentially subordinate toX and thatX andY are orthog-
onal. In order to prove that

λP
{

sup
t≥0
|Yt | ≥ λ

}
≤ K‖X‖1,

we may assume thatλ = 1. Also, by a “stopping time” argument (see [W]) it is
enough to prove that

P {|Yt | ≥ 1} ≤ K‖Xt‖1 for all t ≥ 0. (2.1)

Since
P {|Yt | ≥ 1} −K‖Xt‖1 = E(I{|Yt |≥1} −K|Xt |),

proving (2.1) is equivalent to proving that

EV(Xt , Yt ) ≤ 0, (2.2)

whereV : H× R→ R:

V(x, y) =
{

1−K|x| if |y| ≥ 1,

−K|x| if |y| < 1.

To prove (2.2), we introduce a new functionW̄ : H×R→ Rgiven byW̄(x, y) =
W(|x|, |y|), whereW : R2→ R is defined by

W(x, y) =
{ |x| if |y| ≥ 1,

W(ϕ(x, y)) if |y| < 1.
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Hereϕ : S → H is a conformal mapping from the stripS = {z = (x, y) :
|y| < 1} into the upper half-planeH = R2

+ = {ζ = (α, β) : β > 0}, given ex-
plicitly by

ζ = ϕ(z) = ϕ(x, y) = ie(π/2)z = (e(π/2)x cos
(
π
2 (y +1)

)
, e(π/2)x sin

(
π
2 (y +1)

));
W(α, β) : H → R is the Poisson integral of the functionα→ 2

π
|ln|α||. That is,

W(α, β) = 2

π2

∫ ∞
−∞

β|ln|t ||
(α − t)2 + β2

dt.

We first study the functionW. The following properties have been established
in [C].

Lemma 2.2. The functionW satisfies the following properties.

(a) W is continuous onR2 and harmonic everywhere except on the set{(x, y) :
x = 0, |y| > 1} and possibly at the boundary ofS; |y| = 1. Moreover,

Wxx(x, y) ≥ 0 andWyy(x, y) ≤ 0

in S.
(b) W is symmetric inx and iny. That is,

W(x, y) = W(−x, y) = W(x,−y).
Therefore,

Wx(0, y) = Wy(x,0) = Wxy(x,0) = Wxy(0, y) = 0.

(c) We have that

1

W(0,0)
= K =

1+ 1
32 + 1

52 + 1
72 + 1

92 + · · ·
1− 1

32 + 1
52 − 1

72 + 1
92 − · · ·

.

(d) W(x, y) ≥ |x| for all (x, y)∈R2.

(e) If U(x, y) = 1− KW(x, y), thenU(x, y) ≤ 0 if |y| ≤ |x|. Moreover,
V(x, y) ≤ U(x, y) for all (x, y)∈R2.

By (e) of this lemma and the fact that|Y0| ≤ |X0| (which follows from Lemma
2.1), inequality (2.2) is implied by

EU(|Xt |, |Yt |) ≤ EU(|X0|, |Y0|). (2.3)

Define the stopping time as

T = inf {t ≥ 0 : |Yt | ≥ 1}.
LetZ = {Zt }t≥0 = {U(|Xt∧T |, |Yt∧T |)}t≥0. Our goal now is to show that

EU(|Xt |, |Yt |) ≤ EZt (2.4)

and that
Zt is a supermartingale. (2.5)
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Clearly, if the two preceding inequalities hold then

EU(|Xt |, |Yt |) ≤ EZt ≤ EZ0 = EU(|X0|, |Y0|),
which proves (2.3).

To prove (2.4), note that

EU(|Xt |, |Yt |) = E[U(|Xt |, |Yt |)I{t≥T }] + E[U(|Xt |, |Yt |)I{t<T }].
By Lemma 2.2(d),W̄(Xt,Yt ) ≥ |Xt |. SinceX is a martingale,|X| is a submartin-
gale. Thus,

E[|Xt |I{t≥T }] = E(E(|Xt‖FT )I{t≥T }) ≥ E[|XT |I{t≥T }].
Consequently,

E[U(|Xt |, |Yt |)I{t≥T }] = E[(1−KW̄(Xt , Yt ))I{t≥T }]
≤ E[(1−K|Xt |)I{t≥T }]
≤ E[(1−K|XT |)I{t≥T }]
= E[(1−KW̄(XT , YT ))I{t≥T }]
= E[U(|XT |, |YT |)I{t≥T }].

Here we have used the fact that|YT | = 1 on{t ≥ T }, since (by Lemma 2.1)Y has
continuous paths.

Remark 2.3. Note that the foregoing argument shows that

EU(|Xt |, |Rt |) ≤ EU(|Xt∧S |, |Rt∧S |) (2.6)

for any real-valued right-continuous path-adapted processR = {Rt }t≥0, where
S = inf {t ≥ 0 : |Rt | ≥ 1}. In particular, it holds for nonnegative supermartin-
gales with right-continuous paths.

It remains to prove (2.5). This is equivalent to showing that

{W̄(Xt∧T , Yt∧T )}t≥0 = {W(|Xt∧T |, |Yt∧T |)}t≥0 (2.7)

is a submartingale. For this we shall need a few more properties ofW. These
are given in the following sequence of lemmas. Most of these are extensions of
the arguments given by Choi. First we observe that the argument given in [C,
Lemma 3] shows the following result.

Lemma 2.4. We have

lim
x→∞
(x,y)∈S

Wx(x, y) = 1, lim
x→−∞
(x,y)∈S

Wx(x, y) = −1,

lim
x→∞
(x,y)∈S

Wy(x, y) = 0, lim
x→−∞
(x,y)∈S

Wy(x, y) = 0,

lim
x→∞
(x,y)∈S

Wxxx(x, y) = 0, lim
x→−∞
(x,y)∈S

Wxxx(x, y) = 0.
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Lemma 2.5. Define the functionA(x, y) : H → R by

A(x, y) = 1

π

∫ 1

−1

y|t |
(x − t)2 + y2

dt,

which is the Poisson extension of the functiont → |t |I|t |≤1. Then

0 ≤ lim inf
(x,y)→(0,0)
(x,y)∈H
x>0

Ax(x, y) ≤ lim sup
(x,y)→(0,0)
(x,y)∈H
x>0

Ax(x, y) ≤ 1,

−1≤ lim inf
(x,y)→(0,0)
(x,y)∈H
x<0

Ax(x, y) ≤ lim sup
(x,y)→(0,0)
(x,y)∈H
x<0

Ax(x, y) ≤ 0

Moreover,

lim inf
(x,y)→(0,0)
(x,y)∈H
x<0

Axxx(x, y) ≥ 0 and lim sup
(x,y)→(0,0)
(x,y)∈H
x>0

Axxx(x, y) ≤ 0.

Proof. It is easy to see that

πA(x, y) = y

2

(
ln((x −1)2 + y2)+ ln((x +1)2 + y2)− 2 ln(x2 + y2)

)
+ x

(
2 arctan

x

y
− arctan

x −1

y
− arctan

x +1

y

)
.

Hence,

πAx(x, y) = y

(x +1)2 + y2
− y

(x −1)2 + y2

+ 2 arctan
x

y
− arctan

x −1

y
− arctan

x +1

y

= y

(x +1)2 + y2
− y

(x −1)2 + y2

− arctan
2xy

y2 − x2 +1
+ 2 arctan

x

y
.

Sincey > 0, we have

0 ≤ lim inf
(x,y)→(0,0)
(x,y)∈H
x>0

Ax(x, y) ≤ lim sup
(x,y)→(0,0)
(x,y)∈H
x>0

Ax(x, y) ≤ 1,

−1≤ lim inf
(x,y)→(0,0)
(x,y)∈H
x<0

Ax(x, y) ≤ lim sup
(x,y)→(0,0)
(x,y)∈H
x<0

Ax(x, y) ≤ 0.

If (x, y)∈H then we also have

πAxx(x, y) = − 2(x +1)y

((x +1)2 + y2)2
+ 2(x −1)y

((x −1)2 + y2)2

− y

(x −1)2 + y2
− y

(x +1)2 + y2
+ 2y

x2 + y2
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and

πAxxx(x, y) = − 4xy

(x2 + y2)2
+ 2y((x +1)3+ 3(x +1)2 + xy2)

((x +1)2 + y2)3

+ 2y((x −1)3− 3(x −1)2 + xy2)

((x −1)2 + y2)3
.

Thus,

lim inf
(x,y)→(0,0)
(x,y)∈H
x<0

Axxx(x, y) ≥ 0 and lim sup
(x,y)→(0,0)
(x,y)∈H
x>0

Axxx(x, y) ≤ 0.

These give our next lemma.

Lemma 2.6. The following hold forW :

0 ≤ lim inf
(x,y)→(0,±1)
(x,y)∈S
x>0

Wx(x, y) ≤ lim sup
(x,y)→(0,±1)
(x,y)∈S
x>0

Wx(x, y) ≤ 1,

−1≤ lim inf
(x,y)→(0,±1)
(x,y)∈S
x<0

Wx(x, y) ≤ lim sup
(x,y)→(0,±1)
(x,y)∈S
x<0

Wx(x, y) ≤ 0,

0 ≤ lim inf
(x,y)→(0,±1)
(x,y)∈S
x<0

Wxxx(x, y), and lim sup
(x,y)→(0,±1)
(x,y)∈S
x>0

Wxxx(x, y) ≤ 0.

Proof. We will prove

0 ≤ lim inf
(x,y)→(0,−1)
(x,y)∈S
x>0

Wx(x, y) ≤ lim sup
(x,y)→(0,−1)
(x,y)∈S
x>0

Wx(x, y) ≤ 1,

−1≤ lim inf
(x,y)→(0,−1)
(x,y)∈S
x<0

Wx(x, y) ≤ lim sup
(x,y)→(0,−1)
(x,y)∈S
x<0

Wx(x, y) ≤ 0,

0 ≤ lim inf
(x,y)→(0,−1)
(x,y)∈S
x<0

Wxxx(x, y), and lim sup
(x,y)→(0,−1)

(x,y∈S
x>0

Wxxx(x, y) ≤ 0.

The other limits are similar (simply replaceA(x, y+1) in the proof byA(x, y −1)
and perform a reflection abouty = 1).

Following the proof of [C, Lemma 5], letB(x, y) : S → R be given by

B(x, y) = W(x, y)− A(x, y +1).

ThenB is harmonic onS and, for any|x0| < 1,

lim
(x,y)→(x0,−1)

(x,y)∈S
B(x, y) = 0.
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Thus, by the reflection principle, there is a harmonic extensionB∗(x, y) ofB(x, y)
on {(x, y) : −1< x < 1, −3< y < −1} such that

B∗(x, y) = −B(x,−2− y) = −B∗(x,−2− y), −1≤ y < −3.

Since
B∗(x,−1) = 0,

we have
B∗x(x,−1) = 0 and B∗xxx(x,−1) = 0.

Therefore, the conclusions follow from Lemma 2.5.

If in the proof we replaceA(x, y ±1) by |x|, we have the following.

Lemma 2.7.
lim

(x,y)→(x0,±1)
(x,y)∈S

Wx(x, y) = 1

whenx0 > 0, and
lim

(x,y)→(x0,±1)
(x,y)∈S

Wx(x, y) = −1

whenx0 < 0. Moreover,

lim
(x,y)→(x0,±1)

(x,y)∈S
Wxxx(x, y) = 0.

We may combine these lemmas as follows.

Lemma 2.8. Let (x, y)∈ S. Then−1≤ Wx(x, y) ≤ 0, Wxxx(x, y) ≥ 0 if x < 0
and0 ≤ Wx(x, y) ≤ 1, andWxxx(x, y) ≤ 0 if x > 0.

Proof. We prove the first part; the rest is similar. Clearly,Wx is harmonic on
{(x, y) : (x, y)∈ S, x < 0} and continuous onS. By Lemma 2.7,

lim
(x,y)→(x0,±1)

(x,y)∈S
Wx(x, y) = −1 and lim

(x,y)→(x0,±1)
(x,y)∈S

Wxxx(x, y) = 0

whenx0 < 0. By Lemma 2.4,

lim
x→−∞
(x,y)∈S

Wx(x, y) = −1 and lim
x→∞
(x,y)∈S

Wxxx(x, y) = 0.

Part (b) of Lemma 2.2 implies that

Wx(0, y) = 0 and Wxxx(0, y) = 0

if −1< y < 1. Finally, Lemma 2.6 implies that

−1≤ lim inf
(x,y)→(0,−1)
(x,y)∈S
x<0

Wx(x, y) ≤ lim sup
(x,y)→(0,−1)
(x,y)∈S
x<0

Wx(x, y) ≤ 0

and
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lim inf
(x,y)→(0,−1)
(x,y)∈S
x<0

Wxxx(x, y) ≥ 0.

Thus, the maximum and minimum principle for harmonic functions implies that

−1≤ Wx(x, y) ≤ 0 and Wxxx(x, y) ≥ 0

for all (x, y)∈ S, x < 0.

Lemma 2.9. Let (x, y)∈ S. ThenWx(x, y)− xWxx(x, y) ≥ 0 whenx > 0.

Proof. Fix a |y| < 1. Define

Gy(x) = Wx(x, y)− xWxx(x, y).

Then, by Lemma 2.2(b),

Gy(0) = Wx(0, y) = 0.
If x > 0 then

d

dx
Gy(x) = −xWxxx(x, y) ≥ 0

by Lemma 2.8; hence, by the mean value theorem,

Gy(x) ≥ 0.
This finishes the proof.

We shall now prove (2.7). Forx ∈H, let

x̃ = x

|x| if |x| 6= 0.

Then, for|x||y| 6= 0,

∂W̄(x, y)

∂xi
= Wx(|x|, |y|) xi|x| ,

∂W̄(x, y)

∂y
= Wy(|x|, |y|) y|y| .

Therefore, forh∈H andk ∈R,
〈∇xW̄(x, y), h〉 = Wx(|x|, |y|)〈x̃, h〉,

∂W̄(x, y)

∂y
k = Wy(|x|, |y|) y|y|k.

Similarly, if |x||y| 6= 0 then, since

∂2W̄(x, y)

∂xi∂xj
= Wxx(|x|, |y|)xi xj|x|2 −Wx(|x|, |y|)xi xj|x|3 , i 6= j

∂2W̄(x, y)

∂x2
i

= Wxx(|x|, |y|) x
2
i

|x|2 +Wx(|x|, |y|) |x|
2 − x2

i

|x|3 , i = j

∂2W̄(x, y)

∂y2
= Wyy(|x|, |y|),
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we have

〈∇2
x W̄(x, y)h, h〉 = Wxx(|x|, |y|)〈x̃, h〉2 +Wx(|x|, |y|) |h|

2 − 〈x̃, h〉2
|x| ,

∂2W̄(x, y)

∂y2
k2 = Wyy(|x|, |y|)k2.

Hence, if|y| < 1 and|x||y| 6= 0 then, for allh∈H andk ∈R, we have

〈∇2
x W̄(x, y)h, h〉 +

∂2W̄(x, y)

∂y2
k2

= Wxx(|x|, |y|)〈x̃, h〉2 +Wx(|x|, |y|) |h|
2 − 〈x̃, h〉2
|x| +Wyy(|x|, |y|)k2

= (Wx(|x|, |y|)− |x|Wxx(|x|, |y|)) |h|
2 − 〈x̃, h〉2
|x| +Wxx(|x|, |y|)(|h|2 − k2)

≥ Wxx(|x|, |y|)(|h|2 − k2). (2.8)

Here we have used Lemma 2.9 and the fact thatWyy(|x|, |y|) = −Wxx(|x|, |y|),
sinceW is harmonic inS.

Next, letx, h∈H, |y| < 1, and|x||y| 6= 0. We want to show that

W̄(x + h, y)− W̄(x, y)− 〈∇xW̄(x, y)h, h〉 ≥ 0. (2.9)

Write

W̄(x + h, y)− W̄(x, y)− 〈∇xW̄(x, y)h, h〉
= W(|x + h|, |y|)−W(|x|, |y|)−Wx(|x|, |y|)〈x̃, h〉,

and let

G(t) = W(|x + th|, |y|)−W(|x|, |y|)− tWx(|x|, |y|)〈x̃, h〉.
First observe that(|x|, |y|) ∈ S implies that(|x + th|, |y|) ∈ S for all 0 ≤ t ≤ 1.
Now assume that, for all 0≤ t ≤ 1, |x + th| 6= 0. Then

G′(t) = Wx(|x + th|, |y|)〈x̃ + th, h〉 −Wx(|x|, |y|)〈x̃, h〉
and, by Lemma 2.2 and 2.8,

G′′(t) = Wxx(|x + th|, |y|)〈x̃ + th, h〉2 +Wx(|x + th|, |y|) |h|
2 − 〈x̃ + th, h〉2
|x + th|

≥ 0.

Hence, by the mean value theorem and the fact thatG(0) = G′(0) = 0, we have
G(1) ≥ 0; this is equivalent to

W̄(x + h, y)− W̄(x, y)− 〈∇xW̄(x, y)h, h〉 ≥ 0.

To complete the proof of (2.9), assume there is a 0< t0 ≤ 1such that|x+t0h| =
0. The preceding argument shows that

G(t0) ≥ 0 and G′(t0) ≥ 0.
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Since|x+t0h| = 0, it follows thath = −(1/t0)x. Therefore,|x+th| = |t−t0||h|
and|h| 6= 0. Whent0 ≤ t ≤ 1,

G(t) = W(|t − t0||h|, |y|)− tWx(|t0||h|, |y|)|h| −W(|t0||h|, |y|)
= W((t − t0)|h|, |y|)− tWx(|t0||h|, |y|)|h| −W(|t0||h|, |y|).

Thus,
G′(t) = Wx((t − t0)|h|, |y|)|h| −Wx(|t0||h|, |y|)|h|

and, by Lemma 2.2,

G′′(t) = Wxx((t − t0)|h|, |y|)|h|2 ≥ 0.

Once again, the mean value theorem and the fact thatG(t0) ≥ 0 andG′(t0) ≥ 0
imply that

G(1) ≥ G(t0).
Combining these, we have

G(1) ≥ 0,

which proves (2.9).
To finish the proof, note that the range ofZ is contained in the closure ofS,

where the functionW̄ is C2 except possibly at the boundary ofS or on |x||y| =
0.Applying [BW2, Prop. 1] tof = −W, we have shown (2.7).

If Y is a nonnegative supermartingale then (2.7) also follows by Itô’s lemma and
the convolution argument used in [BW2, Prop. 1], together with the fact thatWy

is nonpositive in{(x, y) ∈ S : x ≥ 0, y ≥ 0}. To see this last fact, simply use the
mean value theorem,Wyy ≤ 0 in S, andWy(x,0) = 0 for all x ∈ R. Therefore,
we have completed the proof of the Theorem 1.6.

Acknowledgment. We thank an anonymous referee for many suggestions that
improved the readability of the paper and for pointing out the connection of the
constantK to Catalan’s constant.
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