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Toward a Geometric Characterization
of Intrinsic Ultracontractivity

for Dirichlet Laplacians

Pedro J. Méndez-Hernández

1. Introduction

LetD be a domain inR2 and letpDt (x, y) be the heat kernel ofe−tH , whereH is
minus one half the Dirichlet Laplacian inD. We assume thatϕ0, the eigenfunc-
tion ofH corresponding to the first eigenvalueλ, is positive—a mild assumption
which holds for a very large class of domains, including all those considered in
this paper. Because

pDt (x, y) ≤
1

(2tπ)n/2
exp

{−|x − y|2
2t

}
,

the symmetric Markovian semigroupe−tH is ultracontractive; that is, it maps
L2(D) into L∞(D) for all t > 0. Following [11], we say thatD is intrinsically
ultracontractive(IU) if the symmetric Markovian semigroupe−tH̃ inL2(D, ϕ2

0 dx)

given by the kernel

p̃Dt (x, y) =
eλtpDt (x, y)

ϕ0(x)ϕ0(y)

is ultracontractive. This is equivalent (see [11]) to the existence ofat > 0 andbt >
0 depending only onD andt and such that, for allx, y ∈D,

btϕ0(x)ϕ0(y) ≤ pDt (x, y) ≤ atϕ0(x)ϕ0(y). (1)

Because of its analytic and probabilistic consequences, intrinsic ultracontractiv-
ity has been widely studied by many authors (see e.g. [3; 4]). Sufficient conditions
for IU can be found in [2; 8; 11]. The results in these papers do not give necessary
and sufficient conditions. It seems to be very difficult (and perhaps impossible) to
find a geometric characterization for IU without restricting to some subclasses of
domains. However, there is a conjecture for a geometric characterization of IU for
a certain class of simply connected domains. We will state it later in this section.
The purpose of this paper is to provide some partial results related to this conjec-
ture. Before we state the conjecture and our main results, we need to introduce
some notation and present some definitions.
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Definition 1. LetD be a simply connected domain in the complex plane. We
say thatD has the wide access property (WA) if there exists a fixed pointo ∈D
such that, for anyx ∈D, there is a path0 from o to x with

inf
z∈0
d(z) ≥ C0 d(x), (2)

whereC0 is a constant independent ofx andd(y) denotes the distance fromy to
the boundary ofD. We will often call domains with this property WA domains.

Remark 1. WA domains have also been referred to as0-domains (see [4; 18]).

Domains that are above the graph of an upper semicontinuous function give typical
examples of domains with the wide access property. In fact, this case was studied
by Bañuelos and Davis in [7], where a simple geometric characterization for IU is
given. This was the only known geometric characterization of IU for a large class
of domains with the wide access property. In this paper we give a necessary con-
dition for IU in any simply connected domain in terms of areas of Whitney cubes.
We also extend the Bañuelos–Davis result by proving that such geometrical con-
dition is equivalent to IU for certain types of WA domains and that, in general WA
domains, it implies that for allx ∈D there existaxt > 0 andbxt > 0 such that

axt ϕ0(x)ϕ0(y) ≤ pDt (x, y) ≤ bxt ϕ0(x)ϕ0(y) (3)

for all y ∈D. Domains with this property are often called “one-half intrinsic ultra-
contractive” because of the uniformity in one of the variables when the other is
held fixed. This property was first studied in [6] where it was proved that it im-
plies, among other things, the following asymptotic behavior of the heat kernel
pDt (x, y): Fix x ∈D; then

lim
t→∞

eλtpDt (x, y)

ϕ0(x)ϕ0(y)
= 1 (4)

uniformly in y. One-half intrinsic ultracontractivity has many interesting prob-
abilistic corollaries (see [6]). For instance, it implies thatD satisfies the “finite
lifetime” condition defined in (9). We will briefly mention this connection below.

Following Stein [19], a Whitney cube decompositionF ofD is a collectionF =
{Q1,Q2, . . . }, whereQi are cubes whose sides are parallel to the axes and

(1) Qo
i ∩Qo

j = ∅ for i 6= j ;
(2)

⋃
k Qk = D;

(3) diamQk ≤ dist(Qk,D
c) ≤ 4 diamQk for all k.

Here (and in the rest of the paper), dist(Qk,D
c) = inf x∈Qk dist(x,Dc) and

diamQk is the diameter ofQk. For Qα,Qβ ∈ F, we say thatQα = Q0 →
Q1→ · · · → Qn = Qβ is a Whitney chain connectingQα toQβ of lengthn if:

(i) Qi ∈F for 0 ≤ i ≤ n; and
(ii) Qi ∩Qi+1 6= ∅ for 0 ≤ i ≤ n−1.

We define the Whitney distancẽρD(Qα,Qβ) to be the length of the shortest
Whitney chain connectingQα to Qβ. If x, y ∈ D then we defineρ̃D(x, y) =
ρ̃D(Qx,Qy), wherex ∈Qx andy ∈Qy.



Geometric Characterization of Intrinsic Ultracontractivity 81

Forx, y ∈D, define the quasihyperbolic distance as

ρD(x, y) = inf
γ̃

∫
γ̃

1

d(s)
ds,

where the infimum is taken over all rectifiable curvesγ̃ joining x to y. A quasi-
hyperbolic geodesic̃γ yx is an arc for which this infimum is attained; see Martin
[15]. It follows easily from the definition that there existb1, b2, b3 such that

b1ρD(x, y)− b2 ≤ ρ̃D(x, y) ≤ b3ρD(x, y) (5)

for all x, y ∈D. Givenx ∈D,we setÃ(x, ε) to be the area of the Whitney squares
which intersect a quasihyperbolic geodesic fromo to x and which have diameter
less thanε.

Let

Ã(D, ε) = sup
x∈D

Ã(x, ε),

Ã(D) = sup
ε>0

Ã(D, ε).

The sufficient conditions for IU in WA domains given in [2; 8; 11] essentially
provide upper bounds oñA(D, ε) to control its rate of convergence to 0 asε ap-
proaches 0. The following conjecture, motivated by the results in [7], would, if
true, extend and generalize all the aforementioned results.

Conjecture 1 (Bañuelos–Davis). IfD is a domain with the wide access prop-
erty, thenD is IU if and only if Ã(D, ε)→ 0 asε→ 0 andÃ(D) <∞.
Our first theorem is a generalization of the necessary geometric condition for IU
given in [7] to any simply connected domain.

Theorem 1. LetD be a simply connected domain. IfD is IU, then

lim
ε→0

Ã(ε,D) = 0 and Ã(D) <∞. (6)

The following theorem asserts that in domains with the wide access property, (6)
implies the weaker version of IU mentioned before.

Theorem 2. LetD be a domain with the wide access property. IfD satisfies(6),
then for allx ∈D there existaxt , b

x
t > 0 such that

axt e
−λtϕ0(x)ϕ0(y) ≤ pDt (x, y) ≤ bxt e−λtϕ0(x)ϕ0(y) (7)

for all y ∈D.
In the proof of Theorem 2 we follow the arguments in [6], where Bañuelos and
Davis prove Theorem 2 for any bounded domain. It turns out to be easy to prove
Conjecture 1 for bounded domains with the wide access property. However, we
must remark that the domains considered in Theorem 2 could have infinite area;
therefore, Theorem 2 extends the results in [6] for these domains.
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As mentioned earlier, inequality (7) has some interesting probabilistic corol-
laries. LetBt be a two-dimensional Brownian motion and letτD be the first exit
time fromD. The heat kernelpDt (x, y) gives the transition densities ofBt killed
on the boundary ofD. If h is a positive superharmonic function inD, the Doob
h-conditioned Brownian motion is the Markov process with transition densities

phD(t, x, y) =
pDt (x, y)h(x)

h(y)
. (8)

ThenP x
h (τD > t) = ∫

D
phD(t, x, y) dy is the probability that the Doobh-process

started atx does not leaveD before timet. We will write Eh
x for the mean asso-

ciated withP h
x . In the case ofh(·) = GD(·, y), we denoteP h

x andEh
x by P y

x and
E
y
x , respectively. This is the Brownian motion started atx and conditioned to ter-

minate aty without leaving the domainD. Using Theorem 2 and the arguments
given in [6], we obtain the following result.

Corollary 1. LetH be the set of all positive superharmonic functions inD. If
D satisfies the hypothesis of Theorem 2 andh∈H, then

(1) lim
t→∞

eλtpDt (x, y)

ϕ0(x)ϕ0(y)
= 1 uniformly iny for eachx.

(2)
∫
D

ϕ0(y)h(y) dy <∞.

(3) lim
t→∞ e

λtP x
h (τD > t) = ϕ0(x)

h(x)

∫
D

h(y)ϕ0(y) dy.

(4) sup
x∈D, t>0, h∈H

eλtP x
h (τD > t) <∞.

A domain is said to satisfy thefinite lifetimecondition if

sup
h∈H, x∈D

Ex
h(τD) <∞. (9)

SinceEx
h(τD) =

∫ ∞
0 P x

h (τD > t) dt, it is clear that Corollary 1(4) implies (9).
Thus the results in this paper generalize Theorem 1 in [18], which gives a geomet-
rical characterization for finite lifetime in domains with the wide access property.

There are basically two general (and very distinct) methods available to prove
sufficient conditions for IU. The first is to use the following probabilistic charac-
terization. For eacht > 0, there exists a compact setKt such that, for allx ∈D,

P x(Bt ∈Kt | τD > t) > at ,

whereat is independent ofx. Using this characterization and the methods in [8]
we prove the conjecture for WA domains given by tubes along geodesics. More
precisely, letD be a domain with the wide access property, and define:

(1) ρ∗(r) = supx∈Dc
r
ρ̃D(o, x), whereDr = {x ∈D : d(x) > 1/2r}.

(2) ργ̃(r) = supx∈Dc
r ∩γ̃ ρ̃D(o, x), whereγ̃ is a quasihyperbolic geodesic.



Geometric Characterization of Intrinsic Ultracontractivity 83

We say thatD is a tube along a geodesic̃γ if there exist a quasihyperbolic geo-
desicγ̃ and positive integersnD,mD such that

ρ∗(r) ≤ ργ̃(r + nD)+mD.
For these domains, (6) is equivalent toÃ(D) <∞. If D is given by the graph of
a function, Bañuelos and Davis proved thatD is IU if and only if Ã(D) < ∞.
Geometrically, the Bañuelos–Davis result is the case ofγ̃ being a line. However,
their argument does not seem to work for twisted tubes. The following theorem
extends their result to twisted tubes.

Theorem 3. LetD be a tube along the geodesicγ̃ . ThenD is IU if and only if
Ã(D) <∞.
If D is a domain with the wide access property such thatÃ(D) <∞, it is easy to
prove thatD is a countable union (could also be finite) of tubes along geodesics;
thus, Theorem 3 seems to be a necessary step toward the solution of the conjec-
ture. In fact, the argument used to prove Theorem 3 proves Conjecture 1 whenD

is the union of a finite number of tubes. However, up to this point we have not
been able to make the argument work for the general case even under the assump-
tion thatÃ(D, ε)→ 0 asε→ 0.

The second method, used in [2; 11] and described in Section 6, is based on
the theory of logarithmic Sobolev inequalities. This is a powerful analytic tech-
nique which, when it works, gives information aboute−tH for a wider class of
Schrödinger operators. In addition, it provides detailed information on the behav-
ior of the constantsat andbt as functions oft. Following this approach, we prove
the conjecture for a special case of tubes along geodesics and for Schrödinger oper-
ators. More precisely, letD be a tube along̃γ and letnk be the number of Whitney
cubes of diameter

√
2/2k that intersect̃γ . (In [19] it is proved that we can take a

Whitney decompositionF such that, for anyQ ∈F, diamQ = √2/2k for some
k ∈ Z.) Consider the operatorH = H0 + V, whereH0 is a second-order diver-
gence form uniformly elliptic operator with bounded measurable coefficients and
with Dirichlet boundary conditions and whereV is a potential in the Kato class
K 2. For more information on these operators, see Davies [11]. We definee−tH̃

and the notion of intrinsic ultracontractivity ofe−tH̃ in the same way we did for
the Dirichlet Laplacian. By studying the behavior ofd(x)2ρD(o, x) and using the
arguments in [2] and [11], we obtain the following result.

Theorem 4. LetD be a tube along̃γ . If Ã(D) <∞ and

nk+1 ≤ 3(n1+ · · · + nk) (10)

for k large enough, thene−tH is intrinsically ultracontractive.

We must remark that the arguments in the proof of Theorem 3 imply Theorem 4
just whenV = 0 andH0 is the Dirichlet Laplacian. As a matter of fact, Theorem
4 seems to be new even for the case of tubes given by the graph of a function with
V = 0 andH0 a uniformly elliptic operator. Following this approach, we can
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prove the conjecture for bounded WA domains and also prove that, in a general
WA domain, (6) implies thatD is intrinsically supercontractive. In other words,
the operatorse−tH̃ are bounded fromLp(D, ϕ2

0) to Lr(D, ϕ2
0) for all t > 0 and

1< p ≤ r <∞.
The paper is organized as follows. In Section 2 we set up some more nota-

tion and give some lemmas on the geometry of quasihyperbolic and hyperbolic
geodesics. In Section 3 we prove Theorem 1, followed by the proof of Theorem 2
and Corollary 1 in Section 4. Theorem 3 is proved in Section 5, and in Section 6
we prove Theorem 4.

Throughout the paper, the lettersc, C, will be used to denote constants which
may change from line to line but which do not depend on the variablesx, y, z, . . . .

2. Preliminaries

Let D be a simply connected domain inR2 with z ∈ D, and defineσD(z) =
1/|F ′(0)|, whereF is a conformal mapping sending the unit discB ontoD with
F(0) = z. Let x, y ∈D define the hyperbolic distance betweenx, y by

dD(x, y) = inf
γ

∫
γ

σD(s) ds,

where the infimum is taken over all rectifiable curvesγ from x to y. A hyperbolic
geodesic is an arcγ yx for which the infimum is attained. It can be shown that there
exists a conformal map8xy : B → D with8xy(0) = x, 8xy(r) = y for somer ∈
(0,1), andγ yx = 8xy([0, r]); see [16]. Define0yx = 8xy((−1,1)).

Koebe’s one-quarter theorem implies

dD(z) ≤ |F ′(0)| ≤ 4dD(z),

and therefore
dD(x, y) ≤ ρD(x, y) ≤ 4dD(x, y). (11)

If D is a WA domain, Lemma 1 in [18] states that, for everyx ∈D, we can take0
to be either the hyperbolic geodesicγ yo or the quasihyperbolic geodesicγ̃ yo . Using
this, the fact thatdD(·, ·) andρD(·, ·) are equivalent metrics in any simply con-
nected domain, and the Gromov theory of hyperbolic groups, Smits [17] proved
the following lemma.

Lemma 1. LetD be a simply connected domain. Then there exists a universal
constantK ≥ 0 such that, for allx, y ∈D,
(i) dD(z1, γ̃

y
x ) ≤ K for all z1 ∈ γ yx ;

(ii) dD(z2, γ
y
x ) ≤ K for all z2 ∈ γ̃ yx .

Here and in the sequel we denote quasihyperbolic geodesics fromx to y by γ̃ yx
and hyperbolic geodesics byγ yx . Consequently, we defineA(D, ε) andA(D) in
the same way we definẽA(D, ε) andÃ(D) but taking Whitney cubes that inter-
sect hyperbolic geodesics. In [18] Smits proved that, for any simply connected
domain,A(D) <∞ if and only if Ã(D) <∞. We follow his argument to prove
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the following lemma, which tells us that we can use hyperbolic geodesics instead
of quasihyperbolic geodesics in our results.

Lemma 2. If D is a simply connected domain, thenlim ε→0A(D, ε) = 0 if and
only if lim ε→0 Ã(D, ε) = 0.

Proof. Let x ∈ D andQ ∈ F, with Q ∩ γ xo 6= ∅. Using Lemma 1, (11), and (5),
we find a universal constantK1 with

ρD(Q, γ̃
x
o ) ≤ K1.

Thus there isQ′ ∈F withQ′ ∩ γ̃ xo 6= ∅ andρD(Q,Q′) ≤ K1. Since the diameters
of adjacent Whitney cubes differ at most by a factor of 4, we have

|Q| ≤ 42K1|Q′|,
where|Q| denotes the Lebesgue measure (area) ofQ. By the triangle inequality,
for each Whitney cubeQ′ that intersects̃γ xo , there are at most 2K1+ 1 cubesQ̄
that intersectγ xo with ρD(Q′, Q̄) ≤ K1. Hence

A(ε, x) ≤ 42K1(2K1+1)Ã(4K1ε, x)

and the result follows by the symmetry of the argument.

We now describe some relationships between the hyperbolic distance and the Green
function inD. It is well known that, for allz∈B,

GB(0, z) = 1

2π
log

1

|z| and dB(0, z) = 1

2
log

1+ |z|
1− |z| .

These identities are discussed in Hayman [14]. Solving for|z| in terms ofdB(0, z),
one finds that

GB(0, z) = 1

2π
log(cothe−2dB(0,z)) for all z∈B.

Let 8 be a conformal map fromB to D, with 8(0) = x and8(z) = y. By
the conformal invariance of both the Green function and the hyperbolic metric, we
have

GD(y, x) = 1

2π
log(cothe−2dD(x,y)) for all x, y ∈D.

Then there exist universal constantsa1, a2 > 0 such that:

(i) e−2dD(x,y) ≤ a1GD(x, y) for all x, y ∈D;
(ii) GD(x, y) ≤ a2e

−2dD(x,y) provided thatdD(x, y) ≥ 1.

Hence, forx, y,w in D with dD(y,w) ≥ 1 anddD(x, y) ≥ 1, we obtain

GD(x, y)GD(y,w)

GD(x,w)
≤ a2

2a1e
−2( dD(x,y)+dD(y,w)−dD(x,w)).

By [9, Prop. (1.3)] (note that, when Coornaert and Papadopoulus refer to the
hyperbolic space, they endowB with the metric1

2dD(·, ·)), there existsa3 such
that, for allx, y ∈D,
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dD(x, y)+ dD(w, y)− dD(x,w) ≥ dD(y, γ xw )− a3. (12)

Thus, there exists a universal constanta4 such that

GD(x, y)GD(y,w)

GD(x,w)
≤ a4e

−2dD(y,γ xw), (13)

provided thatdD(x, y) ≥ 1 anddD(y,w) ≥ 1.
For the rest of this paper,Zt(x, y) denotes theh-conditioned Brownian mo-

tion starting atx, whereh(·) = GD(·, y). The variance and covariance associated
with the distribution ofZt(x, y) will be denoted by varyx and covyx . For any planar
Borel setO, we denote byP y

x (O) the probability thatZt(x, y) ever hitsO. The
following results from Davis [12] and Bañuelos and Carroll [5] are fundamental
in the proof of Theorem 1. (Recall that|Q| denotes the area of the cubeQ.)

Theorem 5 [12]. There exists a constantc1 such that, ifQ is a Whitney cube and
if one ofo or y is a distance at least12 diamQ fromQ, then

Eyo(TQ) ≥ c1P
y
o (Q)|Q|,

whereTQ =
∫ τD

0 1{Zt∈Q} dt.

Theorem 6 [12]. There exists a constantc2 such that, ifQ andR are Whitney
cubes, then

|covyo(TQ, TR)| ≤ e−c2ρ̃D(Q,R)|Q||R|.
Lemma 3 [5]. There exist constantsc3 andc4 such that, ifdD(o, y) ≥ 1, then

P y
o (Q) ≥ c3e

−c4dD(zQ,γ yo ),

wherezQ is the center ofQ.

We end this section by pointing out several interesting and useful geometric and
analytic properties of domains with the wide access property. SupposeD is a do-
main with the wide access property; then it is clear that, for allx ∈D,

d(x) ≤ 1

C0
d(o).

We can therefore suppose that supx∈D d(x) ≤ 1. Furthermore, ifQ ∈ F with
Q ∩ γ̃ xo 6= ∅ andzQ ∈ γ̃ xo ∩Q, then

diamQ ≥ 1

8
√

2
d(zQ) ≥ C0

8
√

2
d(x). (14)

Thus, ifnk is the number of Whitney cubes of diameter
√

2/2k that intersect̃γ xo ,
then there existskx ∈N such thatnk = 0 for k ≥ kx and

Ã(x,D) =
kx∑
0

nk

22k
≥ c d(x)2ρ̃D(o, x). (15)

Sinceρ̃D(o, x)→∞ asx →∞, we conclude thatA(D) <∞ impliesd(x)→
0 asx →∞, and by [10, Thm. 1.6.8] the spectrum ofH is discrete.
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Suppose now thatD satisfies (6) and that diamQx =
√

2/2m. From (14) there
exists ac such that

d(x)2ρD(o, x) = c d(x)2
kx∑
k=0

nk

≤ c
∑

0≤k≤m/2

nk

22k

1

22m−2k
+ c

∑
m/2≤k≤kx

nk

22k

≤ c d(x)
∑

0≤k≤m/2

nk

22k
+ c

∑
m/2≤k≤kx

nk

22k

≤ c d(x)Ã(D)+ cÃ
(
D,

√
2

2m/2

)
. (16)

Therefore,d(x)2ρD(o, x)→ 0 asd(x)→ 0 and, by [7, Thm. 5] we conclude that
D is intrinsically supercontractive. That is,e−tH̃ is bounded fromLp(D) toLr(D)
for all t > 0 and for 1< p ≤ r <∞. In a similar way we can prove that ifD is a
bounded WA domain thenρD(x) ≤ c/d(x) and, by [7, Thm. 6],D is IU.

3. Proof of Theorem 1

To prove Theorem 1, let us suppose that (6) is false. Using the results from [12]
and [5] stated at the end of the previous section, we show that this implies the ex-
istence of sequences{zn}∞0 ⊂ D and {Rn}∞0 (whereRn is a union of Whitney
cubes) such that, for someε > 0,

lim
n→∞P

zn
o (TRn > ε) = 1, (17)

where

TO =
∫ τD

0
1{Zt∈O} dt

is the time spent byZt in a Borel setO contained inD. Then we note that (17) con-
tradicts the following consequence of intrinsic ultracontractivity (inequality (2.11)
in [7]): there existct independent ofx andy such that

P y
x (t < τD < 2t) ≥ ctP y

x (τD > 2t). (18)

Since IU implies (as mentioned before; see [2]) that

sup
h∈H, x∈D

Ex
h(τD) <∞,

it follows by Theorem 1 in [18] that

Ã(D) <∞.
We should remark that, although Theorem1of Smits [18] asserts that the finite life-
time condition is equivalent tõA(D) <∞ for any WA domainD, his proof of the
necessary condition for finite lifetime is valid for any simply connected domain.
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Next, suppose that limε→0 Ã(D, ε) 6= 0. Then there existδ > 0 and sequences
{zn}∞0 , {mn}∞0 (with lim n→∞mn = 0) such that

Ã(zn,
√

2/mn) ≥ δ.
LetQn

1 , . . . ,Q
n
kn

be the Whitney cubes that intersectγ̃ zno with diameter less than√
2/mn, and considerTRn whereRn =

⋃kn
i=1Q

n
i . Forn large enough we have

min{dD(o,Qn
i ), ρ̃D(o,Q

n
i )} ≥ 1

for 1≤ i ≤ kn; by Theorem 5,

Ezn
o (TRn) ≥

c

2

kn∑
i=0

P zn
o (Q

n
i )|Qn

i |,

(recall thatP zn
o (Q

n
i ) denotes the probability thatZt(o, zn) ever hitsQn

i ). Lemma 3
givesc3, c4 with

P zn
o (Q

n
i ) ≥ c3 exp{−c4dD(zQn

i
, γ zno )},

wherezQn
i

is the center ofQn
i .

Given thatQn
i ∩ γ̃ zno 6= ∅, one sees from Lemma 1 that there exists a constant

c5 with
Ezn
o (TRn) ≥ c5|Rn| ≥ c5δ. (19)

Without loss of generality we can suppose thatρ̃D(Q
n
i ,Q

n
j ) ≥ |i− j |. Now, from

Theorem 6 we obtain

varzno (TRn) ≤
kn∑
i=1

kn∑
j=1

|covzno (TQnj , TQ
n
i
)|

≤ c
kn∑
i=1

kn∑
j=1

e
−c2ρ̃D(Q

n
i
,Qn

j
)|Qn

j ||Qn
i |

≤ c
kn∑
i=1

|Qn
i |2 + c

kn∑
i=1

kn∑
j=i+1

e−c2|i−j ||Qn
j ||Qn

i |

≤ c

m2
n

[
Ã(D)+

kn∑
i=1

|Qn
i |
∞∑
j=1

e−c2j

]

≤ c

m2
n

Ã(D).

Takeε < c5δ/2; then (19) yields

P zn
o (TRn ≤ ε) ≤ P zn

o (TRn ≤ E(TRn)− ε)
≤ P zn

o (|TRn − E(TR)| ≤ ε)

≤ 1

ε2
varzno (TRn)

≤ 1

ε2

c

m2
n

Ã(D).
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Thus limn→∞ P zn
o (TRn > ε) = 1, and so we have

lim
n→∞P

zn
o (τD > ε) = 1.

Takingt = ε/2, one sees that

lim
n→∞P

zn
o (τD > 2t) = 1 and lim

n→∞P
zn
o (2t > τD > t) = 0.

However, this contradicts inequality (18) and so proves Theorem 1.

4. Proof of Theorem 2

Our proof follows the arguments in [6]. Let

Dβ = {x ∈D : d(x) ≥ β},
Fβ = {x ∈D : x ∈ γ yo , y ∈Dβ}.

The following lemma follows from the arguments in [6, Sec. 3].

Lemma 4. LetD be a domain inR2 that satisfies the finite lifetime condition and
for which

lim
β→0

1

ϕ0(y)

∫
D\Fβ

GD\Fβ(x, y)ϕ0(x) dx = 0 (20)

uniformly iny ∈D. Then, for eachx ∈D, there existatx > 0 andbtx > 0 depend-
ing only ont andx such that

atxe
−λtϕ0(x)ϕ0(y) ≤ pDt (x, y) ≤ btxe−λtϕ0(x)ϕ0(y). (21)

By [18, Thm. 1], any WA domainD such thatA(D) < ∞ will satisfy the finite
lifetime condition. Therefore, to prove Theorem 1 it is enough to show (20). In-
deed, we prove a more general result as follows.

Lemma 5. LetD be a domain with the wide access property. IfD satisfies(6),
then

lim
β→0

sup
h∈H,y∈D

1

h(y)

∫
D\Fβ

h(x)GD\Fβ(x, y) dx = 0. (22)

Proof. Let h be inH. SinceD is simply connected, the Riesz decomposition
theorem implies the existence of two Borel measuresµ1, µ2 such thath(x) =
GDµ1(x)+MDµ2(x), where

GDµ1(x) =
∫
D

GD(x, y) dµ1(y),

MDµ2(x) =
∫
∂D

MD(x,w) dµ2(w),

andMD is the Martin kernel ofD. Then, for anyy in D,
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1

h(y)

∫
D\Fβ

GD\Fβ(x, y)h(x) dx

≤ 1

h(y)

∫
D\Fβ

GD(x, y)h(x) dx

≤ 1

GDµ1(y)

∫
D

GD(z, y)

∫
D\Fβ

GD(y, x)GD(x, z)

GD(z, y)
dx dµ1(z)

+ 1

MDµ2(y)

∫
∂D

MD(w, y)

∫
D\Fβ

GD(y, x)MD(x,w)

MD(w, y)
dx dµ2(w).

From the last inequality and the fact that

lim
z→w

∫
D\Fβ

GD(y, x)GD(x, z)

GD(z, y)
dx =

∫
D\Fβ

GD(y, x)MD(x,w)

MD(w, y)
dx,

one sees that it is enough to show that

lim
β→0

∫
D\Fβ

GD(y, x)GD(x, z)

GD(y, z)
dx = 0

uniformly in y, z∈D. That is, it is enough to prove (22) for the Brownian motion
starting aty and conditioned to end atz without leavingD uniformly in y, z∈D.

Fix y, z∈D, and consider

A1 = {x ∈D \ Fβ : dD(x, y) ≥ 1, dD(x, z) ≥ 1},
A2 = {x ∈D \ Fβ : dD(x, y) ≤ 1 or dD(x, z) ≤ 1}.

ClearlyD \ Fβ = A1∪ A2. We first deal with

IA1 =
∫
A1

GD(y, x)GD(x, z)

GD(y, z)
dx.

From inequality (13) one sees that

IA1 ≤ c
∫
A1

e−2dD(x,γ
z
y ) dx.

Recall that we can find a conformal map8y,z : B → D such that (a)γ zy =
8y,z([0, r]) for some positiver in [0,1) and (b)0zy = 8y,z[(−1,1)]. It is clear
thatdD(x, γ zy ) ≥ dD(x, 0zy) and, by [18, Lemma 3],

e−2dD(x,γ
z
y ) ≤ e−2dD(x,0

z
y )

≤ 2(e−2dD(x,0
z
o) + e−2dD(x,0

y
o )).

Thus to prove thatIA1 converges to zero uniformly iny andz, is enough to show
that

lim
β→0

∫
A1

e−2dD(x,0
y
o ) dx = 0 (23)

uniformly in y.
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Letη > 0 and takek0 such thatA(ε/c0,D) < η for ε ≤ √2/2k0. LetQ1,Q−1∈
F satisfy:

(i) Q1∩8o,y [(0,1)] 6= ∅ andQ−1∩8o,y [(−1,0)] 6= ∅;
(ii) diamQ1= diamQ−1=

√
2/2k0.

SinceD is a WA domain, the pieces of geodesics that go fromQ1 toQ−1 are con-
tained inDC0/2k0 .

Following Definition 4.5 and Lemma 4.6 in [13], we can find a collection of
Whitney cubes{. . . ,Q−2,Q−1,Q1,Q2, . . .} that satisfy the following conditions.

(1) For alli ∈N, 8o,y [(0,1)] ∩Qi 6= ∅ and8o,y [(−1,0)] ∩Q−i 6= ∅.
(2) For eachQi, there exists a curveIi (often referred to as “cross cuts”) that goes

from awi to w ′i with wi,w ′i ∈ ∂D and such that: (a)Ii ∩ 0yo ∈ Qi; (b) the
pieces of curves that go fromwi andw ′i toQi are hyperbolic geodesics; and
(c) length(Ii) ≤ ζ diamQi, whereζ is a universal constant.

(3) CubeQi is associated with an open set�i ⊂ D such that�i ∩ �j = ∅ for
i 6= j. In addition,D ∩ ∂�i = Ii+1∪ Ii if i > 0 andD ∩ ∂�i = Ii ∪ Ii−1 if
i < 0, with length(0yo ∩�i) comparable to length(Ii).

Define

uo,y =


1 if x ∈0o,y,
ω(x,D+, 0o,y) if x ∈D+,
ω(x,D−, 0o,y) if x ∈D−,

whereω is the harmonic measure,D+ = 8o,y({(x1, x2) ∈ B : x2 > 0}), and
D− = 8o,y({(x1, x2)∈B : x2 < 0}).

WhenD is the strip{z : −π/2< Im z < π/2} and8o,y [(−1,1)] = (−∞,∞),
explicit calculations (see [5]) show that

e−2dD(z,0
y
o ) = (cos Imz)2

(1+ |sin Imz|)2
for all z in the strip. On the other hand, when mapping the strip to the upper half-
plane, a direct computation shows that

(uo,y(z))
2 = (1− 2

π
|Im z|)2

for all z in the strip. Therefore, by the conformal invariance of the hyperbolic dis-
tance and the harmonic measure,

(uo,y(x))
2 ≈ e−2dD(x,0

y
o ) (24)

for all x in D. Another property of the sets�i (Theorem 5 in [13]) is that there
exists an absolute constantc with∫

�i

(uo,y(x))
2 dx ≤ c diamQi diamqi,

whereqi is the largest Whitney cube in�i.

Considerγ xio , wherexi ∈ qi. Following the argument in [18], we obtain

diamqi ≤ d(qi,Dc) ≤ d(xi) ≤ 1

C0
d(γ xio ,D

c).
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Hence, foryi ∈ γ xio ∩ ∂�i, we have thatyi ∈ Ii ∪ Ii+1 and

diamqi ≤ c d(yi)
≤ c(length(Ii)+ length(Ii+1))

≤ c(diamQi + diamQi+1).

We conclude that∫
�i

e−2dD(x,0
y
o ) dx ≤ c(diamQi+1+ diamQi)diamQi.

Thus ∫
⋃
i∈Z\{0} �i∩A1

e−2dD(x,0
y
o ) dx ≤ cA

( √
2

C02k0
,D

)
≤ cη. (25)

Now we deal with the integral overA1\
⋃
i∈Z\{0}�i. If z1 ∈Q1∩8o,y [(0,1)] ∩

I1, thenz1 = 8o,y(r) for somer ∈ (0,1). Following [16, Sec. 10.3] and using the
conformal invariance of the hyperbolic metric, we can suppose that8o,y [(r,1)] is
(0,1) and thatI1 is the union of two rays from 0 to the part of the boundary ofB

contained in{(x1, x2) : x1 < 0}. Then, for allz∈ I1,
dD(z,8o,y [(r,1)]) = dD(z, z1).

From this identity, the corresponding one forI−1, and the fact that the piece of the
geodesic that goes fromQ−1 to Q1 is contained inDC0/2k0 , one sees that there
exists akβ, depending only onβ andk0, such that

lim
β→0

kβ = ∞ and dD(z, 0
y
o ) ≥ kβ for all z∈A1\

⋃
i∈Z\0�i.

Hence we see that, for everyy ∈D,

lim
β→0

∫
z∈A1\

⋃
i∈Z\0�i

e−2dD(x,0
y
o ) dx = 0. (26)

It remains to prove that the convergence is uniform iny. Since limx→∞ d(x) =
0, there is a finite number of Whitney cubes of diameter

√
2/2k0, sayQ1, . . . ,Qr .

LetQ be a Whitney cube and takew, y in Q. Another property of the hyperbolic
metric is that the distance from any side of a geodesic triangle to the other two
sides is at most four. Hence there exists an absolute constantK2 such that

dD(z, γ
y
o ) ≤ K2

for all z∈ γ wo . Thus there existz1, . . . , zr with

dD(z, γ
w
o )+K2 ≥ min

i∈{1,. . . ,r}
dD(z, γ

zi
o )

for all z∈D and for allw ∈⋃r
i=1Q

i. Then, for allx ∈D,
e−2dD(x,0

y
o ) ≤ c max

1≤i≤r
e−2dD(x,0

zi
o ). (27)

From (26) and (27),
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lim
β→0

∫
z∈A1\

⋃
i∈Z\0�i

e−2dD(x,0
y
o ) dx = 0

uniformly in y. By (25) and the last formula, we conclude that limβ→0 IA1 = 0
uniformly in y andz.

It is left to show that

lim
β→0

∫
A2

GD(y, x)GD(x, z)

GD(z, y)
dx = 0 (28)

uniformly in y andz. Toward this end, consider

A1
2 = {x ∈D \ Fβ : dD(x, y) ≥ 1, dD(x, z) ≤ 1},

A2
2 = {x ∈D \ Fβ : dD(x, y) ≤ 1, dD(x, z) ≥ 1},

A3
2 = {x ∈D \ Fβ : dD(x, y) ≤ 1, dD(x, z) ≤ 1}.

If A1
2 6= ∅ then the equivalence of the hyperbolic and quasihyperbolic distance

implies the existence ofk1, k2 with

d(z) ≤ βk1 and {x ∈D : dD(x, z) ≤ 1} ⊂ k2Qz,

whereQz is a Whitney cube that containsz. Hence∫
A1

2

GD(y, x)GD(x, z)

GD(z, y)
dx ≤

∫
A1

2

e2(dD(y,z)−dD(x,y))GD(x, z) dx

≤ e2
∫
k2Qz

GD(x, z) dx.

By (11) and the definition of the quasihyperbolic distance, we have that

dD(x, z) ≥ 1

4
ρD(x, z) ≥ |x − z|

4RD
,

whereRD is the radius of the largest ball contained inD. Thus∫
A1

2

GD(x, y)GD(z, x)

GD(z, y)
dx ≤ e2

∫
k2Qz

log

(
coth
|x − z|
4RD

)
dx

≤ c
∫ βC

0
r log(cothr) dr. (29)

In the same way, we can prove (29) if we replaceA1
2 byA2

2. Moreover,∫
A3

2

GD(x, y)GD(z, x)

GD(z, y)
dx ≤ c

∫
A3

2

e2dD(y,z)[(GD(x, z))
2 + (GD(x, y))2] dx

≤ 2c
∫ βC

0
r(log(cothr))2 dr.

A simple application of L’Hôpital’s rule shows thatr(log(cothr))n remains
bounded asr → 0 for any positive integern. Thus, (28) is true and the lemma is
proved.
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Clearly Lemma 5 implies (20) and then Theorem 2 is proved. The proof of Corol-
lary 1 follows exactly the arguments in [6, pp. 197, 198].

5. Proof of Theorem 3

Let us suppose that̃A(D) <∞. Seth(x) = GD(o, x), and define

Uk = {x ∈D : ak ≤ h(x) ≤ ak+1},
Ûk = {x ∈D : h(x) ≤ ak+1},

wherea is the constant given by the Harnack inequality in (31). To prove Theo-
rem 3 we use the following lemma, which follows from the arguments in the proofs
of Lemma 5.1 and Theorem 1.2 in [8].

Lemma 6 [8]. LetD be a uniformly regular domain inRn for which

∞∑
−∞

sup
x∈Uk

Ex(τUk ) <∞ and
−2∑
−∞

sup
x∈Ûk

Ex(τÛk ) <∞. (30)

ThenD is IU.

Remark 2. It is important at this point to make some remarks concerning (30).
It is well know that, for any planar domainD of finite area, there exists a universal
constantc such that, for allx in D,

Ex(τD) ≤ c|D|.
SinceUk ∩ Um = ∅ for |k −m| > 1 and

⋃
k Uk = D, we have that

∞∑
−∞

sup
x∈Uk

Ex(τUk ) ≤
∞∑
−∞

c|Uk| ≤ 2c|D| <∞

for such domains. On the other hand, Bañuelos and Davis [6] give an example of a
domainD of finite area which is not IU. Therefore we cannot replace (30) simply
by

∞∑
−∞

sup
x∈Uk

Ex(τUk ) <∞

in Lemma 6. (In fact, this last sum implies the finiteness of the conditional life-
time; see [3].)

We shall now prove that Lemma 6 holds for tube domains under our assumptions.
By [1, Thm. 2], any simply connected domain is uniformly regular. Therefore it
is enough to prove (30).

Let x ∈D andr ∈N, and suppose thatd(x) ≤ 1/2r+2. Since any simply con-
nected domain is uniformly regular, there exists aC0 independent ofx, r, k with

P x(τÛk < τB(x,1/2r )) > P x(τD < τB(x,1/2r )) > C0
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(see [8, Lemma 2.6(iii)]). On the other hand, suppose thatd(x) ≥ 1/2r+2. Let
Qo be the Whitney cube containingo, and set

M = {Q∈F : Q ∩Qo 6= ∅}.
Then there existc, C with c ≤ h(x) ≤ C for all x ∈ ∂M. By the Harnack inequal-
ity there exists ana > 0 such that

a−ρ̃D(o,x)−k
′ ≤ ca−ρ̃D(o,x) ≤ h(x) ≤ Caρ̃D(o,x) ≤ aρ̃D(o,x)+k ′ (31)

for somek ′ ∈N. Hence,k > ρ̃D(0, x)+ k ′ implies thatx /∈Uk. That is,

P x(τUk < τB(x,1/2r )) = 1.

If k +1< −ρ̃D(0, x)− k ′, thenx /∈ Ûk and again

P x(τUk < τB(x,1/2r )) = P x(τÛk < τB(x,1/2r )) = 1.

We conclude that, for allx in D:

(i) P x(τUk < τB(x,1/2r )) > C0 for all integerk with |k| > ρ∗(r + 2)+ k ′;
(ii) P x(τÛk < τB(x,1/2r )) > C0 for all k < −2 with k +1< −ρ∗(r + 2)− k ′.

Using [8, Lemma 3.3], we obtain a constantC1 such that, for allx in D,

Ex(τÛk ) ≤ C1
1

22r
.

Thus to prove (30) it is enough to prove
∞∑
r=0

2

22r
(ρ∗(r + 3)− ρ∗(r + 2)+ 2k ′) <∞

or (equivalently)
∞∑
r=2

1

22r
(ρ∗(r +1)− ρ∗(r)) <∞. (32)

Indeed, we shall prove
∞∑
r=2

1

22r
ρ∗(r) <∞.

By our hypothesis,
∞∑
r=2

1

22r
ρ∗(r) ≤

∞∑
r=2

1

22r
(ργ̃ (r + nD)+mD).

Let nk be the number of Whitney cubes of diameter
√

2/2k that intersect̃γ . Take
Qk ∈F with diamQk =

√
2/2k andQk ∩ γ̃ 6= ∅. Let γ̃k be the piece of the geo-

desic fromo toQk. By the definition of WA domains there exists anm∈N such
that, for everyw ∈ γ̃k,

d(w) ≥ 1

2k+m
.

Then
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∞∑
r=2

1

22r
(ργ̃ (r + nD)+mD) ≤ 2mD +

∞∑
r=0

1

22r

r+nD+m∑
i=0

ni

= 2mD + 4nD+m
∞∑
r=0

r+nD+m∑
i=0

ni

22i

1

22(r+nD+m)−2i

≤ c(mD + Ã(D)). (33)

We conclude that̃A(D) <∞ implies (30), soD is IU. The other direction follows
from [18, Thm. 1].

Theorem 3 says that any tube along geodesics with finite area is IU. As mentioned
before, ifD is a WA domain withÃ(D) < ∞ then it is easy to prove thatD is a
countable union of tubes along geodesics. If we also suppose thatÃ(D, ε)→ 0 as
ε→ 0 then the series in (33) converges uniformly, although (32) is no longer true.
This leads us to believe that it is possible to prove Conjecture 1 with the methods
used in this paper.

6. Log Sobolev Inequalities and Tubes

So far we have used probabilistic techniques to attack Conjecture 1. However,
there is a well-known analytic method to prove IU based on logarithmic Sobolev
inequalities.

Theorem 7 [10]. Let e−tA be a symmetric Markovian semigroup onL2(X, dx),

wheredx is a Borel measure on the locally compact second countable Hausdorff
spaceX. LetQ be the associated Dirichlet form with domainQuad(H ). Suppose
there are two continuous functionsε(p) > 0 and0(p) defined for2 < p < ∞
such that∫

D

fp logf dx ≤ ε(p)〈Af, fp−1〉 + 0(p)‖f ‖p + ‖f ‖pp log‖f ‖p (34)

for all 2< p <∞ andf ∈⋃t>0 e
−tA(L1∩ L∞)+. If

t =
∫ ∞

2

ε(p)

p
dp <∞ and M =

∫ ∞
2

0(p)

p
dp <∞, (35)

thene−tA : L2→ L∞ and
‖e−tA‖∞,2 ≤ eM.

We will now apply this theorem to prove Theorem 4. To simplify the arguments
we suppose that, for allx ∈ γ̃,

d(x) ≤ d(z) (36)

for all z ∈ γ̃ xo . If Q0 → Q1→ · · · → Qn is a Whitney chain fromo to x, (36)
says that diamQi ≥ diamQi+1 for 0 ≤ i ≤ n−1.
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Define

η1(k) = 1

22k

k∑
0

ni.

Note that, by (10),

η1(k +1)− η1(k) = 1

22k+2
[nk+1− 3(n1+ · · · + nk)] ≤ 0,

and thereforeη1 is nonincreasing for sufficiently largek. Let x ∈D andQx ∈ F
with x ∈Qx and diamQx =

√
2/2nx . Using (36), we obtain

d2(x)ρ̃D(o, x) ≤ d2(x)

(
mD +

nx+nD∑
0

ni

)
≤ mDd2(x)+ cη1(nx + nD).

Define
η(d(x)) = mDd2(x)+ cη1(nx + nD).

This is a nondecreasing function ford(x) small enough, and by (16) we have

lim
d(x)→0

η(d(x)) = 0.

In addition, ∫ 1

0

η(r)

r
dr ≤ mD + c

∞∑
0

∫ 1/2i

1/2i+1
2i+1η1(i + nD)

≤ mD + c
∞∑
0

η1(i + nD)

≤ mD + cÃ(D).
Thus, if Ã(D) <∞ then there exists aC3 > 0 such that

ρD(x, x) ≤ C3

[
1+ η(d(x))

d2(x)

]
,

with η(r)→ 0 asr → 0, η(r) nondecreasing forr small enough, and∫ 1

0

η(r)

r
dr <∞. (37)

Let x ∈D. It follows from (2) that there exists ay ∈0xo such that

d(y) < d(x) and ρD(o, y) > ρD(x, o).

Thus,

sup{ρD(o, x) : d(x) ≥ ε} ≤ sup{ρD(o, x) : d(x) = ε} ≤ C3

[
1+ η(ε)

ε2

]
.

On the other hand, ifε is small enough then
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sup{ρD(o, x) : d(x) ≤ ε} ≤ C3

[
1+ η(ε)

d2(x)

]
.

Hence, there exists aC > 0 such that, for everyε > 0,

ρD(o, x) ≤ C
[
1+ η(ε)

d2(x)
+ η(ε)

ε2

]
. (38)

Let ϕVo be the first eigenfunction ofH = H0 + V. By the Harnack inequality
there exists ac > 0 such that, for allx ∈D,

ρD(o, x) ≥ −c logϕV0(x).

Using the Hardy inequality and the imbedding properties of|V | (see [2, p. 194]),
one sees that (38) implies

−
∫
D

f 2 logϕV0(x) dx ≤ cη(ε)〈Af, f 〉 + c
(
η(ε)

ε2
+1

)
‖f ‖2 + ‖f ‖22 log‖f ‖2.

By Lemma 4.4.1 (Rosen’s lemma) and Lemma 2.2.6 in [10], we obtain inequality
(34) with ε(p) = η(s/√p) and

0(p) = c

p

(
p

s2
ε(p)+1+ s√

p
− 1

2
log

s√
p

)
.

It is easy to see that (37) implies (35) witht → 0 ass → 0. Our result now fol-
lows from Theorem 5.

Remark 3. Note that condition (10) was only used to prove thatη1 is nonincreas-
ing for k large enough. SupposeD is just a tube along̃γ, and define

η1(k) = sup
k≤r

1

22r

r∑
0

ni.

This is a nonincreasing function that converges to zero. However, (37) is no longer
true. To obtain (37) and then intrinsic ultracontractivity, one could replace (10) by
other conditions, one of the simplest being

∞∑
0

knk

22k
<∞.
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