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Toward a Geometric Characterization
of Intrinsic Ultracontractivity
for Dirichlet Laplacians

PEDRO J. MENDEZ-HERNANDEZ

1. Introduction

Let D be a domain irR? and letp”(x, y) be the heat kernel ef ", whereH is
minus one half the Dirichlet Laplacian ib. We assume thatg, the eigenfunc-

tion of H corresponding to the first eigenvalugis positive—a mild assumption
which holds for a very large class of domains, including all those considered in
this paper. Because

1 —lx—yl?
D < ex
pt (X,)’)_ (2t7‘[)”/2 p{ 2l ’

the symmetric Markovian semigroup# is ultracontractive; that is, it maps
L?(D) into L>*(D) for all + > 0. Following [11], we say thaD is intrinsically
ultracontractive(IU) if the symmetric Markovian semigroup™ in L?(D, ¢3 dx)
given by the kernel

etpP(x, y)

Po(x)@o(y)

is ultracontractive. This is equivalent (see [11]) to the existenag of 0 andb, >

0 depending only o ands and such that, for alt, y € D,

pP(x,y) =

bipo(x)po(y) < pP(x, ) < aipo(x)po(y). @

Because of its analytic and probabilistic consequences, intrinsic ultracontractiv-
ity has been widely studied by many authors (see e.qg. [3; 4]). Sufficient conditions
for IU can be found in [2; 8; 11]. The results in these papers do not give necessary
and sufficient conditions. It seems to be very difficult (and perhaps impossible) to
find a geometric characterization for IU without restricting to some subclasses of
domains. However, there is a conjecture for a geometric characterization of IU for
a certain class of simply connected domains. We will state it later in this section.
The purpose of this paper is to provide some partial results related to this conjec-
ture. Before we state the conjecture and our main results, we need to introduce
some notation and present some definitions.
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DErFINITION 1. Let D be a simply connected domain in the complex plane. We
say thatD has the wide access property (WA) if there exists a fixed pointD
such that, for any € D, there is a patl" from o to x with

inf d(2) = Crd(x), )

whereCr is a constant independent.ofandd (y) denotes the distance fromto
the boundary of>. We will often call domains with this property WA domains.

RemArRk 1. WA domains have also been referred td’adomains (see [4; 18]).

Domains that are above the graph of an upper semicontinuous function give typical
examples of domains with the wide access property. In fact, this case was studied
by Bafiuelos and Davis in [7], where a simple geometric characterization for IU is
given. This was the only known geometric characterization of IU for a large class
of domains with the wide access property. In this paper we give a necessary con-
dition for IU in any simply connected domain in terms of areas of Whitney cubes.
We also extend the Bafiuelos—Davis result by proving that such geometrical con-
dition is equivalent to IU for certain types of WA domains and that, in general WA
domains, it implies that for alf € D there existz;” > 0 andb;” > 0 such that

aleo(x)@o(y) < pP(x, y) < bioo(x)po(y) ®)

for all y e D. Domains with this property are often called “one-half intrinsic ultra-
contractive” because of the uniformity in one of the variables when the other is
held fixed. This property was first studied in [6] where it was proved that it im-
plies, among other things, the following asymptotic behavior of the heat kernel
pP(x, y): Fix x € D; then

eMptD(-xsy) :1 (4)
=00 o(x)po(y)

uniformly in y. One-half intrinsic ultracontractivity has many interesting prob-
abilistic corollaries (see [6]). For instance, it implies tliasatisfies the “finite
lifetime” condition defined in (9). We will briefly mention this connection below.

Following Stein [19], a Whitney cube decompositigrof D is a collectionF =
{01, 02, ...}, whereQ; are cubes whose sides are parallel to the axes and
(1) 07 N Q7 =0fori # j;
(2) Uy Qx = D;
(3) diamQy < dist(Qy, D¢) < 4diamQy for all k.
Here (and in the rest of the paper), di@k, D) = inf,cg, dist(x, D¢) and
diamQ;, is the diameter ofQ,. For Q., Qg € F, we say thatQ, = Qo —
01— --- — 0, = Qp is aWhitney chain connecting, to Qg of lengthn if:
(i) Q;eFfor0O<i <n;and
(i) 9NQiu#Pfor0<i<n-1
We define the Whitney distancé,(Q., Q) to be the length of the shortest
Whitney chain connectin@,, to Qg. If x,y € D then we defingp(x, y) =
pp(Qx, Qy), Wherex € Q, andy € Q.
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/) X, Il s,
P y 4 Y d(‘s)

where the infimum is taken over all rectifiable curjefining x to y. A quasi-
hyperbolic geodesi¢; is an arc for which this infimum is attained; see Martin
[15]. It follows easily from the definition that there exist b,, b3 such that

bipp(x,y) —ba < pp(x,y) < bapp(x,y) %)

forallx, y € D. Givenx € D, we setA(x, ¢) to be the area of the Whitney squares
which intersect a quasihyperbolic geodesic fremo x and which have diameter
less thare.

Let
A(D, &) = SUpA(x, ),
xeD
A(D) = SupA(D, ¢).
e>0

The sufficient conditions for IU in WA domains given in [2; 8; 11] essentially
provide upper bounds 0A(D, ¢) to control its rate of convergence to 0 aap-
proaches 0. The following conjecture, motivated by the results in [7], would, if
true, extend and generalize all the aforementioned results.

ConNJECTURE 1 (Bafiuelos—Davis). ID is a domain with the wide access prop-
erty, thenD is IU if and only if A(D, ¢) — 0 ase — 0 andA(D) < oo.

Our first theorem is a generalization of the necessary geometric condition for U
given in [7] to any simply connected domain.

THEOREM 1. Let D be a simply connected domain.Ifis 1U, then

|imOA(s, D)=0 and A(D) < co. (6)

The following theorem asserts that in domains with the wide access property, (6)
implies the weaker version of IU mentioned before.

THEOREM 2. Let D be a domain with the wide access propertyDI§atisfieg6),
then for allx € D there exist*, b > 0 such that

t> t
ate Mpo(x)po(y) < pP(x, y) < ble ™ po(x)@o(y) @)
forall y e D.

In the proof of Theorem 2 we follow the arguments in [6], where Bafiuelos and
Davis prove Theorem 2 for any bounded domain. It turns out to be easy to prove
Conjecture 1 for bounded domains with the wide access property. However, we
must remark that the domains considered in Theorem 2 could have infinite area;
therefore, Theorem 2 extends the results in [6] for these domains.
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As mentioned earlier, inequality (7) has some interesting probabilistic corol-
laries. LetB; be a two-dimensional Brownian motion and tet be the first exit
time from D. The heat kerneb?(x, y) gives the transition densities &f killed
on the boundary ob. If 4 is a positive superharmonic function i, the Doob
h-conditioned Brownian motion is the Markov process with transition densities

h pP(x, y)h(x)

pp(t,x,y) = h(y) . (8)
ThenP(tp > t) = fD pD(t x, y) dy is the probability that the Dooh-process
started atc does not leaved before timer. We will write E.' for the mean asso-
ciated withP!. In the case ofi(-) = Gp(, ), we denoteP! andE! by P} and
E;, respectively. This is the Brownian motion startea @nd conditioned to ter-
minate aty without leaving the domai®. Using Theorem 2 and the arguments
given in [6], we obtain the following result.

CoroLLARY 1. Let?H be the set of all positive superharmonic function®inlf
D satisfies the hypothesis of Theorem 2 ar&i?, then

e*pP(x,y)
=00 @o(X) @o(y)

(2 /wo(y)h(y)dy < 0.
D

1) = 1uniformly iny for eachx.

@) lim Piep > 0= 22 [ h()go(y) dy.
t—00 h(x) D
(4) sup  eMPf(tp > 1) < oo.

x€D,t>0,heH
A domain is said to satisfy thfnite lifetimecondition if

sup Ej(tp) < oo. 9)
heH,xeD

SinceEj(tp) = fo°° P (tp > t)dt, itis clear that Corollary 1(4) implies (9).
Thus the results in this paper generalize Theorem 1 in [18], which gives a geomet-
rical characterization for finite lifetime in domains with the wide access property.

There are basically two general (and very distinct) methods available to prove
sufficient conditions for IU. The first is to use the following probabilistic charac-
terization. For each > 0, there exists a compact skt such that, for alk € D,

PY(B;€K; | tp > 1) > ay,

whereq, is independent aof. Using this characterization and the methods in [8]
we prove the conjecture for WA domains given by tubes along geodesics. More
precisely, leth be a domain with the wide access property, and define:

Q) p*(r) = SUR.c pe op(o,x), whereD, ={xeD :d(x) > 1/2"}.

(2) py(r) = sUp.cpeny Pp(o, x), Wherey is a quasihyperbolic geodesic.
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We say thatD is a tube along a geodesicif there exist a quasihyperbolic geo-
desicy and positive integersp, mp such that

p*(r) < py(r +np) +mp.

For these domains, (6) is equivalent46D) < oc. If D is given by the graph of

a function, Bafiuelos and Davis proved thatis 1U if and only if A(D) < oco.
Geometrically, the Bafiuelos—Davis result is the case béing a line. However,
their argument does not seem to work for twisted tubes. The following theorem
extends their result to twisted tubes.

THEOREM 3. LetD be a tube along the geodesic ThenD is IU if and only if
A(D) < oo.

If D is a domain with the wide access property such f@) < oo, it is easy to

prove thatD is a countable union (could also be finite) of tubes along geodesics;
thus, Theorem 3 seems to be a necessary step toward the solution of the conjec-
ture. In fact, the argument used to prove Theorem 3 proves Conjecture 1when

is the union of a finite number of tubes. However, up to this point we have not
been able to make the argument work for the general case even under the assump-
tion thatA(D, ¢) — 0 ase — 0.

The second method, used in [2; 11] and described in Section 6, is based on
the theory of logarithmic Sobolev inequalities. This is a powerful analytic tech-
nique which, when it works, gives information abaut? for a wider class of
Schradinger operators. In addition, it provides detailed information on the behav-
ior of the constants, andb, as functions of. Following this approach, we prove
the conjecture for a special case of tubes along geodesics and for Schrodinger oper-
ators. More precisely, ldd be a tube along and let:; be the number of Whitney
cubes of diametey/2/2* that intersec§. (In [19] it is proved that we can take a
Whitney decompositiodf such that, for any) € F, diamQ = +/2/2* for some
k € Z.) Consider the operatdi = Hg + V, whereHj is a second-order diver-
gence form uniformly elliptic operator with bounded measurable coefficients and
with Dirichlet boundary conditions and whel&is a potential in the Kato class
K. For more information on these operators, see Davies [11]. We defifie
and the notion of intrinsic ultracontractivity ef /! in the same way we did for
the Dirichlet Laplacian. By studying the behaviordifr)?pp (0, x) and using the
arguments in [2] and [11], we obtain the following result.

THEOREM 4. Let D be atube along. If A(D) < oo and
N1 < 3(na+ -+ - +ny) (10)
for k large enough, thea=# is intrinsically ultracontractive.

We must remark that the arguments in the proof of Theorem 3 imply Theorem 4
just whenV = 0 andHy is the Dirichlet Laplacian. As a matter of fact, Theorem
4 seems to be new even for the case of tubes given by the graph of a function with
V = 0 andHj a uniformly elliptic operator. Following this approach, we can
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prove the conjecture for bounded WA domains and also prove that, in a general
WA domain, (6) implies thaD is intrinsically supercontractive. In other words,
the operatorg~"# are bounded fronL”(D, ¢3) to L"(D, ¢3) for all t > 0 and
l<p<r<oo.

The paper is organized as follows. In Section 2 we set up some more nota-
tion and give some lemmas on the geometry of quasihyperbolic and hyperbolic
geodesics. In Section 3 we prove Theorem 1, followed by the proof of Theorem 2
and Corollary 1 in Section 4. Theorem 3 is proved in Section 5, and in Section 6
we prove Theorem 4.

Throughout the paper, the lettersC, will be used to denote constants which
may change from line to line but which do not depend on the variablesz, ....

2. Preliminaries

Let D be a simply connected domain R? with z € D, and defineop(z) =
1/|F'(0)|, whereF is a conformal mapping sending the unit dBonto D with
F(0) = z. Letx, y € D define the hyperbolic distance betweerny by

dp(x,y) =inf / op(s)ds,
voJy
where the infimum is taken over all rectifiable curyeom x to y. A hyperbolic
geodesic is an ang; for which the infimum is attained. It can be shown that there
exists a conformal mag,, : B — D with ®,,(0) = x, ®,,(r) = y for somer €
(0,1, andy; = ®,,([0, r]); see [16]. Defindy = ®,,((—1, 1)).
Koebe’s one-quarter theorem implies

dp(z) < |F'(0)| < 4dp(2),

and therefore
dD(-xv y) SPD(X, y)S4dD(xs )’) (11)

If D is a WA domain, Lemma 1in [18] states that, for every D, we can takd

to be either the hyperbolic geodesif or the quasihyperbolic geodesig. Using

this, the fact that/p (-, -) andpp (-, -) are equivalent metrics in any simply con-
nected domain, and the Gromov theory of hyperbolic groups, Smits [17] proved
the following lemma.

LemMma 1. Let D be a simply connected domain. Then there exists a universal
constantk > 0 such that, for allk, y € D,

(i) dp(z1, 77) < K forall z; € yi;

(i) dp(z2,yi) < K forall zz€ 7.

Here and in the sequel we denote quasihyperbolic geodesicsxftony by 7}

and hyperbolic geodesics hy'. Consequently, we defing(D, ¢) and A(D) in

the same way we definé(D, ) and A(D) but taking Whitney cubes that inter-
sect hyperbolic geodesics. In [18] Smits proved that, for any simply connected
domain,A(D) < oo if and only if A(D) < co. We follow his argument to prove
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the following lemma, which tells us that we can use hyperbolic geodesics instead
of quasihyperbolic geodesics in our results.

LemMma 2. If D is a simply connected domain, thiem, .o A(D, ¢) = 0if and
only if lim,_o A(D, ¢) = 0.

Proof. Letx € D andQ € F, with 0 Ny # @. Using Lemma 1, (11), and (5),
we find a universal constaiif; with

pp(Q,7,) < Ki.
Thus there i)’ € Fwith Q'Ny* #£ Bandpp(Q, Q') < K;. Since the diameters

o

of adjacent Whitney cubes differ at most by a factor of 4, we have

10| < 440/,

where|Q| denotes the Lebesgue measure (aredq).oBy the triangle inequality,
for each Whitney cub@’ that intersecty, there are at most®; + 1 cubesQ
that intersecy,* with pp(Q’, Q) < K1. Hence

A(e, x) < 412K, + 1) A(48%, x)
and the result follows by the symmetry of the argument. O
We now describe some relationships between the hyperbolic distance and the Green
function in D. It is well known that, for all; € B,
1 1 1 1+ |z
Gg(0,7) = —Ilog— and dp(0,7) = =lo .
50.2) = —— 97 5(0.2) =3 S Ep—

These identities are discussed in Hayman [14]. Solving:fan terms ofdz (O, z),
one finds that

—2dp (O,Z))

1
Gp(0,2) = o log(cothe forall z e B.

Let ® be a conformal map fron® to D, with ®(0) = x and®(z) = y. By
the conformal invariance of both the Green function and the hyperbolic metric, we
have

1
Gp(y,x) = o log(cothe=24P»)y  forall x,ye D.

Then there exist universal constanisa, > 0 such that:

(i) e 2p™Y) < a;Gp(x,y) forall x, y € D;
(i) Gp(x,y) < aze~ 2 provided thatip(x, y) > 1

Hence, forx, y, w in D with dp(y, w) > 1anddp(x, y) > 1, we obtain

Gp(x, y)Gp(y, w) _ 022D V) +dp (3, w)—dp (x,w)
= azaxe .
Gp(x, w)

By [9, Prop. (1.3)] (note that, when Coornaert and Papadopoulus refer to the
hyperbolic space, they endaoBr with the metric%dD(-, -)), there existsiz such
that, for allx, y € D,
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dp(x,y)+dp(w,y) —dp(x,w) > dp(y, y;) — as. 12)
Thus, there exists a universal constansuch that

Gp(x,y)Gp(y, w) o2 7d)
Gp(x, w) aa ’
provided thatdp (x, y) > 1 anddp(y, w) > 1.

For the rest of this pape#,(x, y) denotes thé:-conditioned Brownian mo-
tion starting atc, whereh(-) = Gp (-, y). The variance and covariance associated
with the distribution ofZ,(x, y) will be denoted by varand coy. For any planar
Borel setO, we denote byP;(0) the probability thatZ,(x, y) ever hitsO. The
following results from Davis [12] and Bafiuelos and Carroll [5] are fundamental
in the proof of Theorem 1. (Recall thgP| denotes the area of the cube)

(13)

THEOREM 5[12]. There exists a constant such that, ifQ is a Whitney cube and
if one ofo or y is a distance at Ieas% diamQ from Q, then

E)(Tp) = c1P; (Q)| 0|,
WhereTQ = _/JD 1{Z,EQ} dt.
THEOREM 6 [12]. There exists a constanp such that, ifQ and R are Whitney

cubes, then 3
lcov!(Ty, Tr)| < e~ 2P (@R |Q||R|.

LeEmMMA 3 [5]. There exist constants; andc4 such that, ifdp (o, y) > 1, then
PX(Q) > C36*04dl)(ZQ,%}v)
o —_ )
wherez is the center oD.

We end this section by pointing out several interesting and useful geometric and
analytic properties of domains with the wide access property. Sugpdsa do-
main with the wide access property; then it is clear that, for &lD,

d(x) < Cir d(o).

We can therefore suppose that sypd(x) < 1 Furthermore, ifQ € F with
oNyr#Pandzg ey NQ, then

1 Cr
——d(z9) > —=d(x). 14
Wi (z0) 573 ) (14)
Thus, ifny is the number of Whitney cubes of diametg?/2* that intersecy,’,
then there exists, € N such that;, = 0 fork > k, and
kx

A(x, D) = Z > 2 cd(x)*pp(0, x). (15)

diamQ >

Sincepp (0, x) — oo asx — oo, we conclude thati(D) < oo impliesd(x) —
0 asx — oo, and by [10, Thm. 1.6.8] the spectrum &fis discrete.
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Suppose now thab satisfies (6) and that dia®, = +/2/2". From (14) there
exists ac such that

k.\f
d(0)?pp(0.x) = cd(x)? ) ny
k=0

ng 1 ng
=c ﬁ 22m—2k tc Z ﬁ
O<k<m/2 m/2<k<ky
ng Nk
= Cd(X) Z ﬁ +c Z ﬁ
O<k<m/2 m/2<k<ky
V2 )

< Cd(x)A(D) + CA(D, W

(16)
Therefored(x)?%op (0, x) — 0asd(x) — 0 aqd, by [7, Thm. 5] we conclude that
D is intrinsically supercontractive. That is,”” is bounded froni.?(D) to L"(D)
forallr > Oandforl< p <r < oco. In a similar way we can prove thatl) is a
bounded WA domain thepp (x) < ¢/d(x) and, by [7, Thm. 6]D is IU.

3. Proof of Theorem 1

To prove Theorem 1, let us suppose that (6) is false. Using the results from [12]
and [5] stated at the end of the previous section, we show that this implies the ex-
istence of sequencds, }5° C D and{R,}3* (whereR, is a union of Whitney
cubes) such that, for sonae> 0,

lim P (Tg, > ¢) =1, (17)

n
where
L))
To = / 1{2[50] dt
0
is the time spent by, in a Borel seD contained inD. Then we note that (17) con-

tradicts the following consequence of intrinsic ultracontractivity (inequality (2.11)
in [7]): there exist, independent of andy such that

P)(t <tp < 2t) > ¢;P)(tp > 21). (18)
Since IU implies (as mentioned before; see [2]) that

sup Ej(tp) < oo,
heH,xeD

it follows by Theorem 1 in [18] that
A(D) < .

We should remark that, although Theorem 1 of Smits [18] asserts that the finite life-
time condition is equivalent ta(D) < oo for any WA domainD, his proof of the
necessary condition for finite lifetime is valid for any simply connected domain.
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Next, suppose that lim,g A(D, ¢) # 0. Then there exist > 0 and sequences
{223, {m,}§° (with lim,,_, o m,, = 0) such that
Azn,V2/my) = 5.
Let 07, ..., Of be the Whitney cubes that intersegt with diameter less than
V2/m,, and considef’;, wherer, = Uf;l Q. Forn large enough we have
min{dD((), Q:l)’ ﬁD(Ov Q?)} = 1
forl<i <k,; by Theorem 5,
kn
7 c n n
Ej'(Tx,) = 5 Zg PZ(Q]I071,
(recall thatP?*(Q!) denotes the probability thak (o, z,,) ever hitsQ!'). Lemma 3
givescs, ¢4 With
P;(Q}) = caexp{—cadp(zor, v,")},
wherez g is the center oD}
Given thatQ” Ny # @, one sees from Lemma 1 that there exists a constant
Cs with
Ej”(TR”) = c5|Rn| = CS(S' (19)
Without loss of generality we can suppose thafQ;', 07) = |i — jl. Now, from

Theorem 6 we obtain
kll kn

var"(Tg,) < ) Y Icov"(Tor, Toy)l
i=1 j=1
kn  kn B
SCZ ZE_LZPD(Qi,Qj)lQ;‘ZHQ?l
i=1 j=1
chIQ ? +cZ Z e or|0r|
i=1 j=i+1
< —Z[A(D)+ZIQ”IZ “21]
< —ZA(D).
m

n

Takes < ¢58/2; then (19) yields
Pi"(Tg, < &) < Pi"(Tg, < E(Tg,) — &)
P;"(ITr, — E(TR)| <€)

IA

I /\

var:"(Tg,)

22
1 ¢
22

I /\

— A(D).

f’l
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Thus lim,_, o P?"(Tx, > ¢) =1, and so we have
lim Pi(tp >¢) =1
n—o0
Takingr = /2, one sees that
lim P"(tp >2t)=1 and lim P/ (2t > tp >1)=0.
n— 00 n—oo

However, this contradicts inequality (18) and so proves Theorem 1. O

4. Proof of Theorem 2

Our proof follows the arguments in [6]. Let
Dy ={xeD:d(x)=> B,
Fg={xeD:xey),ye Dg}.

The following lemma follows from the arguments in [6, Sec. 3].

LemMa 4. Let D be a domain irR? that satisfies the finite lifetime condition and
for which

lim G (x, V)eo(x)dx =0 20
50 903 o, D\Fg{X, Y)¥o (20)

uniformly iny € D. Then, for eaclx € D, there exist!. > 0 andb. > 0 depend-
ing only onr andx such that

ale ™ po(x)po(y) < pP(x,y) < ble ™ po(x)po(y). (21)

By [18, Thm. 1], any WA domairD such thatA(D) < oo will satisfy the finite
lifetime condition. Therefore, to prove Theorem 1 it is enough to show (20). In-
deed, we prove a more general result as follows.

LeEMMA 5. Let D be a domain with the wide access propertyDl&atisfieq6),
then .
lim sup — h(x)G (x,y)dx =0. (22)
B=0 pett, yep A(Y) D\Fg AP

Proof. Let 4 be in H. Since D is simply connected, the Riesz decomposition
theorem implies the existence of two Borel measygsu, such thati(x) =
Gppa(x) + Mpua(x), where

Gppi(x) =/DGD(x,y)dM1(y),

Mppa(x) = | Mp(x, w)dpz(w),
oD

andMp is the Martin kernel ofD. Then, for anyy in D,
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1

— G (x, y)h(x)dx
h(y) Jp\r, PPt Y

—_— G ,V)h d
< " o, p(x, y)h(x)dx

1 Gp(y, X)G(x, 2)
— | Gp(z, dxd,
= Gm(y)/u PO | T GaGyy  rAa@

1 Gp(y, x)Mp(x,
+—/ MD(w,y)/ p(y. ) Mp(x, w) dx dus(w).
Mpu2(y) Jop D\Fy Mp(w, y)
From the last inequality and the fact that

/ Gp(y, x)Gp(x,2) dx:/ Gp(y, )Mp(x, w)
D\ Fg GD(Z5 y) D\ Fg MD(UJ, y)

one sees that it is enough to show that

Iim/ Gp(y. ¥)Gp(x.2) ,
F—~0Jp\Fy Gp(y,z)

uniformly iny, z € D. Thatis, it is enough to prove (22) for the Brownian motion
starting aty and conditioned to end atwithout leavingD uniformly iny, z € D.
Fix y, z € D, and consider

Ai={xeD\ Fg:.dp(x,y)>1 dp(x,2) = 1},
Ay ={xeD\ Fg:dp(x,y)<lordp(x,z) <1}.
ClearlyD \ Fg = A1 U A,. We first deal with

/ GD()’,X)GD(X, Z)
Iy, =

A1 GD(ys Z)
From inequality (13) one sees that

lim

I—w

)

x =0

dx.

Iy, < c/ e 20 7y) gy
Az

Recall that we can find a conformal map, .: B — D such that (a)yyZ =
@, ([0, r]) for some positive in [0,1) and (b)I'; = @, .[(—1 D)]. Itis clear
thatdp (x, y;) > dp(x, ;) and, by [18, Lemma 3],

e—ZdD(x,yyz) < e—ZdD(x,[‘:é)
< 2(6—2d0(x,r;;) + e—ZdD(x,l";Y)).

Thus to prove thal,, converges to zero uniformly in andz, is enough to show
that

lim | e 20T gy = 0 (23)
p—0 A1

uniformly in y.
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Letn > 0and takeo suchthat(s/cr, D) < nfore < +/2/2%. LetQ:, Q1€
F satisfy:

(I) 01N CDU,)‘[(Oa l)] 5& 0 andQ—l N qDU,)’[(_l’ 0)] 7é @;

(i) diam Q; = diamQ_; = v/2/2%o.

SinceD is a WA domain, the pieces of geodesics that go fi@ito Q 3 are con-

tained inD¢,. ot -

Following Definition 4.5 and Lemma 4.6 in [13], we can find a collection of
Whitney cubeg..., O _», O_1, 01, O>, ...} that satisfy the following conditions.
(1) Forallie N, ®,,[(0,D]N Q; # Fandd, ,[(-L, O] N Q_; # 3.

(2) Foreachp;, there exists a curvk (often referred to as “cross cuts”) that goes
from aw; to w/ with w;, w/ € 3D and such that: (a}; N Ty € Q;; (b) the
pieces of curves that go from; andw; to Q; are hyperbolic geodesics; and
(c) length(l;) < ¢ diamQ;, where¢ is a universal constant.

(3) Cube; is associated with an open $ef C D such thai; N Q; = ¢ for
i ;ﬁ J- In addition,D N 0Q; = I 11U if i >0andD N 0Q;, =LUIL_4 if
i < 0, with length(T'y N ;) comparable to lengti;).

Define .
1 if xeloy,

M()A,_\' = w(xa D+9 rg,y) If X € D+,
w(x,D™,T,,) if xeD™,
wherew is the harmonic measur®* = @, ,({(x1, x2) € B : x > 0}), and
D™ =@, ,({(x1,x2) € B : x2 < O}).
WhenD is the strip{z : —7/2 < Imz < wr/2} and®, ,[(—1, 1] = (—o0, 00),
explicit calculations (see [5]) show that
~2dp(z.1) _ _(COS Imz)?
L+ |sinImz])2
for all z in the strip. On the other hand, when mapping the strip to the upper half-
plane, a direct computation shows that
(1o, (2))? = (1= 2[Imz))?
for all z in the strip. Therefore, by the conformal invariance of the hyperbolic dis-
tance and the harmonic measure,
(g, (x))? A e~ 2P T0) (24)

for all x in D. Another property of the sel®; (Theorem 5 in [13]) is that there
exists an absolute constanwith

/ (o, (x))? dx < cdiamQ; diamg;,
Q;

e

whereg; is the largest Whitney cube @, .
Considery,"i, wherex; € g;. Following the argument in [18], we obtain

. . 1
diamg; < d(g;, D) < d(x;) < o d(y;), D).
I



92 PEDRO J. MENDEZ-HERNANDEZ

Hence, fory; € ¥, N 3Q;, we have thay, € I; U I;;1 and
diamg; < cd(y:)
< c(length(Z;) + length(/;11))
< c(diamQ; + diamQ;.1).

We conclude that
/ e~20T0) gy < c(diam Q41 + diamQ;) diam Q.
Ql

Thus

y 2
/ 72T dy < cA<—fk ,D) <o (25)
Uiez\joy RiNAL Cr2ko

Now we deal with the integral ovet; \ Uiez\{o} Q;. Ifz1€ Q1N P, ,[(0, D] N
I, thenz, = @, ,(r) for somer € (0, 1). Following [16, Sec. 10.3] and using the
conformal invariance of the hyperbolic metric, we can supposedihaf(r, 1] is
(0,1 and that/; is the union of two rays from 0 to the part of the boundaryBof
contained in(xy, x») : x1 < 0}. Then, for allz € I,

dp(z, ®,,[(r,D]) = dp(z, z1).

From this identity, the corresponding one fag, and the fact that the piece of the
geodesic that goes fro@_; to Q; is contained inD¢ ., One sees that there
exists akg, depending only o andkg, such that

A!gimok,g =00 and dp(z,T)) =2 kg forall ze A1\ U;cz0 Q-
Hence we see that, for evepye D,

lim / e 20T gy — (26)
B=0 JreAnUicz 09

It remains to prove that the convergence is uniform.ilsince lim._, .. d(x) =
0, there is a finite number of Whitney cubes of diamet@/ 2*°, sayQ?, ..., Q’.
Let Q be a Whitney cube and take y in Q. Another property of the hyperbolic
metric is that the distance from any side of a geodesic triangle to the other two
sides is at most four. Hence there exists an absolute corfsjamich that

dD(Za Voy) = KZ
for all z € . Thus there existy, ..., z, with

dp(z,y))+ K2 > min dp(z, y')
el....r}

l

forall z € D and for allw € | J/_; Q'. Then, for allx € D,

y zj
e~2d0 (5T < - max e~ 24T, (27)

1<i<r

From (26) and (27),
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lim / e 2 To) gy = 0
B0 JreanUiczo

uniformly in y. By (25) and the last formula, we conclude that jigy 7,, = 0
uniformly in y andz.
Itis left to show that

im / Gp(y,x)Gp(x,z2)
Az

dx =0 (28)
B—0 Gp(z,y)

uniformly in y andz. Toward this end, consider
Ay ={xeD\ Fg:dp(x,y) > 1 dp(x,2) <1},
AS={xeD\ Fy:dp(x,y) <1 dp(x,2) = 1},
A3 ={xeD\ Fs:dp(x,y) <1 dp(x,z) <1}.

If AL # ¢ then the equivalence of the hyperbolic and quasihyperbolic distance
implies the existence @, k, with

d(z) < Bk and {xeD:dp(x,z) <1} Ck2Q;,

whereQ, is a Whitney cube that contains Hence

/ Gp(y,x)Gp(x,2) dxff eZ(dD(y,z)de(ny))GD(X’Z)dx
A GD(Z’ Y) A

1 1
2 2

< ¢? / Gp(x,z)dx.
kZQz

By (11) and the definition of the quasihyperbolic distance, we have that
[x —z|
4R p
whereR), is the radius of the largest ball containedZin Thus

f Go(*, )Gz, %) < eZ/ Iog(coth'x _ Z|> dx
4 Gp(z,y) 20, 4Rp

)

1
dD(-xv Z) 2 ZpD(-xa Z) Z

BC
< c/ r log(cothr) dr. (29)
0
In the same way, we can prove (29) if we replagby A3. Moreover,

/ GD(X, y)GD(Z, )C) dx < C/ eZdD(y'z)[(GD(x, Z))2 + (GD(X, y))Z] dx
A3 Gp(z,y) A3

BC
< 20/ r(log(cothr))2dr.
0

A simple application of L'Hopital's rule shows that(log(cothr))" remains
bounded ags — O for any positive integet. Thus, (28) is true and the lemma is
proved. O
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Clearly Lemma 5 implies (20) and then Theorem 2 is proved. The proof of Corol-
lary 1 follows exactly the arguments in [6, pp. 197, 198].

5. Proof of Theorem 3

Let us suppose that(D) < co. Seth(x) = Gp(o, x), and define
Uy ={xeD:a" <hx) <ath,
U ={xeD:h(x) <d,

wherea is the constant given by the Harnack inequality in (31). To prove Theo-
rem 3 we use the following lemma, which follows from the arguments in the proofs
of Lemma 5.1 and Theorem 1.2 in [8].

LEmMA 6 [8]. Let D be a uniformly regular domain ifR” for which

-2

> SUpEf(ty,) <oco and Y supE*(ry) < oo. (30)

o xeUy —oo xeU;

ThenD is |U.

REMARK 2. Itis important at this point to make some remarks concerning (30).
Itis well know that, for any planar domaid of finite area, there exists a universal
constant such that, for alk in D,

E*(tp) < c|D|.
SinceU; N U,, = ¥ for |k —m| > 1and|J, Ux = D, we have that

0] o]
Y SUPE*(zy) < ) clUkl < 2¢|D| < 00
“oo X€Uk 00

for such domains. On the other hand, Bafiuelos and Davis [6] give an example of a
domainD of finite area which is not IU. Therefore we cannot replace (30) simply

by
> SUpE*(ty,) < oo

—00 xeUy

in Lemma 6. (In fact, this last sum implies the finiteness of the conditional life-
time; see [3].)

We shall now prove that Lemma 6 holds for tube domains under our assumptions.
By [1, Thm. 2], any simply connected domain is uniformly regular. Therefore it
is enough to prove (30).

Letx € D andr € N, and suppose that(x) < 1/2"*2. Since any simply con-
nected domain is uniformly regular, there existSgindependent of, r, k with

P*(ty, < tpx,y2n)) > P*(tp < Tp(x,172)) > Co
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(see [8, Lemma 2.6(iii)]). On the other hand, suppose ditay > 1/2"+2. Let
0, be the Whitney cube containing and set

M={QeF:0NnQ,#0}.

Then there exist, C with ¢ < h(x) < C for all x € 9M. By the Harnack inequal-
ity there exists am > 0 such that

a—Pp.x)—K < ca~Pp©x) <h(x) < CaPp©) < P )+k (31)
for somek’ € N. Hencek > pop(0, x) + k" implies thatx ¢ U,. That is,
P*(ty, < tx,1y2)) =1
If k +1< —pp(0,x) — k', thenx ¢ Uy and again
P¥(ty, < tp,y2n) = P(ty, < T2y =1

We conclude that, for alt in D:

(i) P (ty, < tB(x,127)) > Co for all integerk with |k| > p*(r +2) + k';
(i) P*(ty, < tp(x,y2n) > Co forallk < —2withk +1 < —p*(r +2) — k'.

Using [8, Lemma 3.3], we obtain a constantsuch that, for alk in D,
. 1
E ('L'l*/k) < C]_ZT
Thus to prove (30) it is enough to prove

oo
2
r=0

or (equivalently)

=1
> 55 (P + D = () < 00, (32)
r=2

Indeed, we shall prove
[o¢]
Z i,o*(r) < 00
2r .
r=2 2

By our hypothesis,

o0 o0
1, 1
D55 P () =D 5 (05 +np) + mp).
r=2 r=2

Letn, be the number of Whitney cubes of diame{é/2* that intersecf. Take
Qy € F with diamQ; = +/2/2F andQ, N7 # ¥. Let 7 be the piece of the geo-
desic fromo to Q. By the definition of WA domains there exists anc N such
that, for everyw € y,

d(w) >

k+m *
Then
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00 r+np+m

(o]
> 2,<py<r+nu)+mD><2mD+222, oo

r=2 r=0 i=0

oo Tr+np+m

np-+m
_2m +4 Z Z 221 22(r+nD+m) 2i
r=0 i=0

< c(mp + A(D)). (33)

We conclude thafi(D) < oo implies (30), saD is IU. The other direction follows
from [18, Thm. 1]. O

Theorem 3 says that any tube along geodesics with finite area is IU. As mentioned
before, if D is a WA domain withA(D) < oo then it is easy to prove tha is a
countable union of tubes along geodesics. If we also supposéthat) — 0 as

¢ — Othenthe series in (33) converges uniformly, although (32) is no longer true.
This leads us to believe that it is possible to prove Conjecture 1 with the methods
used in this paper.

6. Log Sobolev Inequalities and Tubes

So far we have used probabilistic techniques to attack Conjecture 1. However,
there is a well-known analytic method to prove 1U based on logarithmic Sobolev
inequalities.

THEOREM 7 [10]. Lete 4 be a symmetric Markovian semigroup bA(X, dx),
wheredx is a Borel measure on the locally compact second countable Hausdorff
spaceX. Let Q be the associated Dirichlet form with doma&uad H ). Suppose
there are two continuous functiorgp) > 0 and I'(p) defined for2 < p < oo

such that

/Df” log f dx < e(p)(Af, f* ) +T () S, + 1LF1210gl £1, (34)
forall 2 < p <ocoandfelJ, qe (LN L®),. If

o0
t:/2 S(If)dp<oo and M = / (—p)dp (35)
thene=4: L2 — L and

le™ oo,z < €™

We will now apply this theorem to prove Theorem 4. To simplify the arguments
we suppose that, for all € y,

d(x) =d(z2) (36)

forallzeyS. If Qo > Q1 — --- — Q, is a Whitney chain fron to x, (36)
says that dian@; > diamQ,,;forO<i <n -1
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Define
k

1
n(k) = 22 Zni-

0
Note that, by (10),

1
ik +1) = mk) = szl =3+ -+ 1] <0,

and thereforey; is nonincreasing for sufficiently large Letx € D andQ, € F
with x € 0, and diamQ, = +/2/2"x. Using (36), we obtain

ny+np
d*(x)pp (0, x) < d2<x)(mD + ) n,»)

0

< mpd?(x) + cna(n. + np).
Define
n(d(x)) = mpd®(x) + ena(n, + np).
This is a nondecreasing function fé¢x) small enough, and by (16) we have
d(uf;lon(d(x}) =0.
In addition,

t ) PR
\/(;Tdrme‘FCZf} 27 m(i + np)

o0
<mp+cy_ mi+np)
0

<mp + cA~(D).
Thus, if A(D) < oo then there exists @3 > 0 such that

n(d(X))}
d*(x) |

with n(r) — 0 asr — 0, n(r) nondecreasing for small enough, and

1
f Mdr < 00. (37)
0

pp(x,x) < Ca[l—i-

,
Letx e D. It follows from (2) that there exists me I"} such that
d(y) <d(x) and pp(o,y) > pp(x,0).
Thus,

sup{pp(o, x) :d(x) = €} <sup{pp(o,x) :d(x) =¢} < C3[1+ %]

On the other hand, ¥ is small enough then
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. n(e)
sup{pp(o, x) :d(x) <e} < C3|:1+ dz—(x)]
Hence, there exists@ > 0 such that, for every > 0,

n(e) | n)
d?(x) g2 |

Let ¢! be the first eigenfunction of = Ho + V. By the Harnack inequality
there exists @ > 0 such that, for alk € D,

pp(0, x) < C[1+ (38)

pp(0, x) = —clogpy(x).
Using the Hardy inequality and the imbedding propertieg/df(see [2, p. 194]),
one sees that (38) implies

—jafflog¢&x>dx;scn@n<Af;f>4—c(?§?-+1)nfuz+-ufn§wgnfnz

By Lemma 4.4.1 (Rosen’s lemma) and Lemma 2.2.6 in [10], we obtain inequality
(34) withe(p) = n(s/,/p) and

r'(p) C(p () +14 =~ Liog )
p)=—| elp ——5log— .
p\s? vP 2 7P
It is easy to see that (37) implies (35) with— 0 ass — 0. Our result now fol-
lows from Theorem 5.

REMARK 3. Note that condition (10) was only used to prove thds nonincreas-
ing for k large enough. Suppogde s just a tube along, and define

1 r
m(k) = SUp; Xojn

This is a nonincreasing function that converges to zero. However, (37) is no longer
true. To obtain (37) and then intrinsic ultracontractivity, one could replace (10) by
other conditions, one of the simplest being
i kl’lk 00
—r <
2k
5 2
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