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1. Introduction

In [11], Serre introduced a definition of intersection multiplicity for regular local
rings, showed that it satisfied many of the properties which should hold for inter-
section multiplicities, and stated a number of conjectures. Of these conjectures,
the only one that is still open is the positivity conjecture, which states that under
certain conditions on dimension (we give a precise statement below), the intersec-
tion multiplicity will be positive. Recently, Gabber used a construction of de Jong
to prove that these multiplicities are always nonnegative, thus establishing one of
the conjectures. In his proof, Gabber constructed a scheme that can be represented
by a bigraded ring and reduced the computation of intersection multiplicities to
the computation of an Euler characteristic defined by modules over this ring. In
this paper we define Hilbert polynomials for bigraded modules over this type of
bigraded ring and show that the Euler characteristic can be computed using these
Hilbert polynomials. We then use this construction to give a simple proof of a cri-
terion for positivity proven in Kurano and Roberts [7]. Some of these ideas were
discussed in Roberts [10]; however, the criterion we prove here was not included
in that paper.

The outline of the paper is as follows. In Section 2 we recall the facts we need
about the positivity conjecture and Gabber’s construction. In Section 3 we prove
the existence of Hilbert polynomials in the case we are considering; we then prove
(Section 4) a reduction formula for dividing by a homogeneous element. In Sec-
tion 5 we prove the basic relations between Hilbert polynomials and dimension.
Finally, we prove the criterion for positivity in Section 6.

I would like to thank C.-Y. Jean Chan for pointing out several errors and an in-
correct proof in an earlier version of this paper.

2. Intersection Multiplicities and Gabber’s Construction

Let R be a regular local ring of dimensiond with maximal idealm, and letX =
Spec(R). Let p andq be prime ideals ofR such thatp+ q is m-primary or, equiv-
alently, such thatR/p⊗R R/q is a module of finite length. Then the intersection
multiplicity of R/p andR/q is defined to be
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χ(R/p, R/q) =
d∑
i=0

(−1)i length(TorRi (R/p, R/q)).

For the basic properties of intersection multiplicities we refer to Serre [11]. Serre
made several conjectures, of which we state two.

(1) Nonnegativity:χ(R/p, R/q) ≥ 0.
(2) Positivity: If dim(R/p)+ dim(R/q) = dim(R), thenχ(R/p, R/q) > 0.

Serre proved these conjectures in the equicharacteristic case using the method
of reduction to the diagonal. This method reduced the problem to the case in which
one of the ideals is generated by a regular sequence, and in this case he showed that
the intersection multiplicity defined as above could be computed using Samuel
multiplicities defined by Hilbert polynomials. For Samuel multiplicities, these
properties are easy to verify.

Recently, Gabber proved the nonnegativity conjecture by using a theorem on
the existence of regular alterations of de Jong [6]. We next describe this construc-
tion briefly; for more details, we refer to Berthelot [1], Hochster [5], and Roberts
[10]. In particular, for the theorem of de Jong to apply,R must be essentially of
finite type over a field or a ring of Witt vectors; however, the multiplicity conjec-
tures can be reduced to this case, and a description of this reduction can be found
in references [1] and [5].

LetR, p, andq be as above. The theorem of de Jong implies that there exists an
integern and a graded prime idealI of the graded ringA = R [X0, . . . , Xn] such
that the following conditions hold:

(1) Proj(A/I ) is a regular scheme;
(2) I ∩ R = p; and
(3) the induced map from Proj(A/I ) to Spec(R/p) is generically finite.

The third condition means that the extension of fields from the fraction field of
R/p to the field of rational functions of Proj(A/I ) is finite.

Let Ā denoteA/qA, and letĪ denote the image ofI in Ā. We consider the as-
sociated graded rings defined byI onA and Ī on Ā, which we denote byG(I )
andG(Ī ), respectively. SinceI and Ī are graded ideals,G(I ) andG(Ī ) are bi-
graded rings. In this bigrading we assign degree(m, n) to an element ofI n/In+1,

which is represented by an element ofI n that has degreem in A. There is a sur-
jective map fromG(I ) toG(Ī ); letK0 denote its kernel. ThenK0 is a bigraded
ideal. We note for future reference that, since Proj(A/I ) is a regular scheme, it
follows thatI is locally generated by part of a regular system of parameters and
thatG(I ) is locally a polynomial ring overA/I.

Denote the residue field ofR by k, and letC0 = (A/I ) ⊗R k. Then, ifR is
equicharacteristic or ramified of mixed characteristic, there is a homomorphism
of bigraded rings

φ : G(I )⊗R k→ C0[S1, . . . , Sd, T0, . . . , Tn],

where theSi are variables of degree(0,1) and theTi are variables of degree
(1,1). We letC denoteC0[S1, . . . , Sd, T0, . . . , Tn]. (The mapφ is induced by the



Intersection Multiplicities and Hilbert Polynomials 519

differential onI/I 2,but the details are fairly complicated and we refer to the sources
previously cited for the complete definition; we will not use the details of the con-
struction in this paper.) The mapφ defines an extension of polynomial rings locally;
that is, locally on Proj(A), G(I )⊗R k is a polynomial ring overC0, φ is injective,
andC can be obtained from the image ofφ by adjoining indeterminates. Finally, if
we letJ denote the ideal ofC generated byS1, . . . , Sd, T0, . . . , Tn and letK be the
ideal generated by the image ofK0 inC, thenχ(R/p, R/q) is positive if and only if
χ(C/K,C/J ) is positive, where the Euler characteristicχ(C/K,C/J ) is defined in
terms of an alternating sum of Tor modules in a way that we will now make precise.

SinceK andJ are bigraded ideals, the modules TorC
i (C/K,C/J ) are bigraded

modules for alli. In addition, they are annihilated byJ, which is generated by
the variablesS1, . . . , Sd, T0, . . . , Tn, so they can be considered as graded modules
overC0. Thus the Tor modules define coherent sheaves over Proj(C0); we denote
the coherent sheaf defined by TorC

i (C/K,C/J ) by Fi . SinceC0 = (A/I ) ⊗R k
is a graded ring over the fieldk, the cohomology modulesHj(Proj(C0),Fi ) are
finite-dimensionalk-modules for alli andj. For eachi andj we let

χ(Fi ) =
∑
j

(−1)j dimk(H
j(Proj(C0),Fi )).

We then define the Euler characteristic under consideration by letting

χ(C/K,C/J ) =
∑
i

(−1)iχ(Fi ).

We refer again to Berthelot [1], Hochster [5], and Roberts [10] for more details
and different versions of this construction.

In the remainder of the paper we show that the Euler characteristicχ(C/K,C/J )

can be expressed in terms of the Hilbert polynomial defined by the bigraded mod-
uleC/K.

3. Hilbert Polynomials in Two Variables

In this section we prove the existence of Hilbert polynomials in the specific situa-
tion we are considering.

We first change the notation slightly from that of the previous section. LetC be
a bigraded polynomial ring over a fieldk in variablesX0, . . . , Xs, T0, . . . , Tu and
S1, . . . , Sv, where eachXi has degree(1,0), eachTi has degree(1,1), and each
Si has degree(0,1). (The ringC considered in the previous paragraph is a homo-
morphic image of a bigraded polynomial ring of this type and we also had thats =
u = n andv = d; it is more convenient here to restrict to polynomial rings but to
allow more general conditions on the number of variables.)

We assume the basic facts about Hilbert functions of aZ-graded ring (as pre-
sented e.g. in [8, Sec. 13]). We will often considerC as aZ-graded ring by using
the grading in the first variable, so thatCm =

⊕
n Cm,n. In general,Cm is not a

finite-dimensional vector space overk, although ifv = 0 (so that there are no vari-
ables of degree(0,1)) then we will haveC0 = k andCm will be finite-dimensional
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for all k. We use the notation Proj(C) to denote the projective scheme associated
toC using this grading, and ifM is a bigradedC-module then we will sometimes
consider it as aZ-graded module in the same way.

For any finitely generated bigradedC-moduleM and for any integersm andn,
letMm,n be the component ofM of degree(m, n). LetHM be the Hilbert function
of M defined by the formula

HM(m, n) =
∑
i≤n

dimk(Mm,i).

Just as in the classical case, the Hilbert function is not a polynomial inm andn
for all (m, n), but there is a polynomial that agrees with the Hilbert function for
(m, n) in a certain subset ofZ× Z. We prove that there exist integersm0 andn0

such that the Hilbert function is given by a polynomial for(m, n) with m ≥ m0

andn ≥ m + n0. We note that the intersection of two subsets ofZ × Z defined
by inequalities of this type is nonempty and is defined by inequalities of the same
type. We will sometimes abbreviate the statement that a condition holds for(m, n)

satisfying such inequalities by saying that it holds for sufficiently largem andn.
To prove the result we will need to know that certain simply graded subsets of

M have Hilbert polynomials. Letk be an integer, and letDk(M) be the subset of
M defined by

Dk(M) =
⊕
n≤m+k

Mm,n.

LetB be the subring ofC generated by theXi and theTi and by allXiSj for i =
0, . . . , s andj = 1, . . . , v. Then each generator ofB has degree(1,0) or (1,1),
andB is a bigraded subring ofC. LikeC, B can be considered as aZ-graded ring,
andDk(M) can be considered as aZ-gradedB-module.

Lemma 1. For eachk, Dk(M) is a finitely generatedB-module.

Proof. We are assuming thatM is finitely generated overC; let xi be homoge-
neous generators ofM and let the degrees ofxi be(mi, ni). We assume first that
ni ≤ mi + k for all i, which means that thexi are inDk(M). For eachv-tuple
(k1, . . . , kv) of nonnegative integers, let|K| = k1+ · · · + kv and letSK denote
the monomialS k1

1 S
k2
2 · · · S kvv . We claim thatDk(M) is generated as aB-module

by the set ofSKxi for all i and allK such thatni + |K| ≤ mi + k. Note that these
elements are inDk(M) and that this set is finite.

To show that these elementsSKxi generateM, we will show that each com-
ponentMm,n of Dk(M) is generated as ak-vector space by multiples of these
elements by monomials inB. Fixm andn with n ≤ m+ k. The componentMm,n

is generated as a vector space overk by elements of the formXIT JSKxi, whereI,
J, andK denotes-, u-, andv-tuples of nonnegative integers and whereXIT JSK

is a monomial of the correct degree. If one factor of the formTj or one factor of
the formXiSj occurs in this monomial, thenTj or XiSj can be factored out and
this generator is a multiple of an element inMm−1,n−1 by an element ofB, and
we can conclude the result by induction onm. If no factor ofTj orXiSj occurs in
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XIT JSKxi, thenXIT JSKxi is of the formXIxi or SKxi. In the first case, since we
have assumed thatxi ∈Dk(M), we can divide byXj for somej, so we can again
divide by an element ofB and conclude the result by induction. In the second
case, the element is one of those that we have chosen to generateDk(M). Hence,
in either case we can conclude thatXIT JSKxi is a multiple of one of the given
generators by an element ofB, soDk(M) is finitely generated.

If some of thexi are not inDk(M), we choose ak ′ large enough so that thexi
are inDk ′(M). Then the foregoing argument shows thatDk ′(M) is finitely gen-
erated. SinceDk(M) is a sub-B-module ofDk ′(M) andB is Noetherian,Dk(M)

is also finitely generated.

Our proof of the existence of Hilbert polynomials uses an inductive argument, and
it is convenient to represent polynomials using binomial coefficients. We recall
that a polynomial in one variablem can be uniquely written as a linear combina-
tion of the binomial coefficients

(
m

i

)
for various nonnegative integersi. Since a

polynomial in two variables is a sum of products of polynomials in each variable
(for example, the monomials are such products), it follows that a polynomial in
two variablesm andn can be written as a linear combination of products

(
m

i

)(
n

j

)
for variousi andj. The reason for writing polynomials in this form comes from
the fact that binomial coefficients satisfy the equation(

n

i

)
−
(
n−1

i

)
=
(
n−1

i −1

)
,

which is useful in proving results by induction.
We can now prove the main result of this section. IfM is a bigraded mod-

ule, we letM[i, j ] denote the moduleM with degrees shifted by(i, j), so that
M[i, j ]m,n = Mm+i,n+j for all m andn.

Theorem 1. LetC be as above, and letM be a finitely generated bigradedC-
module. Then there exist integersm0 andn0 and a polynomialPM(m, n) in two
variables such that we have

PM(m, n) = HM(m, n)
for all (m, n) withm ≥ m0 andn ≥ n0 +m.
Proof. We prove this result by induction on the number of variablesSi of degree
(0,1). We first suppose that there are no variables of this type. LetM be generated
by elementsxi of degree(mi, ni), and letn0 be an integer greater than the max-
imum value ofni − mi. For every(m, n), the component ofM of degree(m, n)
is generated by products of thexi with monomials inXi andTi. Since eachXi
has degree(1,0) and eachTi has degree(1,1), if XIT Jxi has degree(m, n) then
n − m ≤ ni − mi. Sincen0 was chosen greater than all of theni − mi, we thus
haveMm,n = 0 whenn−m ≥ n0. Therefore,

HM(m, n) =
∑
i≤n

dimk Mm,i =
∑

i≤m+n0

dimk Mm,i = H(m,m+ n0)
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whenn ≥ m+ n0. ThusHM(m, n) is constant inn for largen, and its value is the
sum

∑
dimk(Mm,i), where the sum runs over alli ∈Z. Thus, if we letH̃M(m) be

the Hilbert function of theZ-graded moduleM, we have

HM(m, n) = H̃M(m)
for n ≥ m+ n0. Combining these results with the usual theory of Hilbert polyno-
mials, we conclude that there exists anm0 such thatHM(m, n) is a polynomial in
m (it does not involven in this case) whenm ≥ m0 andn ≥ m+ n0.

Now assume thatv > 0, so that there are variables of typeSi. Then, lettingMSv

denote the submodule ofM consisting of elements annihilated bySv, we have the
exact sequence

0−→ MSv [0,−1] −→ M[0,−1]
Sv−→ M −→ M/SvM −→ 0.

By induction onv, the theorem holds forMSv [0,−1] andM/SvM. Taking the dif-
ference of the Hilbert functions of these modules and using the above short exact
sequence, we obtain an equation

HM(m, n)−HM(m, n−1) = G1(m, n) (* )

for some polynomialG1 and for large enoughm andn. Let m0 andn0 be inte-
gers such that equation (* ) holds whenm ≥ m0 andn ≥ m + n0. We consider
theB-moduleDn0(M) as defined before. By Lemma 1,Dn0(M) is a finitely gen-
erated gradedB-module, so there is a polynomialG2(m) such thatG2(m) =
dimk(Dn0(M))m for largem. Choosem0 large enough so that both this equality
and equation (* ) hold. RepresentG1(m, n) as

∑
cij
(
m

i

)(
n

j

)
. Then we claim that

HM(m, n) =
∑

cij

(
m

i

)(
n+1

j +1

)
−
∑

cij

(
m

i

)(
m+ n0 +1

j +1

)
+G2(m)

for (m, n) in this range. The first two terms on the right-hand side cancel when
n = m + n0, leavingG2(m), which is the value ofHM(m,m + n0). Hence this
equality holds whenn = m+ n0. If n > m+ n0 then, lettingP(m, n) denote the
polynomial on the right-hand side, we have

P(m, n)− P(m, n−1)

=
∑

cij

(
m

i

)(
n+1

j +1

)
−
∑

cij

(
m

i

)(
n

j +1

)
=
∑

cij

(
m

i

)(
n

j

)
= G1(m, n) = HM(m, n)−HM(m, n−1).

Hence these polynomials agree for all(m, n) with m ≥ m0 andn ≥ m + n0, as
was to be shown.

For convenience, we define the Hilbert polynomial of a bounded complex of finitely
generated modules to be the alternating sum of the Hilbert polynomials of the mod-
ules. By the additivity of Hilbert functions (and thus of Hilbert polynomials), we
have the following.
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Proposition 1. If F• is a bounded complex of finitely generated bigraded mod-
ules, then

PF•(m, n) =
∑

(−1)iPHi(F•)(m, n).

4. Difference Formulas

In applications of Hilbert polynomials, the most important information is usually
contained in the terms of the polynomial of highest degree. IfPM(m, n) has degree
less than or equal tor, we useP r

M(m, n) to denote the homogeneous component
of PM of degreer, and we use the same notation for the Hilbert polynomial of a
bounded complex. Ifx is a homogeneous element ofC of degree(i, j) then we de-
note byK•(x) the Koszul complex onx, so thatK0(x) = C,K1(x) = C[−i,−j ],
Ki(x) = 0 for i 6= 0 or 1, and the map fromK1(x) toK0(x) is multiplication byx.

Proposition 2. LetF• be a bounded complex of bigraded modules, and leti, j,

andk be integers between0 and s, 0 andu, and1 andv, respectively. Assume
that the degree ofPF• is at mostr. Then the degrees ofPF•⊗K•(Xi ), PF•⊗K•(Tj ), and
PF•⊗K•(Sk) are at mostr − 1, and we have

P r−1
F•⊗K•(Xi ) =

∂P r
F•

∂m
,

P r−1
F•⊗K•(Tj ) =

∂P r
F•

∂m
+ ∂P

r
F•
∂n

,

P r−1
F•⊗K•(Sk) =

∂P r
F•
∂n

.

Proof. We prove the second statement; the other two are proven in the same way.
The degree ofTj is (1,1). Thus the modules in the complexF• ⊗ K(Tj ) consist
of a copy of the modules inF• together with a second copy of the modules ofF•
but with the position in the complex shifted by 1 and the degrees of the graded
modules shifted by(−1,−1). Thus we have

PF•⊗K•(Tj )(m, n) = PF•(m, n)− PF•(m−1, n−1).

To complete the proof it suffices to show that, ifG(m, n) is any polynomial of
degree at mostr in two variablesm andn, then (a) the polynomialG′(m, n) =
G(m, n)−G(m−1, n−1) has degree at mostr −1 and (b) the component of de-
greer −1 is∂Gr/∂m+ ∂Gr/∂n. To see this, it suffices to check the formula for a
monomial of degreer. A simple computation shows that

minj − (m−1)i(n−1)j = imi−1nj + jminj−1+ lower-degree terms

= ∂(minj )

∂m
+ ∂(m

inj )

∂n
+ lower-degree terms.

This completes the proof.

We state a similar proposition for the degree ofPM(m, n) in the variablen.
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Proposition 3. Let F• be a bounded complex of bigraded modules, and letk

be an integer between1 andv. Assume that the degree ofPF• in n is r. Then the
degree ofPF•⊗K•(Sk) in n is r − 1.

Proof. The proof of this result is the same as Proposition 2—using the fact that,
if G(m, n) is any polynomial of degreer in n, then the polynomialG′(m, n) =
G(m, n)−G(m, n−1) has degreer −1 in n.

We note that ifSk, for example, is not a zero divisor on a moduleM, then Propo-
sition 3 together with Proposition 1 implies thatP r−1

M/SkM
= ∂P r

M/∂n, provided that
PM has degree at mostr.

Proposition 2 also makes it easy to compute the Tor modules withC/J that we
need for the positivity criterion. LetJ be the ideal ofC generated by the elements
T0, . . . , Th, S1, . . . , Sg. Then we have the following proposition.

Proposition 4. LetGi(m, n) be the Hilbert polynomial of the bigraded module
Tori(M,C/J ) for eachi, and let

G(m, n) =
∑
i≥0

(−1)iGi(m, n).

LetPM denote the Hilbert polynomial ofM. Assume that the degreer ofPM is at
leastg + h+ 1. Then

Gr−g−h−1(m, n) =
(
∂

∂m
+ ∂

∂n

)h+1(
∂

∂n

)g
P r
M(m, n).

This proposition follows from the fact that the resolution ofC/J is a Koszul com-
plex, which is a tensor product of theK•(Tj ) and theK•(Sk), together with a
repeated application of Proposition 2.

5. Hilbert Polynomials and Dimension

Just as in the classical case, the dimension of a bigraded module is given by the
degree of the Hilbert polynomial. We now prove this fact, together with a similar
result for a different type of dimension that we shall define.

We first specify the precise definition of dimension that we are using. As men-
tioned above, we can consider a bigraded moduleM as aZ-graded module, and
as suchM defines a coherent sheaf on Proj(C), whereC is given itsZ-grading as
described in Section 3. By the dimension ofM we mean the dimension of this co-
herent sheaf. Usually (ifM has no components supported at the ideal generated
by theXi and theTi), this dimension is one less than the Krull dimension of the
moduleM. We note that ifMm is a finite-dimensional vector space overk for all
m, then the theory of Hilbert polynomials ofZ-graded rings implies that the de-
gree of its Hilbert polynomial is equal to the dimension ofM in the sense we are
considering.

We next introduce the second type of dimension that we will use. LetM be a
bigraded module as before. ThenMm is a finitely generatedk [S1, . . . , Sv]-module



Intersection Multiplicities and Hilbert Polynomials 525

for eachm. Let am be the annihilator ofMm. SinceM is finitely generated, we
haveam ⊆ am+1 for largem, and sincek [S1, . . . , Sv] is Noetherian, we thus have
that am = am+1 for largem. We let a = am for largem, and we define theS-
dimensionof M to be the dimension ofk [S1, . . . , Sv]/a; note thata is a graded
ideal ofk [S1, . . . , Sv]. Equivalently, we can define theS-dimension ofM to be the
dimension of thek [S1, . . . , Sv]-moduleMm for largem.

In the proof of Theorem 2 we wish to take a filtration of a bigraded module
M with quotients of the formC/Q[i, j ], whereQ is a bigraded prime ideal ofC.
This is, of course, a standard procedure; we prove that it works properly also for
bigraded modules.

Lemma 2. LetM be a finitely generated bigraded module. Then there is a filtra-
tion

0= M0 ⊂ M1⊂ · · · ⊂ Mn = M
ofM consisting of bigraded modules such that, for eachi, we have

Mi/Mi−1
∼= C/Qi [ji, ki ]

for certain bigraded prime idealsQi ofC and integersji andki.

Proof. It suffices to show that ifM 6= 0 then there is a submoduleM1 of the
correct form; the lemma follows by dividing byM1 and repeating the process (it
eventually stops since the module is Noetherian). LetQ be a maximal annihilator
of a nonzero homogeneous elementx ofM. If a andb are homogeneous elements
not inQ then, following a standard argument (see e.g. [8, Thm. 6.1]), we use the
maximality ofQ to conclude first thata does not annihilatex and then thatb does
not annihilateax, so thatab /∈Q. We next show thatQ is prime. Ifa andb are
not inQ, we take the maximal nonzero homogeneous componentsai,j andbk,l
with respect to the lexicographic order onZ×Z; by the preceding argument, their
product is not inQ, so the maximality of the indices implies that the product ofa

andb is not inQ.

We note that it follows from this lemma that the associated prime ideals ofM and,
in particular, the minimal prime ideals in the support ofM are bigraded. We re-
fer to a module of the formC/Qi [ji, ki ] in the filtration of dimension equal to the
dimension ofM as acomponentof M.

There are two other properties of bigraded modules that can be seen easily using
Lemma 2. First, the Hilbert polynomial of a bigraded module is zero if and only
if the associated coherent sheaf is zero. To see this, letM be of the formC/Q; the
associated coherent sheaf is zero if and only if all theXi and theTi are inQ, and
this holds if and only if the component(C/Q)m is zero for largem, which in turn
holds if and only if the Hilbert polynomial ofC/Q is zero.

The second property is that theS-dimension is always less than or equal to the
dimension. Again we assume thatM = C/Q. If the associated coherent sheaf is
zero, then(C/Q)m = 0 for largem and both dimensions are the dimension of the
zero module. Assume that(C/Q)m 6= 0 for largem, and leta = Q∩k [S1, . . . , Sv].
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SinceQ is the annihilator of every nonzero element ofC/Q, it follows that the
annihilator of thek [S1, . . . , Sv]-module(C/Q)m is a for all m and hence theS-
dimension is the dimension ofk [S1, . . . , Sv]/a. Assume thatXi /∈ Q (the case
where one of theTi is not inQ is similar). Since the map fromk [S1, . . . , Sv]/a to
(C/Q)(Xi) is injective, and since both rings are of finite type over the fieldk, the
dimension ofk [S1, . . . , Sv]/a is less than or equal to the dimension of(C/Q)(Xi).

Thus theS-dimension ofC/Q is less than or equal to its dimension.
With a filtration as in Lemma 2, the dimension ofM is the maximum of the di-

mensions of theC/Qi, and similarly for theS-dimension. We need to know that
the same properties hold for the degrees of the Hilbert polynomials.

Proposition 5. LetM be a bigraded module, and letM have a filtration with
quotientsC/Qi [ji, ki ] as in Lemma 2.

(1) The degree ofPM is the maximum of the degrees of thePC/Qi .
(2) The degree ofPM(m, n) in the variablen is the maximum of the degrees of the

PC/Qi(m, n) in the variablen.

Proof. We note first that both the total degree and the degree inn are the same
for C/Q[i, j ] as they are forC/Q. Since Hilbert polynomials are additive on short
exact sequences, what must be shown is that the terms of highest degree on the
modules in the filtration cannot cancel out. We show that this holds first for the de-
gree inn. If the maximum value of the degree inn on any module in the filtration
is t, suppose that this value is attained forC/Qi, and letφt(m) be the polynomial
in m that is the coefficient ofnt in the expansion ofPC/Qi(m, n) as a polynomial
in n with coefficients that are polynomials inm. Sinceφt(m) is a nonzero poly-
nomial, there exists anm0 such thatφt(m) 6= 0 form ≥ m0. Letm be an integer
with m ≥ m0 and such thatPM(m, n) = HM(m, n) for n sufficiently large. Then

lim
n→∞

PM(m, n)

nt
= φt(m),

so this limit is nonzero. On the other hand,

PM(m, n)

nt
= HM(m, n)

nt
≥ 0

for sufficiently largen, so the limit cannot be negative. Henceφt(m) > 0 for suf-
ficiently largem. Since this is true for every module in the filtration with Hilbert
polynomial of degreet in n, the sum must also have this property.

For the total degree, the proof is similar. Letu be the maximum value of the
total degrees of modules in the filtration, and suppose that it is attained forC/Qi.

Then, fork sufficiently large, the polynomial inm given byφ(m) = PC/Qi(m, km)
has degreeu and so its leading coefficient (which is nonzero) is the coefficient of
mu. Representing this leading coefficient as a limit of

PC/Qi(m, km)

mu
= HC/Qi(m, km)

mu

shows that it must be positive. Hence, as before, the leading polynomials cannot
cancel and the total degree ofPM(m, n) is u.
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Theorem 2. LetM be a bigraded module, and letPM be its Hilbert polynomial.
Then:
(1) the total degree ofPM(m, n) is the dimension ofM;
(2) the degree ofPM(m, n) in n is theS-dimension ofM; and
(3) if M has a componentC/Q[i, j ] such that theS-dimension ofC/Q is t and the

total dimension ofC/Q (which is equal to the total dimension ofM) is s + t,
then the coefficient ofmsnt in PM is positive.

Proof. We prove all three statements by induction on the dimension ofM. For
fixed dimension, we use induction on theS-dimension ofM.

We first prove all three results when theS-dimension ofM is zero. Using Propo-
sition 5, we assume thatM = C/Q for a bigraded prime idealQ. Let a be the
intersection ofQ with k [S ] = k [S1, . . . , Sv]. Since dim(k [S ]/a) = 0 anda is
a graded prime ideal, eachSi must be ina, so theSi annihilateM. HenceM is
a finitely generated module overk [X, T ]. In this case, as shown in the proof of
Theorem 1, the ordinary theory of Hilbert polynomials applies, andPM(m, n) is a
polynomial inm of degree equal to the dimension ofM. If this degree iss, then
statement (3) says that the coefficient ofms is positive; this is clear because the
leading coefficient of a Hilbert polynomial of aZ-graded module is always pos-
itive. Also, the degree inn is zero, which is theS-dimension. Hence all three
statements hold in this case.

Assume now that theS-dimension ofM is t > 0. Take a filtration as in Lemma 2.
If every quotient in the filtration has either dimension orS-dimension less than
that ofM, then parts (1) and (2) of the theorem follow by induction and the third
statement does not apply. Hence we may assume thatM = C/Q, where theS-
dimension ofC/Q is t, and let the dimension ofC/Q bes + t. It suffices to show
that the degree of the Hilbert polynomial ofC/Q is at mosts + t, that the degree
in n is at mostt, and that the coefficient ofmsnt is positive. This will establish all
three statements.

We first prove the two inequalities. LetM = C/Q as before. If all theSi were
inQ, theS-dimension would be zero. Hence there is ani for whichSi /∈Q. Both
the dimension and theS-dimension decrease by at least 1 when we replaceM by
M/SiM, so by induction the degree ofPM/SiM is at most the dimension ofM/SiM,
and similarly for theS-dimension. By Proposition 3, the degree ofPM/SiM in n is
exactly one less than the degree ofPM; hence, denoting the degree inn by ndeg
and theS-dimension by Sdim, we have the relations

ndeg(PM)−1= ndeg(PM/SiM) ≤ Sdim(M/SiM) ≤ Sdim(M)−1.

Thus the degree of(PM) in n is less than or equal to theS-dimension ofM. We
can argue similarly usingM/SiM to conclude the corresponding inequality for di-
mension, except in the case where the total degree ofPM/SiM is strictly less than
degree(PM)− 1. However, the only way this can happen is for the component of
PM of highest degree to be a power ofm. In this case we can replaceSi by one of
theXi or Ti and, using Proposition 2, complete the argument as before.

Thus we may assume thatM = C/Q, where theS-dimension ofM is t and the
total dimension iss+t.We need to show that the coefficient ofmsnt is positive. As
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before, we may assume thatSi is not a zero divisor onM. We claim thatM/SiM
has a component withS-dimensiont −1 and total dimensions + t −1. Since the
rings involved are finitely generated over a field, every component ofM/SiM has
total dimensions + t − 1, so it suffices to show that there is a component with
S-dimension equal tot −1. Let a beQ∩ k [S1, . . . , Sv], and letp be a prime ideal
of k [S1, . . . , Sv] that is mimimal over(a, Si); the dimension ofk [S1, . . . , Sv]/p is
thent − 1. Let S be the multiplicatively closed setk [S1, . . . , Sv] − p. Then, for
all m, the component of(MS) of degreem is the localization(Mm)S, which is
not zero (we use here thatM = C/Q for some bigraded prime idealQ). Since
(Mm)S is a finitely generated module over the local ringk [S1, . . . , Sv]S and since
Si is in the maximal ideal ofk [S1, . . . , Sv]S, this implies thatp is in the support of
(M/SiM)m for largem. Hence theS-dimension ofM/SiM, which is clearly less
than or equal tot −1, is equal tot −1.

We now complete the proof. Letr = s+ t, and letP r
M(m, n) be the component

of the Hilbert polynomial ofM of degreer. We have shown that the degree ofPM
is at mostr. By Proposition 2, the component of degreer −1 of the Hilbert poly-
nomial ofM/SiM is ∂P r

M/∂n. We have also shown thatM/SiM has a component
of S-dimensiont − 1 and total dimensions + t − 1. By induction, we have that
the coefficient ofmsnt−1 in PM/SiM(m, n) is positive. Thus the coefficient ofmsnt

in PM must be positive.

We conclude this section by recalling a standard fact that relates Hilbert polyno-
mials to Euler characteristics of coherent sheaves.

Lemma 3. Let F be a coherent sheaf onProj(A), whereA is aZ-graded ring
over a field. IfF is defined by a graded moduleM, then for alln in Z we have

χ(F(n)) = PM(n).
Proof. See for example Hartshorne [4, Ex.III.5.2].

6. A Criterion for Positivity

In this section we prove the criterion (mentioned in the introduction) for intersec-
tion multiplicities to be positive.

Theorem 3. LetC = k [X0, . . . , Xs, T0, . . . , Tu, S1, . . . , Sv], and letQ be a bi-
graded prime ideal ofC. Assume that the dimension ofC/Q is u+ v +1, and let
J = (T0, . . . , Tu, S1, . . . , Sv). Then the following are equivalent.

(1) χ(C/Q,C/J ) > 0.
(2) Themu+1nv coefficient of the Hilbert polynomialPC/Q is positive.
(3) Q ∩ k [S1, . . . , Sv] = 0.

Proof. By Theorem 2, the degree of the Hilbert polynomial ofC/Q isu+v+1. Let
G(m, n) be the alternating sum of the Hilbert polynomials of the Tori(C/Q,C/J ).

By Proposition 4,G(m, n) is constant and its value is
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∂

∂m
+ ∂

∂n

)u+1(
∂

∂n

)v
PC/Q(m, n).

(We note that Proposition 4 gives this formula withP u+v+1
M (m, n) instead of

PM(m, n), but in this case, since the degree ofPC/Q is u + v + 1, all compo-
nents of lower degree vanish after applying the partial derivatives.) Since theS-
dimension ofC/Q is at mostv, the degree ofPC/Q in n is at mostv. If we first apply(
∂
∂n

)v
to PC/Q(m, n) we thus obtain a polynomial inm of degree at mostu+1. If

we then apply
(
∂
∂m
+ ∂

∂n

)u+1
, which is the same as

(
∂
∂m

)u+1
for polynomials inm,

we end up withv!(u + 1)! times the coefficient ofmu+1nv in PC/Q(m, n). Using
parts (2) and (3) of Theorem 2, we see that this coefficient is positive if and only
if the S-dimension ofC/Q is v; this, in turn, is equivalent to the condition that
Q ∩ k [S1, . . . , Sv] = 0. On the other hand, by Proposition 3 the constant value of
G(m, n) is equal toχ(C/Q,C/J ). Hence the three conditions are equivalent.

The equivalence of (1) and (3) in this theorem appears in Kurano and Roberts [7].
It implies, as shown there, that ifp andq are prime ideals of a regular local ring
R with dim(R/p) + dim(R/q) = dim(R) and such thatR/p ⊗R R/q has finite
length, then the Serre positivity conjecture implies thatp(n) ∩ q ⊆ mn+1 for all n,
wherem is the maximal ideal ofR.

We conclude by giving another version of the third criterion and applying it to
the situation that arises in considering the Serre positivity conjecture.

Proposition 6. LetC = k [X0, . . . , Xn, T0, . . . , Tn, S1, . . . , Sd ], and letK be a
bigraded ideal ofC such that the dimension ofC/Q is equal ton+ d + 1 for all
minimal prime idealsQ containingK. Let

K̄ = {c ∈C | (X0, . . . , Xn)
kc ⊆ K for somek}.

Then the following statements are equivalent.

(1) K̄ ∩ k [S1, . . . , Sd ] = 0.
(2) There exists a componentC/Q of C/K such that someXi is not inQ and

Q ∩ k [S1, . . . , Sd ] = 0.
(3) χ(C/K,C/J ) > 0.

Proof. The equivalence of the second and third statements follows from Theo-
rem 3 together with the fact that, ifQ is a prime ideal containingK and either
the dimension ofC/Q is less thann + d + 1 or theS-dimension is less thand,
thenχ(C/Q,C/J ) = 0. To see that statement (1) implies (2), suppose that every
minimal prime idealQ overK contains all theXi or a nonzero elementαQ of
k [S1, . . . , Sd ]. Let α be the product of theαQ. Then the product of all minimal
primes contains the product ofα with a power ofXi for eachi. Since the product
of minimal prime ideals is nilpotent moduloK, a power ofα will then be inK̄.
Conversely, suppose that some minimal primeQmeetsk [S1, . . . , Sv] trivially and
that there exists anXi not inQ. Then, for allα 6= 0 in k [S1, . . . , Sv], Xk

i α /∈Q
and henceXk

i α /∈K. ThusK̄ ∩ k [S1, . . . , Sv] = 0.
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We note that the hypotheses of Proposition 6 hold in the situation arising from the
Serre multiplicity conjectures, since they are constructed from graded rings over
an integral domain.
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