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1. Introduction

Let E be a finite-dimensional vector space over a figld-ulton [3] has presented

an elegant description of irreducible GE)-modules wherK is of characteristic

0, a treatment that combines the classical approach in terms of products of deter-
minants (see [4] for details and historical remarks) with a functorial approach. We
briefly recall his construction.

Let{es, ..., e,} be a basis fo, let A = {1,..., m}, and letx be a partition.
ConsideraseX = {X;, | 1 <i <I(})), a € A} of indeterminates oveK. For
ap-tupleS = (a3, ...,a,), a; € A, defineDg = det(X,«ﬁaj), 1<i,j<p.The
Dy are elements of the polynomial rirg[ X] in the X; ,. An action of GL(mm) on
K[X]is determined by - X; o = >, c 4 &b.aXi,» fOr ¢ = (g5.c) € GL(m).

For eachS as just described we writg = ¢,, A - - - A ¢,, for the correspond-
ing element of the exterior powex” E. Let T be a filling of » with entries from
A. We associate witll" an element;y € N E® ---® N\ E, whereu is the
conjugate of, by defininger = e, ® - - - ® ey, for T4, ..., T; columns ofT.

We have a map of Glm)-modulesp;: N*E®---® N E — K[X] with
¢;ler) = Dy = Dy, --- Dy, for each fillingT of A.

The results we would like to quote from [3, Chap. 8] are as follows. If ghas
0, then:

(i) EQ) :=Img, = N*"EQ---® N E/Kerg; is an irreducible Glun)-
module of highest weight if /(L) < m;
(i) the set{Dr | T tableay is a basis ofE());
(ii) Ker g, is generated by explicitly described elements that correspond to Syl-
vester’s identities among the;.

In this paper we present a similar approach with exterior powers replaced
by symmetric powers. It requires considering exterior algebra indeterminates
instead of polynomial indeterminates and leads to a new construction of irre-
ducible GL(m)-modules. A combination of both approaches can be used to con-
struct in the same vein tensor representations of general linear Lie superalgebras
(see [6]).
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2. Determinants in Exterior Algebras

LetZ=({Z;,|1<i < A1, a e A} be a set of exterior indeterminates; that is, let
Z%,=0andZ;.Z;, = —Z;sZ;.if (i,a) # (j, b) and let theZ; , be free gen-
erators of the exterior algeby&(Z) over K. Fork-tuplesR = (x3, ..., x;), 1 <
Xx; < Ag, @ndS = (ag, ..., ap), a; € A, we define a polynomial in thg; , by the
formula

D(RIIS) =Y (SIN0) Zs 01" ** Loy ars

ogeXy

whereX; is the symmetric group ofi, ..., k}. Note that fork = 1 we have
DRIS) =D(x1lla1) = Zyy. 0.

Foro € X, we write S, = (as), ---, dsk)), and similarly forR. If a parti-

tion k = p + q is fixed we writeS” = (a1, ...,a,), " = (aps+1, ..., ax) and
similarly for R. This means, in particular, thaf = (asq), ..., ds(p) ands, =
(ao'(erl), R ao'(k)) foro € k.

Here are some basic properties of ther || S).

ProrosITION 1.

(1) D(R, || S) = (sgno)D(R || S) for o € .
(2) D(R||S,) = D(R| S) for o € =.
(3) First component Laplace expansion

D(R||S) = (sgnt)D(R, || S,)D(R] || S})).

T

(4) Second component Laplace expansion

D(R||S) = (sgn) Y D(R, || S,)D(R || S)).
In (3) and (4) the sums are over a complete set of left coset representatives of
/T, X Xy

Proof. We will prove (2); a proof of (1) is similar. It is enough to show (2) for
o= (i,i +1); then

DR S;) = Z(ng)zxam,al T Zxa(i)»ai+lzxa(i+l)’ﬂi o Zxa(k),aw
o

Replacingx by t = «(i, i + 1) transforms this into

E (SANX) Zixgy.a1* ** Loy aiaLeiyai ** Loxegy.ar-
T

Since sgrr = —sgne, it follows that switching theth and(i + 1)th terms in each
monomial leads td (R || S).

Note that (3) and (4) are valid for any set of left coset representatives if they
are valid for one such a set (thanks to properties (1) and (2)). Property (4) can be
proved by induction op for the following set of representatives: for each subSset
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of § of cardinality p consider a permutatiosy that sendsl, ..., k) to (S, '\ S),
where§ ands$ \ S are arranged in an increasing order. The{sg} with S run-
ning over allp-subsets of is a set of left coset representativesiyf/ X, x X,.
A proof for property (3) is similar, witts replaced byR. D

We do not provide a detailed proof for (3) and (4) here because it is similar to a
proof of the classical Laplace expansion for determinants.
If R=(1,..., k) thenwe denotd(R || §) simply by D(S) in the sequel.

ProrosiTION 2. Letp > gandk = p+gq. LetW C {p +1,...,k} and de-
note{l, ..., p} by U. Moreover, letX(W) be a set of left coset representatives
of Z(UUW)/Z(U) x ©(W). Then, for anyS € A* andR c {1, ..., p} with
#(R) = g, we have

Y D(S))D(R| S})=0. @)

oeX(W)

CoroLLArY 1. With the notation of Proposition 1, we have the identity

> D)D) =0

ceX(W)

Proof of Proposition 2.Itis enough to prove identity (1) fd¥ ={p+1, ..., p+i}
and for any 1< i < ¢, owing to property (2) of Proposition 1.
If i = ¢ then, by (1) and (4) of Proposition 1, we have

0=DWUR|S)= Y. D(S,DRI|S) =0
ceX(W)
Now leti < ¢. For anyo € X(W) we haveS” = S/ U §, where§ =
(p+i+1,...,k). Using Proposition 1(3) foD(R || Sg; U $), we obtain

Y DS)HDRIS)H= D(SJ,)(Z(sgnr)D(R; ||§:;>)D<R!||§>

oeX(W) aeX(W)

=Z(sgnr)( Y. DESHDR, | S‘Z))D(R;’ I1S)
T oceX(W)

=0

because the sums in parentheses are zero by theé eage O

3. Main Results

Let A be a partition, leT” be a filling of A with entries inA, and letTy, ..., T; be
rows of 7. We write D(T) = D(T1) - - - D(T;), an element of the exterior algebra
A(Z) ontheZ; ,.

We defineE(2) to be a linear span of thB(T) in A\(Z), whereT runs over
all fillings of A. Then E(L) becomes a Glm)-module by setting - Zia =
Y vea 8b.aZip fOr g = (gp,c) € GL(m) and extending multiplicatively to the en-
tire E(A). We have the explicit formula



352 TADEUSZ JOZEFIAK

g D@y, ....ap) =Y gyay " 8byay D(b1, ... by),

the sum over alp-tuples(dy, ..., b,) from A?.

Forap-tupleS = (ay, ..., a,), we writee(S) = e, - - - €4, € S, E. For afilling
Tofa,wesete(T) =e(T1) ®---Qe(T}) € S,ER® -+ ® S, E. We now have a
map

dJ)L: S)»J_E® ®S}L1E — /\(Z)

such thatb, (e(T)) = D(T) for any filling T of . Itis easy to check thab; is a
map of GL(m)-modules.
Afilling T of A is called &ableauif entries along the rows @f from left to right
are weakly increasing and entries down the columrig afe strictly increasing.
LetS = (a1, ..., ap4q), p = g.letU C {1, ..., plandW C {p+1 ..., p+q},
and let X(U, W) be a complete set of left coset representatives of the cosets
(U UW)/Z(U) x Z(W). We define

GS:UW)= Y  eS,)®eS))eSERS,E.
oeX(U W)
Note thatG (S; U, W) does not depend on a particular set of coset representa-
tives. We setG(S; W) = G(S; {L,..., p}, W). Let T be a filling of A with rows
Ty, ..., Tp; pickr With T, = (ag, ..., a,) = S’ andT, 11 = (@p41, ..., dpyg) = 5.
We defineC,(E) to be a submodule &fy,E ® - - - ® S, E spanned by elements
of the form

e(T) Q- ®e(T-) QG(S; W) ®e(Tr42) @ -+ ® e(T)) (2)

for all possibleT, r and nonemptywv.
We can now formulate our main result.

THEOREM. LetK be a field of characteristi.

(1) EQ) =Imd, = SwE®---®S5,,E/Ker®, isanirreducibleGL (m)-module
of highest weight if /(L) < m (E(%) = 0 otherwisg.

(2) The sef{D(T) | T tableay forms a basis ofE (1) overk.

(3) Ker®, = Cy(E).

Note first thatC,(E) c Ker®; by Corollary 1. It is clear that, in order to prove

(2) and (3) of the Theorem, it is enough to show (1) &Ho

(1) the set{®;(e(T)) = D(T) | T tableau is linearly independent ovex ;

(1) the set{e(T) := e(T) modC,(E) | T tableay linearly spans the quotient
SLWE® - - ® S,E/C,(E).

Proof of (1)

We order variable$Z; .} (1 <i <1(x), a € A) by declaringZ; , < Z; , if i <
jori = janda < b. We order monomials in th&; , by the lexicographic or-
dering compatible with this ordering on ttfg ,. Let S be a one-row filling with
entries(as, ..., a,) = (¢1, ..., M), wherec; # ¢; fori # j. ThenD(S) =
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nyl---nd Zy 4 -+ Zp 4, + higher terms. This extends to any tablefauln fact,
we have
D(T)=n ]_[ 1_[ Z; 4 + higher terms,

1<i<M aeTy

whereT;, T,, ... are columns of” and 0# n € Z. The leading term oD(7T) is
always nonzero, since in each columrifoé given entry can appear at most once.
Let T andT’ be tableaux with entries id. Consider the first column where
T andT’ differ and then consider the first box (from top) in this column where
they differ. If T has entry in the box andl’’ has entrya’ in the box and iz <
a’, then we declar@ < T'. Itis clear that this is a total ordering on tableaux of
shape,. Moreover, it is obvious that i’ < T’ then the leading term dD(T) is
smaller than all the terms dd(7"). This proves (1).
In order to provgll) we need to single out some elements fréiE). It will
be convenient to use the notation

a1+ 41-dp
G (apr-ar)

for G(S; U, W), whereS = (a1,....ap4+4), U = {s +1 ..., p}, andW =

{p+1....,p+1}.

ProposiTION 3. Ifs <t < ¢ < pandifT isafillingof Awith 7, = (ay, ..., ap)
andT,1 = (ap41, - .., apyq) fOr somer, then the element

ai--agagq1--dp

K (T) = e(T) @+ @ e(T, ) ® G (gt ) ® e(Tr2) @+ @ e(T))

belongs toCy(E).

In order to prove this we now describe a specific €U, W) of left coset
representatives oE(U U W)/ X (U) x (W) for U c {1,...,p} and W C
{p+1....,p+gq}. ForB c UandC c W with #(B) = #(C), we denote
by (B, C) a permutation of order 2 irE(U U W) that interchange® and
C, preserving the order of elements, and leaves all the remaining elements of
{1,..., p + g} unchanged. We defing(U, W) to be the set of all such(B, C).
One can easily check that(U, W) is indeed a set of left coset representatives of
S(WUUW)/ZU) x T(W).

We record now a simple fact whose proof is straightforward.

LEmmMa l. LetU ={s+1,...,plandW = {p+1,..., p+1t}. Then we have
X({s}UU W) = X(U, W)U ZWU, W), whereZ(U, W) = {t(B,C) | s € B,
B c {s}UU, C c W}. The setZ(U, W) is in a one-to-one correspondence with
theseX({p+1 U U, W\ {p+1}) by the correspondeneg B, C) <> t(B’,C’)
defined by the following relations
() if p+1leCthensetB’ = B\ {s}, C' = C\{p+1,andt(B,C) =
(B, C')(s, p+D);
2)ifp+1l¢ CthensetB’ = {p+1 U{B\{s}}, C' =C,andt(B,C) =
s, p+Dt(B,C')(s,p+1.
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LEmMA 2. We have the identity

ai--das—1ds--dp ar-dsds41--dp aras—10s41 - dp41
G(,,pﬂ...apr) = G(a,,ﬂ---W) + G(aﬁz---a,W) . (3)
Proof. By Lemma 1, the left side of identity (3) is equal to
Yo eSsH@els). 4

oceX(U,W)UZU,W)

Obviously, the terms in (4) correspondingXaU, W) give the first summand in
(3). By the explicit bijection betweel({p + LU U, W\ {p +1}) andZ (U, W)
from Lemma 1, the terms in (4) correspondingZeU, W) give the other sum-
mand in (3). O

Proof of Proposition 3.Lets < ¢ and write

Goi(S) = G(

a1 asasy1--ap
Ap+1-+Ap+r-

Itis enough to show that eaeh, ,(S) can be expressed as a linear combination of
theG(P; V) forsomeP € AP*7andd # V C {p+1,..., p + g}. This follows
by induction ons using Lemma 2. O

Proof of (II)

Consider the sef; of all fillings of A with entries inA. ForT € F;, letT; , be
the number of times the elements smaller than or equalappear as entries in
the firsti rows of 7. For anothel7’ € F, we say that’’ < T if T/, > T; , for
every 1<i <I(1), a € A. Let F; be a subset af; of all fillings T whose each
row is weakly increasing. Then the relatierrestricted taF, defines an ordering
on F,. (Note that, for anyl" € F;, there existd"’ € F; such thatl; , = 7/, for
anyi anda, ande(T) = e(T').)
We now prove that if” € F, is not a tableau then we have a relation of the form

éT) =Y cr re(T’) (5)
T'<T
in SLE® -+ Sy, E/C\(E), whereT’ € F, andcr: ¢ € Z. SinceF; is finite,
this leads to a proof ofil) because the first element#/ with respect to< is a
tableau.

If T € 7] andT is not a tableau then there are two consecutive rdyvs=
(a1, ...,ap) andT, 11 = (@p41, ..., Aprg), ANds < p Witha; < apy; forl <i <
s—landapy1 < -+ < dapps < ag < - < a,. It S = (ay, ..., a,44) then, by
Proposition 3, the eleme,_, (T) belongs toC,(E).

If a; > ap4, then this allows us to express$T) in the form of (5), since for
each summané(7’) with 7' # T, the filling 7" in K{_, (T') contains an entry
ay,+; (1 < j <s)intherth row and hencd’ < T becauser,;; < a; for any
Jj <sandi >s.
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If a; = a,, then several summandski{_, ,(7') canbe equalte(7’). Dividing
by a nonzero integer coefficient leads again to a relation of type (5).

Proof of (1) of the TheoremiNote thatE(x) has a highest weight vectog =
e(Tp), whereTy is a filling of A with all the entries in thgth row equal toj, 1 <

Jj <1(A). Let E’ be a GL(m)-submodule ofE(L) generated by,. ThenE’is an
irreducible GL(m)-module with highest weight; thatis,E’ = E()) by (i) of the
Introduction. By (ii) of the Introduction and (2) of the Theorem, the characters of
E’ andE(%) are the same so th&t' = E()). By (2) of the Theorem, we obtain
EQ) =0ifI(0) > m. O

4. Another Set of Generators for Ker®,

We defined the seX(U, W) forU c {1,..., p}andW Cc {p+1,..., p+ ¢} just
after the formulation of Proposition 3. We now s&tW) = X({1, ..., p}, W).
Note thatr (9, @) = Id € X(W). Let Y(W) be a subset ok(W) of all (B, C)
with #(B) = #(W). Note thatY (%) = {Id} and thatx(W) = |J Y(C), with C
running over all subsets a¥ (includingC = 0).

For S € A?*4 we define

H(S; W) =e(S) @e(S") — (=)™ > e(S)) ®e(S)),
ceY (W)

an elementof,E ® S, E. ForT afilling of A with 7, = (a3, ..., a,) andT, ;1 =
(Ap41, ..., Aptq), We defineBy(E) to be asubmodule &, E®- - -® S, E spanned
by elements of the form

e(T)® - ®e(l,) QHS; W)®e(Tr12) Q-+ Qe(T)) (6)

for all possibleT, r, andW.

ProrosITION 4. |f #(W) = n then

(1) G(S: W) = X j_1(=DI ™ Yy, H(S; €) and
(2) H(S; W) = X1 (~D* Y o) G(S; O),

with C running over all subsets oW.
COROLLARY 2. By(E) = Cy(E) = Ker ®,..
CoroLLARY 3. If #(W) = nthen

D(S"HD(S") = (D" Y D(S,)D(S)). )

ceY(W)
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Proof of Proposition 4.SinceX(W) = U,- U#(C):j Y(C) for C C W, we obtain

GE:Wy=) Y eSp®es)

j=0 ge¥(C).#(C)=j

=Y Y (—DITHHS; C) —e(S) @ e(S"))

J=0 #C)=j

= f(—l)”l
j=0

=Y (=D Y H(S;0)
j=1

#HC)=j

3 HS: )+ (Z(—l)f(’;))e(s’) ®e(S")
j=0

HC)=J

becausdi(S; ¥) = 0.
The second identity is obtained by inverting the first. O

5. Representations of Symmetric Groups

The construction of representatiofi§)) leads to a construction of dual Specht
modules of symmetric groups.
Let be a partition ofz. We defineS(1) to be a linear span of the(T'), where
T varies over fillings of. with all entries distinctS () is a weight space af (1)
of weight

@...,1.
——

The symmetric groujz,, on A = {1, ..., m} can be identified with a subgroup of
GLm) bya < > .4 Ea@),a» WhereE, ; is the elementary matrix with 1 in the
ath row andbth column and with all other entries 0. The explicit formulas in Sec-
tion 3 show thateZ; , = Z; 4y andaD(T) = D(a(T)) fora € £,,, a € A, and
T afilling of ». HenceS(%) becomes &,,-module.

In a similar way, we define a subspak&) of S;,E ® --- ® S, ,E as a lin-
ear span of the(7T) with T a filling with distinct entries inA. Again, M () is a
3 ,»-module and, in fact, is isomorphic to a module induced from the trivial rep-
resentation o&;, x --- x X, to X,,. The map

D, 5. EQ - QS E—~ A(Z)
induces a map;: M(») — S(i) of =,,-modulesg;(e(T)) = D(T) for T afill-
ing with distinct entries.
ProrosiTioN 5. Let K be a field of characteristi©.
(1) S(») = Im¢;, = M())/Ker, is an irreducible,,-module.

(2) The set{D(T) | T standard tableajiforms a basis ofS(i) over K. (We re-
call that, classically, a tableau is called standard if all its entries are distinct.
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(3) Kerg, isgenerated by elements of the fai@h, whereT varies over all fillings
of A with distinct entries and for all possibleand nonempty¥; moreover,
Kerg, is also generated by elements of the faén for all T with distinct
entries and all possible and W.

Proof. The same method as in the proofs of (I) g and in Section 4 prove
(2) and (3). The irreducibility of (1) can be proved by standard arguments in the
representation theory of symmetric groups (see e.g. [6] or [3]). O

Note that the map, : M (L) — S(1) can be identified with the map: M* —
S* (from [3, p. 96]) in view of Proposition 5(3) and [3, Chap. 7, Ex. 14]. Hence
S(») = §* is the =,,-module obtained by the construction dual to that of the
Specht module (see [3, Sec. 7.4]).

A careful examination of proofs of (1) ar(dl) reveals that ifS(1) is considered
overZ then (2) and (3) of Proposition 5 remain valid.
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(1) Identities (7) are counterparts of Sylvester and Pliicker relations for minors of
a matrix. This type of identities was discussed in more general context by Towber
in [9] and [10].

(2) If chark = 0 then the moduls; ,E ® - - - ® S, E/B,(E) is Towber’s mod-
ule \/, E; that it is irreducible of highest weight is the content of [3, Chap. 8,

Ex. 10].

(3) If chark = 0 then the modul&;, ,E ® - - - ® Sy, E/Cs(E) is the co-Schur
module in the terminology of Akin, Buchsbaum, and Weyman [1]. The relation
was used in [1].

(4) One can prove that K&r, is generated by elements corresponding to
G(S; W) with #(W) = 1; the same applies to Ke,.

(5) If charK # 0 then the mapb; can be modified by replacing symmetric
powers by divided powers and changing thé€T) by dividing them by suitable
integers in order to obtain modules considered in [1].

(6) After obtaining the results presented in this paper, | learned that functions
D(S) were considered in [2] and [5] in the context of invariant theory. | would
like to thank S. Fomin for referring me to one of those papers.

(7) 1 would like to thank a referee who pointed out that the irreducibility of
E(0) and (2) of the Theorem were obtained independently by Sergeev in a re-
cent preprint [8]. His construction leads to a basis fai) that differs from
{D(T)} by the constanfy! --- u,!, whereu is the conjugate oh. Sergeev’'s
methods are different from mine and provide more general result describing irre-
ducible modules over the sum of general linear Lie superalgeb¢&s ¢ gl(V)
acting on the symmetric superalget§&/ ® V), whereU andV are super-
spaces. He uses in his proof the Schur—Weyl dualityXgrand gV) acting
on Ve®k,
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