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0. Introduction

Quantum cohomology theory can be described in general terms as intersection
theory in spaces of holomorphic curves in a given Kéhler or almost Ké&hler mani-
fold X. By quantumk-theory we may similarly understand the study of complex
vector bundles over the spaces of holomorphic curves.iin these notes, we
will introduce aK-theoretic version of the Witten—Dijkgraaf-Verlinde-Verlinde
(WDVV) equation which expresses the associativity constraint of the “quantum
multiplication” operation ork *(X).

Intersection indices of cohomology theory,

/ WL N N\ W
[space of curves]

obtained by evaluation on the fundamental cycle of cup products of cohomology
classes are to be replacedkntheory by Euler characteristics

x(space of curved1 ® - - ® Vi)

of tensor products of vector bundles. The hypotheses needed in the definitions of
the intersection indices and Euler characteristics—that the spaces of curves are
compact and nonsingular, or that the bundles are holomorphic—are rarely satis-
fied. We handle this foundational problem by restricting ourselves throughout the
notes to the setting where the problem disappears. Namely, we will deal with the
so-called moduli spacé$, ; of degreed genus-0 stable maps ®with » marked
pointsassuming thak is a homogeneous Kéahler spaténder this hypothesis, the
moduli space<, ; (we will review their definition and properties when needed)
are known to be compact complex orbifolds (see [1; 10]). We use their fundamen-
tal cycle [X, 4], well-defined ovefQ, in the definition of intersection indices, and

we use sheaf cohomology in the definition of the Euler characteristic of a holo-
morphicorbi-bundleV:

X(Xnas V) =Y (=Drdim H (X,,.4; O(V)).
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1. Correlators

The WDVV equation is usually formulated in terms of the following generating
function forcorrelators

[o.¢] Qd
F(t, Q) = Z ZF(I, ~~~7t)n,d~
d n=0 """

Hered € H,(X, Z) runs over the Mori cone afegreesthat is, homology classes
represented by fundamental cycles of rational holomorphic curv&s and the
correlators(¢y, ..., ¢.)n.q are defined using thevaluation mapst the marked
points:

evy X - xeV,: Xpg—> X x--- xX.

In cohomology theory, we pull back to the moduli spage,; then cohomology
classe®y, ..., ¢, € H*(X, Q) of X and define the correlator among them by

R R f VI (P1) A -+ A BV ().

[Xn.d]

In K-theory, we pull backe elementspy, ..., ¢, € K*(X) (representable under
our restriction onX by holomorphic vector bundles or their formal differences)
and put

(@1, s Plnd = X(Xn.a; € ($1) ® - - ® €V, (¢n))-

We will treat the serie$” as a formal function of € H depending on formal pa-
rameters) = (Qq, ..., Oettiy(x)), WhereH = H*(X, Q) or H = K*(X).
Let {¢,} be a graded basis IH*(X, Q), and let

8ap = (Pa, Pp) =f b N Pp
[X]

denote the intersection matrix. L&t*#) = (g.5) * be the inverse matrix (so that
Y (¢ ® Dg*P(1® ¢p) is Poincaré-dual to the diagonal ¥ x X). In quantum
cohomology theory, one defines theantum cup producé on the tangent space
T;H by

(Pg ® ¢ﬂs ¢y) = Dtﬂ)/(t)
(where the subscripts on the RHS mean partial derivatives in the fgasis In

this notation, the associativity of the quantum cup product is equivalent to the fol-
lowing WDVV identity:

> oo Fape 8% Forys is totally symmetric inv, B, y, 8.

2. Stable Maps, Gluing, and Contraction

In order to explain the proof of the WDVV identity, we must discuss some prop-
erties of the moduli spaces, , (see [1; 4; 10] for more details).

We consider prestable marked cury€s z), that is, compact connected com-
plex curvesC with at most double singular points and withmarked points
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z=(z1,...,2,) that are nonsingular and distinct. Two holomorphic mafss,
(C,2) > Xandf’: (C’,2") — X, are callecequivalentf they are identified by
an isomorphismC, z) — (C’, z') of the curves. This definition introduces the
concept ofautomorphisnof a mapf: (C,z) — X, and one calls stableif it
has no nontrivial infinitesimal automorphisms. The moduli spaGggconsist of
equivalence classes of stable maps with fixed numlzdrmarked points, degree
d, and arithmetic genus 0 (it is defined@s= dim H(C, O)).

In plain terms, the space of degréérolomorphic spheres iX with n» marked
points is compactified by prestable curves which are tre€sR3& and satisfy the
stability condition: each irreducible componéhP! mapped to a point iX must
carry at least three marked or singular points. Under the hypothesiX tisaa
homogeneous Kahler space, the moduli spégcg has the structure of a compact
complex orbifold of dimension dign X + fd ci(Tx) +n — 3.

WhenX is a point, the moduli spaces coincide with the Deligne—Mumford com-
pactificationsM o, of moduli spaces of configurations of marked pointsiar.

For instance M 4 is the setCP! — {0, 1, oo} of allowed values of the cross-
ratio of four marked points oft P*. The compactificationM 4 = CP* fills in

the forbidden values of the cross-ratio by equivalence classes of reducible curves
CPYuU CP?! with one double point and two marked points on each irreducible
component.

Forn > 3, there is a naturalontractionmapX, 4 — /\;lo,,l defined by compos-
ing the mapf: (C, z) — X with X — pr (so that the components 6fcarrying
< 3 special points become unstable) and contracting the unstable components.
Similarly, one can define tHergettingmaps ft: X,,114 — X, 4 by disregarding
theith marked point and contracting the component if it has become unstable.

In particular, we will make use of the contraction map

ct: X,,+4,d — ./\/l0$4

defined by forgetting the map: (C,z) — X and all the marked points except
the first four. An allowed value. = ct[f] of the cross-ratio means the follow-
ing: the curveC has a componertty = CP* carrying four special points with the
cross-ratio\, and the first four marked points are situated on the branches of the
tree connected tG at those four special points. A forbidden valuefdti 0, 1,
or co means that contains achainCo, ..., C; of k > 0 CPs such that two of
the four branches of the tree carrying the marked points are connected to the chain
via Cy and the other two vi&;. Such stable maps form a stratum of codimen-
sionk in the moduli spac&,, ;. We will refer to them as strata (or stable maps)
of depthk.

A stable map of depth 1 is glued from two stable maps obtained by disconnect-
ing Co from C;. This gives rise to thgluing map

Xno+3,d0 XA an+3,d1 - Xn0+n1+4,d0+d1

as follows. Consider the map froi), 13,4, X Xn+3.4, 10 X x X defined by evalu-
ation at the third marked points. Note that, for a homogeneous K&hligre map
is conveniently transverse to the diagopalc X x X. The source of the gluing
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map is the preimage af. It consists of pairs of stable maps which have the same
image of the third marked point and which therefore can be glued at this point into
a single stable map of degrég + di with ng + 2 + n1 + 2 marked points.

Similarly, gluing stable maps of depthfrom k + 1 stable maps subject fo
diagonal constraints at the double points of the cldé&in .., C, defines appropri-
ate gluing maps parameterizing the strata of dépth

3. Proof of the WDVV Identity

All points in Mg 4 represent the same (co)homology class. Thus, the analytic
fundamental cycles of the fibers¢tir) are homologous irX, 4 4. The coho-
mological WDVYV identity follows from the fact that (fok = 0, 1, or co) the

fiber ct™X(1) consists of strata of depth 0; moreover, the corresponding gluing
maps (for all splittings? = do + d1 of the degree and all splittings of te=

no + n1 marked points) are isomorphisms at generic points and so identify the
analytic fundamental cycle of the fiber with the sum of the fundamental cycles of
Xnot+3.d Xa Xni+3.4,- This allows one to equate three quadratic expressions of the
correlators that differ by the order of the indieess, y, § associated with the first
four marked points.

We leave the reader to work out some standard combinatorial details that are
needed in order to translate this argument into the WDVV identity for the gen-
erating functionF. Note that the contraction with the intersection tenggt’)
in the WDVV equation takes care of the diagonal constraint X x X for the
evaluation maps.

In K-theory, similarly, the push-forward t6 x X of the structure shea?, of
the diagonal is expressed as

3 (¢ ® D 1@ ¢
via (g°¢") inverse to the “intersection matrix”

8up ‘= (Pu, Pp) = X(X; Pu @ Pp).

The argument justifying the WDVV equation fails, however, since the above glu-
ing map to ctl(x) is one-to-one only at the points of depth 1 and does not iden-
tify the corresponding structure sheaves. Indeed, a stable map ofideathbe
glued from two stable maps ik different ways and thus belongs to thdold
self-intersection in the image of the gluing map.

Let us examine the variety Tt(1) at a point of deptlt > 1. One of the prop-
erties of Kontsevich’'s compactifications, ; is that, after passing to the local
nonsingular covers (defined by the orbifold structure of the moduli spattes),
compactifying strata form a divisor with normal crossifjijs10]. Moreover, ana-
lyzing (inductively ink) the local structure of the contraction map &t;4.4 —

M .4 near a deptli-point, one easily finds the local modelxy, ..., x, ...) =
x1---x; for the map ct in a suitable local coordinate system. In this model, the
components; = 0, ..., x; = 0 of the divisor with normal crossings represent
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the strata of depth 1, their intersections= x;, = 0 represent the strata of depth
2, and so forth. Denote b§? the algebra of functions on our local chart, so that
Of(xiy, ..., xi)), i1 < - -+ < i, are the algebras of functions on the dep#itrata.
We have the following exact sequence®imodules:

0— Of(x1-+-x1) > D O/(xi) > D Of(xiy, x1,)
- @ Of(Xiys Xigy Xig) —> -+

Notice that thep-terms in the sequence are the algebras of functions on the nor-
malized strata of depth 1, depth.2,. Translating this local formula to a global

K -theoretic statement about gluing maps, we conclude that, in the Grothendieck
group of orbi-sheaves 0K, 4 4, the element represented by the structure sheaf
of ct™X(1) (for A = 0, 1, oroo) is identified with the structure sheaf of the corre-
sponding alternating disjoint sum over positive depth strata:

Z Xn0+3,d0 XA Xn1+3,d1 - Z X110+3,d0 XA Xn1+2.d1 XA an+3,d2 + -

4. Formulation and Consequences

Now we can apply the preceding-theoretic statement about moduli spaces to
our generating functions. We introduce

1
Gt, Q) =3 ) guptalp + F(1, Q)
ap

and let(G*#) be the matrix inverse t6G,z) = (3,95G).

THEOREM.

Z GaﬁgG”/GM is totally symmetric irw, 8, v, §.

el
Proof. We have rewritten
Faﬂag“/Fa’yﬁ - FaﬂSgEﬂFuu’gM/S/Fe’ys + -
using the well-known matrix identity+ F + F?2 — ... = (14+ F)L O
Now introduce thequantum tensor produain 7; H (with H = K*(X)) by
(Do ® g, Py) 1= Gupy (1),
where the metri¢-, -) onTH is defined by(¢,, ¢,) := G, (1).

CoroLLARY 1. The operations., -) and e define on the tangent bundle the struc-
ture of a formal commutative associative Frobenius algebra with thelunit

REMARK. At Q = 0, the algebra turns into the usual multiplicative structure on
K*(X).
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Proof. As in the cohomology theory, this is a formal corollary of the theorem—
except that the statement about the unit 1 meansGhat = G, and follows
from the simplest instance of tis¢ring equatiorin K-theory: (1, ¢, ..., )y414 =
(t,...,Dnq. The last equality is obvious. Indeed, the push-forward of the con-
stant sheaf 1 along the map &X;,.1 » — X,.4 (forgetting the first marked point)

is the constant sheaf 1 on, ; since the fibers are curves of arithmetic genus

g =dimHY(C, O¢) = 0 while H%(C, O¢) = C by Liouville’s theorem. O

We introduce o7 *H the 1-parameter family of connection operators

V, =1-q)d— Z(%.)d;a A

CoroLLARY 2. The connection¥, are flat for anyg # 1.

Proof. This follows frome,, e ¢ = ¢ @ ¢, d? =0, andd, (pge) = dg(@ae):
o (P®)), = Gruaps G — GupeG** Goroer G

is symmetric with respect @ and 8 because of the WDVV identity. O

ProposITION. The operatoV_; is twice the Levi—Civita connection of the met-
ric (G*¥) onT*H.

Proof. For a metric of the fornG,s = 9,93G, the famous explicit formulas for

the Christoffel symbols yield
ZFV = [G(xsﬂ + Gﬁsa - Gaﬂg]GSV = Gaﬁgcsy = ((f)ﬂ.)(}x/. O

a

CoroLLARY 3. The metric(-, -) onTH is flat.

We complete this section with a description of flat sections of the connection oper-
atorV, in terms ofK-theoretic “gravitational descendents”. Let us introduce the
generating functions

Sutﬁ(tf Q) ::gaﬂ+ZQ_:l(¢0ut1--'vts ¢l3 ) El
n,d n 1- qL n+2,d

where the correlators are defined by

Wty eos Un LY ma o= XX opoas € (Y1) ® - - ® &V () @ LEX).

Here L is the line orbi-bundle over the moduli spack,, , of stable maps
(C, z) — X formed by the cotangent lines @at thelast marked point (as spec-
ified by the position of the geometrical serie$ yL + g?L?> +--- = (1—gL)™*
in the correlator).

THEOREM. The matrixS := (S,,) is a fundamental solution to the linear PDE
system
(1= )38 = (Pue®)S.
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Proof. Taking ¢,., ¢«. ¢, and¢, /(1 — gL) for the content of the four distin-
guished marked points in the proof of the WDVV identity, we obtain its general-
ization in the form

G//.ozs G 55,8/3 Ss’v = G/Lﬂé‘ G Eg/a(x Ss’v ,

or (p,0)35S = (pge)d,S. Now it remains to pups = L and us€l—¢)9:S = S,
which is another instance of the string equation:

Lty t,@Li2a =ty o t, QA+ L+ -+ L)) i1a.
The last relation is obtained by computing the push-forward.®f along ft:
Xni2.4 = Xnt14. SOme details can be found in [6; 11; 14; 15]. Briefly, one iden-
tifies the fibers of ft with the curves underlying the stable mafps(C,z) —» X
with n +1 marked points. Itis important to realize that the pull-batk= ft;(L)
of the line bundle named on X,,.1 , differs from the line bundle nametl on
Xnt2.4. Infact, there is a holomorphic section of HoM, L) with the divisorD
defined by the last marked point., € C, and the bundld. restricted toD is
trivial (while L/| p is therefore conormal t®). SinceL' is trivial along the fibers
C, we find thatH(C, L¥) = 0 andH%(C, L*) = (L")* @ H%C, O¢ (kD)) =~
(LH*A+ @)+ + (L)), O

5. Some Open Questions

(a) Definitions. It is natural to expect that the foregoing results extend from the
case of homogeneous Kéahler spa¥et® general compact Kahler and, even more
generally, almost Kahler target manifolds.

In the Kéhler case, the moduli of stable degtegenusg maps withn marked
points form compact complex orbi-spacés,, , equipped with théntrinsic nor-
mal cong[13]. The cone gives rise [3] to an element in Kiegroup ofX, , 4 that
should be used in the definition &f-theoretic correlators in the same manner as
the virtual fundamental cycleX], ,, ] is used in quantum cohomology theory.

The moduli space, , ; can also be described as the zero locus of a section of
a bundleE — B over a nonsingular space. Owing to the famous “deformation to
the normal cone” [3], the virtual fundamental cycle represents the Euler class of
the bundle. This description survives in the almost Kahler case and yields a topo-
logical definition and symplectic invariance of the cohomological correlators. In
K-theory, there exists a topological construction of the push-forward Boim
the point based on the Whithey embedding theorem and the Thom isomorphism.
However, we don’t know how to adjust the construction to our actual setting, where
B is nonsingular only in therbi-fold sense.

One (somewhat awkward) option is to defikietheoretic correlators topolog-
ically by the RHS of the Kawasaki—Riemann—Roch-Hirzebruch formula [8] for
orbi-bundles oveB. This proposal deserves further study even in the Kéahler case,
since it may lead to a “quantum Riemann—Roch formula”.

(b) Frobenius-like StructuresOur results in Section 4 show that-theoretic
Gromov-Witten invariants of genus 0 define on the spdce- K*(X) a geo-
metrical structure very similar (but not identical) to the Frobenius structure [2] of
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cohomology theory. One of the lessons is that the metric tensaék (mhich can
in both cases be described Bgg) is constant in cohomology theory and equal
to g Only by an “accident”, but it remains flat iki-theory even though it is no
longer constant.

The translation — ¢ + t1in the direction of & H leaves the structure invari-
ant in cohomology theory but causes multiplicationddyin K-theory—because
of a new form of the string equation. Also, tifegrading missing ink-theory
makes an important difference. It would be interesting to study the axiomatic
structure that emerges here and to compare it with the structure implicitly encoded
by K-theory on Deligne—Mumford spaces.

(c) Deligne—Mumford Space&Vhen the target space is the point, the mod-
uli spacesX, , o are Deligne—Mumford compactifications of the moduli spaces of
genusg Riemann surfaces with marked points. The parallel between cohomol-
ogy andK-theory suggest several problems.

Holomorphic Euler characteristics of universal cotangent line bundles and their
tensor products satisfy the string and dilation equations. (The same is true not only
for X = pt (see [12]). By the way, the push-forward (L) along ft: X, ,414 —

X, n,a, described by the dilation equation is equaHoer H* — 2+ n. HereH is

the g-dimensionaHodge bundlavith the fiberH(C, O¢). This answer replaces
a similar factor 2 —2+n in the cohomological dilation equation, but it also shows
that tensor powers dff must be included to complete the list of “observables”.)

The K-theoretic generalization of the rest of Witten—Kontsevich’s intersection
theory [9; 15] is unclear.

The case of genus 0 and 1 has been studied in [11; 12; 14]. The formula

- 1
Mo,
X( ° (1—q1L1>~-~<1—ann)>

_ A+q/d—g)+ - +q./A—g)"®
A-q1)---A—q)
found by Lee [11] is analogous to the well-known intersection theory result

- = ce n—3
‘/[\MO.VI] (1_ xlCl(Ll)) e (1_ xncl(Ln)) - (xl + + xn)

[10; 15]. This second formula is the basis for fixed point computations [5; 10] in
equivariant cohomology of the moduli spacés, for toric X. As noted by Lee,
the first formula is not sufficient for similar fixed point computatiorkirtheory:

it requires Euler characteristics accountableifwariants with respect to permu-
tations of the marked point&inding anS, -equivariant version of Lee’s formula

is an important open problem.

(d) Computations The quantunk-ring is unknown even fok = CPX Itturns
out that the WDVV equation is not powerful enough in the absence of grading con-
straints and theivisor equation(see e.g. [6]).

On the other hand, fok = CP", it is not hard to compute the generating
functionsG (¢, Q) and everSq4(t, Q, g) att = 0 (see [12]). In cohomology the-
ory, this would determine themall quantum cohomology ring due to the divisor
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equation which, roughly speaking, identifies fhedeformation at = 0 with the
t-deformation at) = 1 along the subspadé?(X, Q) c H. No replacement for
the divisor equation seems to be possibl&Htheory.

At the same time, the heuristic study [5] 8t-equivariant geometry on the
loop spacel X suggests that the generating functighs= S14(0, Q, ¢) should
satisfy certain lineay-difference equations (instead of similar linear differen-
tial equations of quantum cohomology theory). This expectation is supported by
the example ofX = CP", since Lee [12] has found that the generating func-
tions are solutions to the-difference equatio®"+1s = QS (where(DS)(Q) :=
S(Q) — S(qQ)).

In the case of the flag manifold, the generating functions have been iden-
tified with the so-calledVhittaker functions-common eigenfunctions of com-
muting operators of the-difference Toda system. This result and its conjectural
generalization [7] to the flag manifold§ = G/B of complex simple Lie alge-
bras links quantunk -theory to representation theory and quantum groups. Orig-
inally this conjecture served as a motivation for developing the basics of quantum
K-theory.
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