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On Cartan’s Conformally
Deformable Hypersurfaces

Marcos DAJczZER & Ruy ToJEIRO

Starting in1916, E .Cartan devoted five years to the study of isometric, conformal,
and projective deformations of submanifolds by the use of the method of moving
frames. In the first of a series of papers ([2]; see also [9]), he locally classified
the hypersurfaces” (n > 3) in flat Euclidean spacR"+! that are isometrically
deformable. Shortly after, he followed with a long and more difficult paper [3]
where he classified conformally deformable Euclidean hypersurfaces of dimen-
sionn > 5. The special cases= 4, 3 were subsequently treated by Cartan in [4]
and [5]. In all cases, it turns out that hypersurfaces are generically conformally
rigid.

Quite similarly to the isometric case, conformally deformable hypersurfaces
of dimensionn > 5, other than the conformally flat ones, can be separated into
four classes: surface-like, conformally ruled, those having precisely a continuous
1-parameter family of deformations, and those that admit only one deformation.
Cartan’s main result is a parametric description of the hypersurfaces in the last two
classes as envelopes of 2-parameter families of spheres determined by a certain
partial differential equation together with an additional condition.

Our first and main achievement is a nonparametric classification of all confor-
mally deformable Euclidean hypersurfaces of dimengion 5 by means of a
rather simple geometric construction. Roughly speaking, we show that any hyper-
surfaceM” inR"+1 (n > 5) thatadmits a conformal deformatioft* can be locally
characterized as the intersectitft = N1 NV of a flat (n + 1)-dimensional
Riemannian submanifold of the standard flat Lorentzian sh&t2 with the light
coneV of L"+3. Moreover,M" is obtained by projecting/” onto the standard
model of R"*! as an embedded hypersurfaceVofin addition, we characterize
how the conformally deformable hypersurfaces that are conformally congruent to
isometrically deformable ones can be produced by the procedure just described.
They are the ones obtained from the flat Riemannian submanifolds whose rela-
tive nullity leaves are open subsets of affine subspacés i with a common
pointinV.

For reasons we can only guess (perhaps uncertainty about the very existence
of examples), Cartan’s statement in the introduction of [3] completely ignores the
discrete last class (although the possibility of its existence arises in his proof; see
Sec. 41). This raises the question of whether the discrete class is nonempty. The
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similar problem for the isometric case was considered in [9], where many hyper-
surfaces admitting only one isometric deformation were explicitly described. It
follows from our main result that such hypersurfaces admit no further conformal
deformations, thus giving a positive answer to the question.

We continue the paper with our own version of Cartan’s classification. Our re-
sult provides a parametric description of conformally deformable hypersurfaces
in the spirit of the one given by Sbrana [17] for the isometric case. In particular,
this allows us to produce explicit examples admitting 1-parameter families of de-
formations. A classification of the Euclidean hypersurfaces that admit conformal
deformations preserving the Gauss map has been given in [13].

Further results are given in the last section. First, we derive the Sbrana—Cartan
classification of isometrically deformable hypersurfaces from our main results.
Then, we characterize the flat Riemannian submanifolds of Lorentzian space that
give rise to the different types of conformally deformable hypersurfaces in Cartan’s
classification. Finally, we show that tmedimensional conformally deformable
hypersurfaces obtained from flat Riemannian submanifolds that are compositions
of flat hypersurfaces are, precisely, the ones that arise as intersections between flat
and conformally flat hypersurfaces in eitfi@t2 or .”*+2. Moreover, we prove
that this last class is invariant under conformal deformations.

1. The Nonparametric Classification

In the standard flat Lorentzian spaceé with inner product
(X,Y) = —x1y1+x2y2+ -+ + Xnt3Vn+3,
we consider its upper Iight cone
={XelL"3:(X,X)=0, x; > 0}

endowed with the induced degenerate metric. The interseEtjog #,, NV with
the affine hyperplane

Hy ={Xel"™3: (X, w)=1

that is orthogonal tav € V gives rise to thestandard modebf the (n + 1)-
dimensional Euclidean space into the light cdhét is the image of the isometric
embeddingjs, : R"*1 — V given by jz, (x) = (L x, || x||?) with respect to a
pseudo-orthonormabasisB,, = {ei, ..., e,43 = —w/2} of L"*3 such that

lledl =0=lle,ssll, (e1 eny3) = —1/2,

o 1)
and (ei,ej) =0; if i 41 n+3

If B, = {e1, ..., ¢,+3 = —w/2} is another such basis, |1&te O1(n + 3) be the
orthogonal transformation d@"*+2 given byTe; = é; for1<i <n + 3. ThenT
mapsE,, ontoE,, and hence induces an isomeffyof R"+! such thatl’ o jz,

jB, o T. Thusjz = To jg, = js, o T. For this reason, from now on we use
the shorter notatiop, to stand forjg,, for any basis3,, as just described. Notice
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that, given another vectad € V, there is a' € O1(n + 3) mappingw to w such
that j; = T o j,. SinceT restricts to an isometry &, it follows that j,, and j;
arecongruentisometric immersions inty. Recall that any isometry of (an open
subset of )V is the restriction of a orthogonal transformationldft3.

Leth: M™ — V (m < n + 1) be a conformal immersion of a Riemannian
manifold. Denote by, > 0 its conformal factor, which is given by

(he X, h.Y) = @3(X, Y).

Using that(h, ) = 0 and hence that:, X, h) = 0 for anyX € TM, it follows
that for any smooth function € C*° (M) the maph# is also conformal with con-
formal factorig,,. In particular, any conformal immersign: M™ — R"*! can
be made into an isometric immersidh,(g): M™ — V by setting

ACw(g) = (1/(pg).]w °8,

wherew € V is arbitrary. The observation in the preceding paragraph shows that
different choices ofv € V give rise to congruent isometric immersions ifto

Conversely, leG: M™ — V (m < n+1) be anisometric immersion. For =
n + 1, we assume the existence of a veaioe V with (G, w) > 0 everywhere;
thatis,G (M) does notinterse®,, = {rw; ¢t > 0}. If m < n, there always exists
such a vector. Otherwise, the immersiGn M” x R, — V given byG(x, 1) =
tG(x) would be surjective, a contradiction. Let us defthgG): M" — R"+1
by

JwoCy(G) =TIy, 0 G,

wherell,,: V\ R,, — Vs the projection ontd,, given byIT, (x) = x/{x, w).
SinceIl,, is conformal with conformal factopp, (x) = 1/(x, w), it follows
thatC,,(G) is also conformal with conformal factgr, c G = (G, w)™ For
any vectoriv € Vwith G(M) NR; = @, defineT: V\Ry; — Vby T(x) =
(x, w)I1z(x). ThenT is conformal and mapg,, ontoE;. Hence,T induces a
conformal transformatiod@ of R"*1 (i.e., an inversion up to a dilation and a rigid
motion), so thatj; o C = T o j,,. Then,

szJOCOCw(G) = ToijCw(G)
=Toll,oG=1Tl30G = jzoCys(G).

Sincejy is an embedding, it follows thé&t; (G) = C- C,, (G), thatis,C; (G) iscon-
formally congruento C,,(G). Observe that’,,(C,,(G)) = G andC,, (L, (g)) =

¢ for any conformal immersiog: M™ — R"+! and any isometric immersion
G.M"—>VwithGM)NR, =0.

Given a hypersurfacg: M" — R"*L a conformal immersiog: M" — R™"+1
not conformally congruent t@ is said to be @onformal deformatioof f. We say
thatg is nowhere conformally congruetd f if it is not conformally congruent to
f on any open subset af”. If any other conformal immersiog is conformally
congruent tof, then f is said to beconformally rigid. A similar terminology is
used in the isometric case.
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We say that an isometric immersiddi: V. — L"*2 of an open subset c
R+ s of trivial typeif there exist a smooth real functighe C> (V) and a basis
of L"*3 as in (1) such tha# is given parametrically by

n+1
H(x) = p(er+ena+ ) (x +kieira,
i=1
wherex = (xg, ..., x,41) andk; e R.

The pointwise structure of the second fundamental fapm TV x TV —
TV of an isometric immersio#l : V — L"*2 of an open subsét ¢ R"*!was
determined in [15, Thm. 2]. It follows from this result (cf. Lemma 19 in this paper)
and Proposition 20(a) that i is not of trivial type on any open subsetdfthen
it hasrelative nullityvy > n — 1 on an open dense subsetibfRecall thatvy (x)
is the dimension of the kern@&l 5 (x) of ey (x). Itis then a standard fact thaty
is an integrable distribution with totally geodesic leaves on any open subset where
vy IS constant. Moreover, the leaves are mappe#/lmnto open subsets of affine
subspaces df"+3. We say that an isometric immersiéh: V — L"*+2 with con-
stant relative nullity and the light corié are ingeneral positionf the relative
nullity leaves ofH through any point o/ (V) NV are transversal tv.

We are now in position to state our main result. For an embedHing/ C
R — L"+3 we write H 1 to denote the inverse df : V — H(V).

TueoreM 1. LetH: V C R"*! — LL"*+3 be an isometric embedding with con-
stant relative nullityvy that is not of trivial type on any open subset. Assume
that H and V are in general position and se¥” = H(V) N'V. EndowM"
with the Riemannian metric induced by the inclusiod/” — V and setfy =
H7Y,,,: M" — R Then, foranyw € V such that" NR,, = @, the confor-
mal immersiorgy = C,, (i) is nowhere conformally congruent #; .

Conversely, letf : M" — R"*1 (n > 5) be a hypersurface with no flat points
and letg: M" — R”"*! be a conformal immersion. Then there is a dense union
of open subsefg = Uleu,- such thatf has a principal curvature of multiplicity
at leastn — 2 onl» U U3 that vanishes otY, and such that

(i) gis conformally congruent tg' on any connected componentiaf;
(i) g is conformally congruent to an isometric deformationfobn any con-
nected component éf,; and
(iii) ateach point of/3 there is an open neighborhodd C U3, an isometric em-
beddingH : V — L"*3 transversal toV of an open subsét ¢ R"**, and
anisometry7 : U — H(V) NV such that

fly=fuoT and g, =guoT

REMARK 2. The assumption thadf is an embedding and not just an immersion
could be avoided by defininy” = H-XV), fy as the inclusion map d#/” into

R™ andgy = Cw(H|M,,). Our choice, however, was made so as not to lose the
geometrical nature of our characterization of conformally deformable hypersur-
faces ofR"*! asintersectionf flat (n + 1)-dimensional submanifolds df”*3

with V.
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The following criterion (due to Cartan [3]) for conformal rigidity is a consequence
of Theorem 1.

COROLLARY 3. A hypersurfacef: M"* — R"*! (n > 5) is conformally rigid if
all principal curvatures have multiplicity less than— 2 everywhere.

It is a classical result due to Schouten (cf. [7]) thatradimensional Euclidean
hypersurface has a principal curvature of multiplicity at least1 everywhere if
and only if it is conformally flat and hence highly conformally deformable. By
Corollary 3, if a Euclidean hypersurface of dimensior 5 has principal curva-
tures of multiplicity less than — 1 everywhere and admits a conformal nowhere
conformally congruent deformation, then it must have a principal curvature
of constant multiplicityn — 2 everywhere. We call it €artan hypersurfacd,
in addition, A is nowhere zero. Then, it is a standard fact that the correspond-
ing eigenspaces form an integrable distribution whose leaves are open subsets of
round spheres iR"*1. By Theorem 1, Cartan hypersurfaces are precisely those
fu with vy = n — 1 on an open neighborhood &f", where the spherical leaves
correspondent to the principal curvature of multiplicity- 2 are the intersections
of the relative nullity leaves off with the light cone.

The hypersurfaces that play the role of Cartan hypersurfaces in the isometric
case were nameSbrana—Cartan hypersurfaces[9]. They all have everywhere
a zero principal curvature of multiplicity— 2, and the corresponding eigenspaces
form an integrable distribution whose leaves are open subsets of affine subspaces
of R"*L

CoroLLARY 4. A hypersurface is conformally but not isometrically congruent to
a Sbrana—Cartan hypersurface if and only if it is a Cartan hypersurface such that
the spheres iiR"*+* containing the spherical leaves correspondent to the principal
curvature of multiplicityn — 2 have a common point. Moreover, any conformal
(nowhere conformally congruereformation of the hypersurface is conformally
congruentto anisometri;mowhere congrueptieformation of the Sbrana—Cartan
hypersurface.

Many explicit examples of Sbrana—Cartan hypersurfaces in the discrete class of
Shrana—Cartan’s classification were constructed in [9]. It follows from Corol-
lary 4 that any hypersurface conformally congruent to one of these examples also
belongs to the discrete class in Cartan’s classification.

Corollary 4 also yields the following characterization of the isometric immer-
sionsH in Theorem 1 that give rise to hypersurfaces conformally congruent to
Sbrana—Cartan hypersurfaces.

CoroLLARY 5. The hypersurfacgy constructed in Theorem 1 is conformally
but not isometrically congruent to a Sbrana—Cartan hypersurface if and only if
(&) vy = n — 1on an open neighborhoow of M" and (b) the relative nullity
leaves of H on W are open subsets of affine subspacek/in® with a common
point in the light conéV.
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2. Proof of Theorem 1
We first prove the following basic result.

PROPOSITION 6. Let f, g: M™ — R"*! be conformal immersions, and sét=
L,(f)andG = L,,(g) for v, w € V. Then there exists a conformal transforma-
tion v of R"*! such thatg = v o f if and only if there exists an isometry of V
such thatG = Ao F.

Proof. Assume first thag = v o f for some conformal transformationof R"+2,
Then the conformal factors of, g, andv are related by, = (¢, o f)¢s. Since
I, is conformal with conformal factapp, (x) = 1/(x, v), the map
jwovojtoll,: V\R, - V\R,
is also conformal with conformal fact@p, o j; o I1,)¢n,. Therefore, the map
A:V\R, - V\R, given by
A(x) = (x, 0)/(9y 0 jy o TL) () G 0 v o jy o T1) (x)
is an isometry, which extends to an isometty V — V by settingA(tv) = rw
for anyt > 0. Moreover,
AoF = AO((l/(pf)]vof) = (1/((pv Of)(pf)jw ovof = (1/(pg)]w g = G.
Suppose thah o F = G for some isometrny\: V — V. SetV = j-{V\R,)
and definey: V — R" 1 by
jwov:HwOAojv~
Thenv is conformal withg, = ¢, o A o j, = 1/(A o j,, w). Moreover,
Jwovo f=Il,0Ao0j,0f=¢ill 0 Ao F

= §0fnw oG = (‘Pf/‘Pg)Hw °jwog = jwog;
henceg =vo f. O

Proof of Theorem 1Assume thay is conformally congruent tgfy; on some
open subse/ ¢ M". SetF = L,,(fy) andG = L,(gn). ThenF = j, o fy
becausefy is isometric ands = £, (C,(i)) = i. By Proposition 6, there exists
an isometryA: V — V such thatA o F|, = G|,,. As already pointed out, the
isometryA is the restriction of a orthogonal transformatibrof I.”*3. Let us still
denote byF andG the maps o F andk o G, wherek: V — "3 s the inclusion
map. Then

HofH|U=G|U=T°F|U=onfH U

wherev = T(w). Hence,U = H(fx(U)) = j,(fg(U)) C E,.

LetW C V be an open neighborhood Bf1(U) such thatd(W)NV c U. For
each leaf of relative nullity of H in W, we have thati (o) intersectsy transver-
sally and

Ho)NV CUC H,y.
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SinceH (o) is an open subset of an affine subspade’@f, it follows that H (o) C

H,. ThusH(W) C H,. The following result yields a contradiction with our as-
sumption thatd is nowhere of trivial type and so completes the proof of the direct
statement.

PROPOSITION 7. Anisometricimmersio#l : V ¢ R"+! — L"+3is of trivial type
if and only if there exists € V such thatH (V) C H,.

Proof. Assume thatd(V) Cc H, for somev € V. Lete; = —v/2,...,e,.3be a
basis ofL"*3 as in (1). Then we may write

n+1

H(x) = ¢1(x)er+enrz+ Y di(xX)erss, x = (X1,..., Xpp0),

i=1
for some¢s, ..., ¢,01 € C®(V). Since H is isometric, it is easily seen that
e2,...,e,0can be chosensothat(x) = x; +k; (k; eR)foralll<i <n+1
The converse is trivial. O

We shall now prove the converse statement of Theorem 1. Given a hypersurface
f:M" — R""! (n > 5) and a conformal immersiog: M" — R"* setG =

L., (g) for w € V. For the rest of the proof, we regattias a map intd."*3; that s,

we write G for k o G, wherek: V — LL"*3 is the inclusion map. Sét= j,, Ng,
whereN, is a smooth unit vector field normal go DifferentiatingG = (pg_ljw og

twice, we easily obtain that

(@G (X, Y),8) = 0, (Vyjus 8 X, jus Ng) = 9 Heg(X, Y), Np)

for any X, Y € TM, whereV denotes the derivative ih"*3. Hence, the shape
operatorsAf’ andAy, are related by

A = 945 )

On the other hand, differentiatings, G) = 0 implies that the position vectar
is a normal vector field. Differentiating once more shows that

(O[G, G> = _<" > (3)

Moreover, sinc&/yG = G, X is a tangent vector, it follows that is parallel in
the normal connection.

Let us denote by.? C Tz M the Lorentzian plane subbundle orthogonas to
Since the position vecta& e L2 is null, one can easily verify that there exists
a unique smooth orthonormal frani@ n} of L? with ||£|]| = —1 such thaiG =
£ 4. Foreachr € M", let W22 = T;"M @ spari§} @ sparin} & spar{s} be en-
dowed with the natural inner produit, -)) of type (2, 2) and define a symmetric
bilinear formp: .M x T.M — W by

B(X.Y) = (ALX.Y)N — (ag(X. Y), £) + (aG(X. ¥). n)n + (AT X, ¥)3,

whereN is a smooth unit vector field normal t Sinceg = (A{V-, N @ ag, it
follows from the Gauss equations fgrandG thatg is flat, that is,



536 MARcos DAJCZER & Ruy TOJEIRO

{B(X,Y),BZ, W) —{{BX,W),B(Z,Y))=0 forall X,Y,Z,WeT.M.
Let V; be the closed subset of points M" whereg is null, that is,
(B(X,Y),B(Z,W)))=0 forall X,Y,Z,WeTM.
LemMma 8. (i) At each pointx € V3, G extends to a pseudo-orthonormal basis
G, &1, £ Of T, M with (G, £2) = 1and ||¢2|| = 0 such that
aG(X, Y) = (ALX, V)& — (X, Y)Ea. @)

(i) Ateach pointofy, ;== M\V1, f andg have principal curvatures, A hav-
ing the same eigenspagewithdim A > n — 2. Moreover.

(a) for eachx in the closed subsét; C V, wherea vanishes, there exisise V
with (p, G) = 1such that{ag (X, Y), p) = 0;

(b) for eachx € U3 := V,\V3 there existu € Té(x)M of unit length as well as a
flat bilinear formy : T,M x T.M — (sparfu})* with kery = A such that

@G(X,Y) = (A\X, Y)u + y(X, Y). (5)

Proof. (i) Write 8 = 8@ B, wheref denotes the sp&, £ }-component o8 and
B the spaifyy, §}-component. Thas is null means that

(BX.Y), B(Z,W)) = (B(X,Y), B(Z,W)).
Hence, there exists a linear isomefty sparfN, &} — sparin, §} such that

B=Top. (6)
Thus, for somé < [0, 2) we may assume that
T(N) = sinfn — coshs, T (&) = coson + sinbs. @)
By (3), we have
(g, n) + (oG, §) = (g, G) = — (-, ). (8)
It follows from (6), (7), and (8) that
(@G, 1) (L— cos) = cosh(-, -) + SiNG(AL-, ). 9)
In particular, 1— cost # 0. From (6)—(9) we obtain
G _ 1_5'2(19 | 4+ AL, (10)
where | denotes the identity map. We conclude from (8)—(10) that (4) holds for
L=+ 1_5'2359 €+, G= = (sin0)+ & + cos).

(i) We make use of the following lemma from [6] or [7].

LEmMMA 9. LetB: V x V — W22 be anonull flat symmetric bilinear form with
dimkern(8) < dimV — 4. ThenW?? admits an orthogonal direct sum decom-
position into Lorentzian plane® = Wj; & W, such that theW;-componeng
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of B is nonzero but null and th&,-componenty of 8 is nonzero and flat with
dimker(y) > dimV — 2.

We have from (8) thag (X, X) # 0 for X # 0. Moreover,n — 4 > 0 by assump-
tion. By Lemma 9, at any € V, there is an orthogonal direct sum decomposition
B = Bo® y such that the kerne\ of y satisfies dimA > n — 2. Then, there exist

0, ¥ €0, 2x) and a bilinear forny: T,M x T,M — R such that

Bo = ¢(COSON + SiNOE + cosyrd + sinyrn).
Thus, forT € A we have that
(i) (ALX,T)=cos8¢(X,T),
(i) (ag(X,T),&) = —sinbp(X,T),
(i) (ASX,T) = cosy¢(X, T),
(iv) {ag(X,T),n) =sinye(X,T).

From (8), (11)(ii), and (11)(iv) we have th&k, T) = (sinf — siny )¢ (X, T).
Hence, sir® — sinyr # 0. Then (i), (iii), and (iv) of (11) yield

11)

cosf
(AL X, T) = m(x, T), 12)

G cosyr
(Ag X, T) = m(& T), 13)

_ siny
(ag(X,T),n) = m(& T). (14)

The subspaca is an eigenspace fgf andg from (2), (12), and (13). At a point
x € V3 where the principal curvature= cosd/(siné — sinyr) of f vanishes, we
derive from (8), (13), and (14) that

ag(X,T) = —(X,T)p, where p = (siny —1) " (cosys +& +sinyn), (15)
forall Te A. Then|p| =0, {p, G) =1, and (12) and (15) yield
(@ (X, T), a(Y,T)) = 0= (AL X, T)(ALY., T).
For T € A of unit length, the Gauss equations forndG give
(@G(X,Y), p) = —(ag(X. V), ag(T, T)) = —(AL X, Y)(M‘QT, T)=
Finally, letx € 3. Then (8), (13), and (14) yield
ag(X,T) = AX, T)u, where u = (1/cosd)(sind& + cosyd + sinyrn).
Since||x|| = 1, we obtain using (12) that
(@6 (X, T), a(Y, T)) = (AL X, T)(ALY,T) forall X,Y eT,M.
ChoosingT € A of unit length, the Gauss equations fpandG give
Mag(X, V), 1) = (@6 (X, V), a(T, T)) = (AL X, Y)(ALT, T) = (AL X, V).
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HenceAG Af SinceBo = cosdop (N + ), we have

ag =B — (AL, )N = (cos¢ — (AL, )N + coshy + y.

Then theN component must vanish, and (5) follows. O

We now show that (i) holds on the interit of V. It is easily seen from (4) that
1, ¢2 can be chosen to be smooth vector fields along any connected compbnent
of U1. Comparing the Codazzi equations fprandG for Af = AG yields

AV;QY = AVﬂlX forall X,YeTU. (16)

But Vi ¢1 = (Vi &1, £2)G, sinceG is parallel in the normal connection. We con-
clude from (16) thatzy, ¢2, G} is a parallel normal frame.
SetF = L,(f) = j,o f: M" — V C L"3for v eV, regarded as a map into
L"*3. Then
ar(X,Y) = (AL X, Y)ju N — (X, V)0, 17)

where the pseudo-orthonormal frafyg. N, v, F} is parallel in the normal con-
nection ofF. Define a parallel vector bundle isometry 77U — T4 U by setting
T(juxN) = &1, T(v) = &, andt(F) = G. Thenag = t o ar from (4) and (17).
By the fundamental theorem for submanifolds there exists an isomedfy.” 3,
preservingV, such thatG = A o F. By Proposition 6, there is a conformal trans-
formationv of R"*! such thag|, = v o f|,.

Now, leti/, be the interior of)s. It follows from (15) thatp is smooth on any
connected componebt of U/,. The Codazzi equation fo«tﬁ (= 0) yields

(Vi p,8)AZY = (Vyp,8)APX, (18)

where§ is a smooth unit vector field orthogonal to the Lorentzian plane bun-
dle spanned by and G. Assume that the linear functional — (Vi p, ) is
nonzero at some pointe U,, and letZ be a vector spanning the orthogonal com-
plement of its kernekK. Applying (18) toX € K andZ yieIdsAGX = 0. Hence
ag(X,Y)=—(X,Y)p+ (AGX Y)$ is flat, which |sacontrad|ct|on This proves
that p is constant ifiL"*3. Now an easy argument shows th&atU) is contained

in an affine hyperplane il"+2 orthogonal top, say,G(U) C E,. Hence there
exists an isometric immersiof: M" — R"*!such thatG = j, o f = L,(f).

We conclude from Proposition 6 thétis conformally congruent tg.

Finally, we prove that (iii) holds ot/3. LetU C U3 be an open subset whete
has constant dimension. Therandy in (5) are smooth oty. Moreover, standard
arguments (see e.g. [16]) show thatis an integrable distributiony is parallel
alongA in the normal connection, and the leaveg\tdire totally umbilic subman-
ifolds of bothR”* andIL"*+3. We denote the Riemannian connectiong4f and
LL"+3 by V andV, respectively, and consider the smooth line bungle LS — U
with fibers

¢ = sparf(VyT)g forall T e A}, where Q = A+ @ spariu}.
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Notice thatL¢ ¢ TU because. # 0. The Codazzi equation fdr L u yields
VrAZX — AZ[X, T]+ AVLET =0 forall TeA, XeTU.
Taking theJnrler product witl gives(V; T, Vx&) = 0. Since(VrT, &) = 0, we
obtain thatVx VT € TU @ spariu}. Therefore,
VxVrT = Vy(VrT + Ap) = VxVeT — AASX + (AGVrT + VA, X)p
which easily implies that
Vx(VrT)g = Vx(VrT)pr — AAGX + (AS(VrT)pr + VA, X)u.  (19)
Denote byr;: L/ — U the line bundle similarly defined as¢ and by
7: LY — LS the obvious bundle isometry. Restrictitg if necessary, so that
f|, is an embedding, the map: L/ — R"*! given by
fO=f@+¢ x=m:),

is a diffeomorphism of an open neighborhagd*! of the zero section af / onto
a tubular neighborhood of(U). A similar calculation shows that (19) also holds
for f when we replace. by N. We easily conclude using-]’:, = Afj that the map

G: L' — L3 given by
G =G +10), x=m5(),
is isometric with respect to the flat metric induced fiyTherefore, the map

Nn+l © (f

is an isometric immersion anﬁ\U =Ho f|U Moreover, by restrlctlng\l’“rl
if necessary, we may also assume thats an embedding and thai(¢) € V if
and only if¢ = 0, thatis,H(V) NV = G(U). Thus,T = G|,: U — G(U) =
H(V)NVis anisometry. Moreoverfy ot = Hto G|U = f|U and

H = (‘“; Nn+1)71: vV — Ln+3, V = f_‘(Nn+1)

JwognotT=jyoCy@)or=TIocior=1I,0 G|U = Jw OCU)(G‘U)
= jw o Cul(Lu(@)]y) = juv

hencegy o = gl O

Proof of Corollary 4.Let f: M" — R"*1 be a hypersurface such that=i o

is a Sbrana—Cartan hypersurface for some invergiom R**%. Then f has a
principal curvature. of multiplicity n — 2 everywhere, the spherical leaves corre-
spondent to. being the images biyof the relative nullity leaves of . Therefore,

all spheres containing such leaves pass through the imageftthe point at in-
finity Let 3: M" — R"*! be an isometric nowhere congruent deformation of
f. Theng is conformal tof. Assume tha§|U is conformally congruent tgf|,,

for some open subsét ¢ M"; theng]U is also conformally congruent tﬁ|U
Sinceg and f are isometric, this implies th@d andf \U are |sometr|cally con-
gruent. Therefore, any isometric nowhere congruent deformatighisfalso a
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conformal nowhere conformally congruent deformatioryofhus f is a Cartan
hypersurface.

Conversely, letf : M" — R"*! be a Cartan hypersurface such that the spheres
in R"*1 containing the spherical leaves correspondent to the principal curvature
of multiplicity n — 2 have a common poiry € R+, Leti be an inversion with
pole atPy. Thenf = i o f has a zero principal curvature of multipliciy— 2
Letg: M" — R"*! be a conformal nowhere conformally congruent deformation
of f. Theng is also a conformal nowhere conformally congruent deformation of
f. By the converse of Theorem 1 appliedfoyg is conformally congruent to an
isometric nowhere isometrically congruent deformatioryofThis proves thaff
is a Sbrana—Cartan hypersurface and also shows the last assertion. O

3. Cartan’s Classification

In this section we give our own version of Cartan’s classification obtained in [3]
by characterizing in the following result from [1] the palifg, r} that give rise to
Cartan hypersurfaces in the two interesting classes.

ProposITION 10. Let f: M" — R"*! be a hypersurface with Gauss majpand
a principal curvature, > 0 of multiplicityn — 2. Then the focal ma@ = f +rN,
r = 1/x, induces ar(isometrig immersiony : L> — R"+! such that|Vr| < 1,
and f can be locally parametrized along the unit normal bunfifeL of v by

X(@) =y —r(¥.Vr + V1= |Vr|?¢). (20)

Conversely, given a surfage: L? — R"*! and anr € C*(L?) positive whose
gradient satisfie§| Vr| < 1, the parametrized hypersurfa¢20) determined by
the pair {y, r} has, on the open subset of regular points, a nonzero principal cur-
vatureAr = 1/r of multiplicityn — 2

First, however, we briefly discuss some special classes of surfaces in the unit
Lorentzian spher8)" = {x € L : ||lx|| = 1}; we refer to [9] for further de-

tails. By a pair{e, (u, v)} we denote a surface: V2 — S{*, with Riemannian
induced metric, carrying a global systém v) of either real or complex conju-
gate coordinates. Recall that the coordinaies) beingreal conjugatemeans

that the second fundamental formggatisfies everywhere the condition

@y (B4, 0,) =0 (21)

for the coordinate vector fields. The coordinatescamaplex conjugaterhen con-
dition (21) holds for the complexified coordinate vector fields, that is, when

0y (9, 0z) = g (y, 0y) + 0t(9y, 3y) = 0. (22)
For ¢ regarded as ah™t1-valued map, (21) takes the form

Puv — Fl(pu - FZ(PU + <aua 81))‘/) = 0,
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wherel'}, I'? are the Christoffel symbols of the Levi—Civita connectihof the
metric induced otV 2 by ¢; thatis,V; 9, = I''3, +I'23,. Assume that there exists
an everywhere positive solution, other than the trivial orze 1, of the system

_ 2
e @
whose integrability condition is
A-olr2-2rir)r-ri4orirj =o. (24)
The surfacdg, (u, v)} is called offirst speciesvhen, in addition,
rt=r2=orir? (25)

that is, when (24) is trivially satisfied. It is called sécond specie it is not
of first species and henae= (I'? — 2I''1'?)/(T' — 21'''?) is the (necessarily
unique) nontrivial positive solution of (23).

When {¢, (4, v)} has complex conjugate coordinates, we define a complex-
valued connection functioRl = I'(z, 7) by V; 3; = T'd, + I'd;. Then (22) takes
the form )

Puu + Qv — ZFl(pu - 2F2(/)v + ({04, 0y) + {0y, 8v>)§0 =0,
wherel' = 'l +iI"2. In this case, the differential equation to consider is
p: +T(p—p)=0, (26)

wherep = p(z, 7) takes values in the unit circle. The surfdege (u, v)} is called
of first species when the integrability condition

Imp(l, —2I'T) =0 (27)

of (26) is trivially satisfied; that is, wheR, (= I':) = 2I'T, which is the complex
analog of (25). Itis said to be of second species when it is not of first species and
(26) has a unique solution determined by (27).

ProrosiTiON 11. For a surface of first species with re@esp., complexcon-
jugate coordinates, syste(23) (resp., (26)) has al-parameter family of local
solutions.

Proof. See [9] or [17]. O

Consider a surface = (9o, ¢1, ..., 9u12): L2 — SiT2 < L"*3 given in a
pseudo-orthonormal basis as in (1). When£ 0 everywhere, we may associate
top amapy : L2 — R and anr e C*(L?) given by

V=11 ....0u41) and r =1/gpo. (28)
Clearly,¢ can be recovered froy, r) by
¢ =r Ly, Ilyl? - r?). (29)
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LemMa 12. L2 is Riemannian if and only ify is an immersion and the gradient
V¥r of r in the metric induced by satisfies|V¥r| < L

Proof. SetA = ¢o. We have
l@ullll@ull? = (@us @u)% = 22U 12 = (s ¥0)?) — AW — At |2

Assume thaty induces a Riemannian metric. Thenis an immersion, and a
straightforward computation now yields

l@ulll@ull® = (@us @02 = XA = IV U P11 — (Y, Y0P, (30)

Hence||V¥r|| < 1 The converse follows from (30). O

Given a surface: L? — Ri contained in the upper half-space, we denote by
Phyp: Lpy, — H3(=1) the surfacey with the metric induced from the standard
hyperbolic metric orR3 .

We are now ready to state our version of Cartan’s classification.

THEOREM 13. Let f: M" — R (n > 5) be a Cartan hypersurface. Then
there exists an open dense subget M" such that one of the following holds on
any connected componefitof V.

(1) Up to a conformal transformation dR"+2, either. (a) f(U) C L? x R"~2,
whereL? c R3; or (b) f(U) C CL? x R*~3, whereCL? c R*is a cone
overL? c S3; or (c) f is a rotation hypersurface over? C RS,

(1) f is conformally ruled, that is, foliated by open subsets of codimertsion-
round spheres iiR"+%,
(111 In terms of parameterizatiof0), f is determined by a paify, r} associ-
ated by(28) to a surfacep of first species.
(IV) In terms of parameterizatiof20); f is determined by a paify, r} associ-
ated by(28)to a surfacep of second species.

Conversely, any simply connected hypersurface that can be describe@ ¥e)in
(1, (1), and(1V), or that differs by an inversion from a hypersurface aélj(a)
or (1)(b), is a Cartan hypersurface.

Moreover, all deformations are type-preserving. For hypersurfaces of ty{z9
and (1)(b), all deformations are given by isometric deformationd.éf whereas
deformations of hypersurfaces of tyf§c) are given by isometric deformations
ofL%yp. The set of deformations of a hypersurface of tpe (I11), or (IV) thatis
not of typg(l) is, respectively, parametrized by all smooth functions in an interval,
a continuoud-parameter family, or contains only one other immersion.

Proof. Let g: M" — R"*! be a conformal immersion that is nowhere confor-
mally congruent tof, and setG = L, (g). By Theorem 1, there exist an open
dense subséf = U3 C M", a smooth unit vector fielg e TGLZ/{, and a smooth
flat bilinear formy : TU x TU — (spariu})* such that (5) holds everywhere.
Furthermore A = kery is an eigenbundle of andg of rankn — 2.



Cartan’s Conformally Deformable Hypersurfaces 543

We have an orthogonal splittini/ = A @ A+ and writeX = XV + X" ac-
cordingly for anyX € TU. Recall that thesplitting tensorC of A assigns to each
T € A the endomorphisnt’; of A+ given by

CrX =—VIT.
Define¢ € T4 U by ¢ = LG + p. We have from (5) that
—1=(ag(T. T). G) = (AT, T){, G) = A{u. G)
for any unit vectorT € A. Hence||¢|| = -1, {(u, ¢) =0, and
Ar = A, — M. (31)
Differentiating¢ and taking the normal component yields
Vil —¢) =2 XMW (u—¢) forall XeTU. (32)

Extendu, ¢ to an orthonormal framgu, ¢, ¢}, and letA,, A,, A; also denote the
restrictions of the shape operatorsAd. We get from (32) that

Vit =oX)(u—2¢) and Vgi=-2AXMup—oX)L, (33)

wherew (X) = (Vi¢, u). Moreover, we easily conclude thaand¢ are parallel
alongA.
The Codazzi equation fof := A{V yields

ViA = (A—ACr. (34)
Similarly, the Codazzi equation fot; gives
ViA; = A;Cr. (35)
It follows from (34) and (35) that
(A—ADCr =C;(A—1l) and A;Cr = CjA;, (36)

whereC; stands for the adjoint operator 6f.

LEmMA 14.  The endomorphism := (A — Al)~!A; 1 At — A* satisfies
(i) detD = 1;

(ii) [D, Cr] = 0; and

(i) VID=0forTeA.

Proof. (i) Flatness ofy implies that detd; = detA; = det(A — Al).
(ii) Using (36), we have

(A= A)DCr = A;Cr = CjA; = C;(A— A1)D = (A — A1)Cr D.
(iii) Equation (34) yieldS A — A1)C7 D = (VI A)D, whereas (35) gives
(A= A)DCr = A;Cr = V}A; = V(A — A1)D = V}(AD) — AV} D.
Hence,(A — A)[D, C7r] = (A — Al )V{ZD, and the proof follows from (ii). O
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Lemma 15. For any Cartan hypersurfacelim cokerC < 2. Moreover, if equal-
ity holds, then eitheCr is symmetric for alll € A or there existsS e cokerC
such thatCg = ul.

Proof. The first assertion is an immediate consequence of Lemma 14(ii). When

equality holds, by dimension reasons we know there exisfssarokerC such that

C; is symmetric. The last assertion then follows easily using again Lemma 14(ii).
O

Let My C U be the interior of the subset in which there exiBis A of unit length

such that coke€ = spar{T} andC; = ul. This is clearly equivalent te\* be-

ing a totally umbilic distribution. We conclude from the main result in [10] tfiat

is as in(I) of the theorem on each connected component.

Now let M; C U be the interior of the set for which dim kéris locally con-
stant and there exists ahe cokerC such thatCy is not symmetric and has one
eigenvalue of multiplicity 2. It follows from Lemma 15 that there exist a smooth
vector fieldS e cokerC and a unique (up to signs) orthonormal fraf@e W} in
At with respect to which

CF[Z 2} b£0. 37)
Since(A — A1)Cy is symmetric by (34), we have
al(A—=2DW, Z) = (A= 1D)CsW, Z) = (W, (A — AI)CsZ)

=a((A—-ADW, Z) +b((A - ADHW, W),
which implies that

(AW, W) = A. (38)
A similar argument using symmetry @f; Cs shows that
(AW, W) = 0. (39)
We conclude from (31), (38), and (39) that there exist smooth functioss6
such that
A;:[; ’(ﬂ AZZ[“ZG ’g} (40)

We claim that the distributiom — spafW(x)} & A(x) is totally umbilical.
Comparing the Codazzi equations tof, = A, = Afor f andG, we have

AV;MY = AVWX forall X,Y eTU. (42)
Equations (33) and (41) yield
ro (W) + W) =0, Aw(Z)+Z(0) + 687w () = 0. (42)

A straightforward computation using (33) and (42) shows that the Codazzi equa-
tion for A;_, is equivalent to

(VwT, Z) =0= (VW Z) (43)
and
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(VrT, Z) = =W = (VwW, Z) (44)
and that
W®) = (VzZ,W)0 and T(O) = (VzZ, T)0 (45)

forall T € A. The claim follows from (43) and (44). Moreover, the images by
f of the leaves are also totally umbilical Ri"+* by (38), sof|M1 is conformally
ruled.

Consider now the open subseft, c U/ for which there exists a§ € A such
thatCs has two distinct real eigenvalues. By (i) and (ii) of Lemma 14, there exists
a unigue (up to signs) framig, Y»} of unit eigenvectors o€, forall T € A,
with respect to whictD has the form

6 0
D:[O 1/9}’ 0 #£0,+L1 (46)

Set¥ = f + AIN. We need the following result.

LemMma 16. (i) There are smooth functions,, u, such that the framéXx; =
w1Y1, Xo = uaYo} satisfies

(@ Vr¥,X; =0,1<j <2
(b) [X1, X2] € A.

(if) The following equations hold:

Vi, A0, X5 + 07 XMW, Xy = Vi, A0W, X1 — 0X1(M)W, X2, (47)
Xo(A0X1(1)) — Xa((62) " X2(1)) — 220711 — 67) (W, X1, W, X) = 0. (48)
Proof. (i) We have

U X; = —AHA - ADX; + X;(AHN. (49)
Using the Codazzi equation fgtyields
Vi, X; = = YA — AD[T, X;] + [T, X;J(*™HN.

Therefore, (i)(a) is equivalentt[, T] e A 1< j < 2)forall T € A. Since

V1Y, = 0(1 < j < 2) by Lemma14(iii), in order to prove Lemma (i) it suffices

to prescribe each; arbitrarily along an integral curvg of ¥;, and then extend
it along each integral curve df (i # j) and each geodesic & throughy as a

solution of the linear differential equations of first order

T(wj) +bjn; =0, Yi(uj) +rju; =0,

whereCrY; = b;Y; and Y, Yo] + ri¥1 —raY2 € A.
(if) We obtain from

(A;Y1, Ya) = (Al — A)DY1, Yo) = 0((Al — A)Y1, Yo) = 0%(A; Y1, Y)
that(Az Y3, Y2) = 0 and that
(A = Al)Yy, Ys) = 0. (50)
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On the other hand, equations (33) and (41) yield
ro(X1) = —0X1(A)  and Abw(X2) = —Xo(h). (51)
Using (33), (i)(b), and (51), the Codazzi equation fgrgives
Vi, (A — A1)07X5 + 0X1(M) X2 = Vx,(A — A1)0X1 + 07X o(0) X1,
which can be written using (50) as
Vi (A = A1D07 X5 — 07H(A — A X1, (A — ADX2)N 4+ 0X1(1) X2
= Vy,(A — 11)0X1 — 0((A — A1) X1, (A — ADX2)N + 07X X1, (52)
Using (49), itis easily seen that (52) is equivalent to
(X20710X1(0) — X1((01) " X2(1)) — 22071 — 02) (W, X1, W, Xo)) N
= Vg, A0, X5 + 07X (M)W, X1 — Vi, A0W, Xq — 0X1(A) W, Xo.  (53)

A straightforward computation using (33) and (51) shows that the Ricci equa-
tion (R (X1, Xo)u, &) = ([Au, Ag] X1, X2) is equivalent to the vanishing of the
left-hand side of (53). O

Letw: M, — L2 be the quotient map onto the space of leavea 0By Propo-
sition 10, the focal magr induces an immersiotr: L2 — R"*!sothaty o =

W. By Lemma B(i), there exists a coordinate syst&m, u») on L? such that
Vi, = W, X;. It follows from Lemma 14(iii) that7'(9) = O for anyT € A;
henced can be regarded as a function bA Then, equations (47) and (48) can
be rewritten as

Vi A0 00y + hiip0 100y = Vi, M08y, + 1y 004, (54)
and
Mg = Mg Ay + 2By 81,)0 2L — 02) — A(hy By + 0 *Aiy0,,) = 0. (55)
It follows easily from (54) that
alﬁ(aula auz) =0 (56)
and

{ Oy = 01— 02)(I%+ 1), (57)

0, = 07X 1 — 02 (T + A7 0,,).
Then (55) takes the form
Mugis — Ty — T2, — 30 R A, + 238y, 8,,) = 0. (58)

Definep: L2 — Si+2 ¢ "3 by (29), where- = 172 It follows from Propo-
sition 10 and Lemma 12 that the metric inducedgip Riemannian. A straight-
forward computation using (57) and (58) yields

Guruz = (T4 AN 0ug + (T2 + A0 0y = (Burs )9 (59)
Hence, the coordinatés, uy) are real-conjugate fas, and
M=rt+xh, T?=r24+14%,
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are the Christoffel symbols of the induced metric. We conclude from (57} that
62 satisfies (23) fof' andI"2. Thus,y is a surface of first or second species along
any connected component of an open dense subget of

Finally, letM3 C U be the open subset for which there exists A such thatCs
has two complex conjugate eigenvalues. One can verify using similar arguments
as in the real case that equations (54) and (55) now take the form

Vo, Apdz + 4258, = Vo Apd, + A, pd: (60)
and
Mgz = dohz + 2402, 02)) (5 — p) + 2 (hzpe — Aopz) = 0. (61)
It follows from (60) that
@y(d:,0:) =0 and p: = (5 — p)(I' + A 22). (62)
Then (61) becomes
Az —Ta, —Th: =30 h: 4+2%0.,0:) = 0. (63)
We can now easily check using (63) that the surfacgven by (29) satisfies
gz = (T + XA + (F + 1)z — (02, p2)e. (64)

It follows from (62) and (64) thap is a surface of first or second species along
any connected component of an open dense subgét dffe have shown that the
statement of the theorem holds Br= |2, M;.

We now prove the converse. First observe that the distributions associated to
the principal curvatures of multiplicity — 2 of a Cartan hypersurfagé: M" —
R+ and any of its conformal deformatiogs M" — R"*! coincide. Then, it is
easily seen that the splitting tensorsfofindg are related by

Cs =cl —@W/2)Tdog ), (65)

whereu is the conformal factor. By the proof of the direct statement, the type of
f is determined by the structure of its splitting tensor. Since the splitting tensors
of f andg have the same structure by (65), it follows tifaandg are necessarily
of the same type.

Let f: M" — R""1be asin parts (1)(a) or (b). It was shown in [9] that isomet-
ric deformations off are given by isometric deformations bf. The assertion on
the set of conformal deformations g¢fis then a consequence of Corollary 4.

It follows from these considerations that any conformal deformatiofia Car-
tan hypersurfacg as in part (I)(c) must also be as in part (1)(c). Consider the
isometric embeddingx j: H3xS,_» — L4xR*t = L"*3 wherei : H® — L*
andj: S"~2 — R""! are the standard inclusions. Choose a pseudo-orthonormal
basisB = {ey, ..., e,43} of L"*3 such that

ledl = 0= lleall, (e1,eq) =—1/2, and (ej,e;) =4 if i #1 4

It is easily seen that x j)(H® x S"~?) c V\ R,,, wherew = —2e,4. Hence,
i x j induces a conformal diffeomorphisfy, (i x j): H*x S"~? — R"*~, whose
inverse is easily checked to be given with resped toy
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n+1 -1/2 n+1
2 2
Oag, ..., an41) = (Z@) (Lal,az, E aj,aa,.--,an+3>-
i=1

j=3
Sincef is as in part (1)(c), it can be parametrized py L? x S"~2 — R"+%,

J(x, 1) = (92(x), 92(x), 93(x) @ (1)),

whereyp = (¢1, @2, p3) parametrizes? in Ri andg¢ parametrizes the unit sphere.
Then®o f: L? x S"? - H3 x S" 2isgiven by® o f = (o ¢) x |, where
¢®: R3 — H?3 c L* given by

-1 2, .2, .2
D(x1, x2, x3) = x3°(1, x1, X2, X{ + x5 +x3)

is an isometry between the half-space and hyperboloidal modds oDenote

by v: L? — Ri the profile ofg. Then(® o ¢) x | and (® o ¥) x | are confor-

mal and hence isometric because they agree on the second factor. It follows that
® o p and® o y are isometric; that ispnyp andyrny, are isometric.

We now show that the set of conformal deformations of a simply connected con-
formally ruled hypersurface is parametrized by the set of smooth functions in an
interval. Let{Z, W} be an orthonormal frame @ with Z orthogonal to the rul-
ings. Equations (38) and (43) hold becayses conformally ruled. Letr, 8 be
smooth functions such that

A |:oz + A /3:| (66)

B A

with respect tq Z, W}. Then (44) follows from the Codazzi equation and the fact
that f is conformally ruled.

We need only prove that a functiérsatisfying (45) gives rise to a conformal de-
formation of f, since each such function is completely determined once an initial
condition is chosen along a fixed orthogonal trajectory to the rulings. Consider the
trivial vector bundle€ = M" x I3, wherelL® = sparfu, ¢, ¢} is endowed with the
Lorentzian inner product that makgs, ¢, ¢} into an orthonormal frame such that
Izl = —1. Next, define a 1-forna by requiringw (Z) andw (W) to be given by
(42) andw = 0 onA. Finally, endow€ with the connectiorv’ determined by (33),
and definer € C*°(Hom(TM x TM, £)) by a = (A-, -)u — (A, )¢ + (Az-, 3¢,
whereA; and A; are determined by (40). We claim thid, V', ) satisfies the
Gauss, Codazzi, and Ricci equations for an isometric immersiorIth*t%.

The Gauss equation is trivial. Using the Codazzi equatiorfer A{v, the Co-
dazzi equation fod = A, reduces to (41), which follows easily using (33) and
(42). To verify the Codazzi equation fdr;, it suffices to do the same for,_, =
Al. But the latter is trivially satisfied by (33). Similarly, the Codazzi equation for
Ag holds if and only if the same is true fer;_,. As before, this is equivalent to
(43), (44), and (45).

It remains to verify the Ricci equations. An easy calculation using (33) shows
that the left-hand side afR(Z, W)u, ¢) = ([A,, A;]Z, W) vanishes, and the
same holds for the right-hand side becadsmdA, commute. On the other hand,
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a long but straightforward computation making use of (33), (40), (42), (44), and
(45) shows that the Ricci equations for ¢ and¢, ¢ reduce to

W(B*W(L)) + A8 = 0.

This equality follows by using (43) and (44) to compute the left-hand side of the
Gauss equatiotR(W, T)T, Z) = A8, which concludes the proof of the claim.

By the fundamental theorem of submanifolds,V’, anda are (respectively)
the normal bundle, normal connection, and second fundamental form of an iso-
metric immersionF,: M" — L"*3. Setk = (1/A)(¢ — w). Thenk is a null
vector field satisfyingd, = (1/A2)(A; — A,) = |. Moreover « is parallel with re-
spect toV’ by (33). This implies that, (M") C V; thus, Fy induces a conformal
immersionf,: M" — R"*1, as we wished.

Finally, assume thaf is of type(lll) or (1V). We argue for thereal case; the
proof for the complex case is similar. Assume tlfas given in terms of param-
eterization (20) by a paify, r} associated by (28) to a surface of first or second
species endowed with real conjugate coordinates. We show that each positive so-
lution t of (23) gives rise to a conformal deformation gf and the proof then
follows from Proposition 11.

Setr = #2. Going backwards in the proof of the direct statement shows that the
functionx = r~* satisfies (54) and (55). Defining vector fields X, by 7. X; =
9/0u;, it follows thatWw, X; = v,d/du; and then (54) and (55) yield (53), which
is equivalent to (52). Equality of th¥-components implies thaf;, X, are con-
jugate directions fod — Al (i.e., ((A — A1) X3, X») = 0). Define D by (46) with
respect to this frame. Consider the trivial vector bunglle M" x L3, where
L3 = sparu, ¢, ¢} is endowed with the Lorentzian inner product that makes
{1, ¢, ¢} into an orthonormal frame with | = —1. Define a 1-formw by requir-
ing w(X1), w(X>7) to be given by (51) and = 0 on A. Finally, endow€ with the
connectionV’ determined by (33), and definee C*°(Hom(TM x TM, £)) by
o= (A, ) —(Ag, ) +(Az-, N, whereA, andA; are determined by (31) and
A; = Ag o D. We claim that(€, V', «) satisfies the Gauss, Codazzi, and Ricci
equations for an isometric immersion iritg*3.

The Gauss equation is trivial. Using the Codazzi equatiorfer A-If,, the Co-
dazzi equation fo = A, reduces to (41), which follows easily using (33) and
(51). To verify the Codazzi equation fdr, it suffices to do the same for,_, =
Al. But the latter is also trivially satisfied by (33) and (51). The Codazzi equa-
tion for A; follows by taking tangential components in (52). An easy calculation
using (33), Lemmad(i)(b), and (51) showshat the left-hand side of the Ricci
equation(R+(Z, W), ¢) = ([A,, A]Z, W) vanishes, and the same holds for
the right-hand side sincé andA, commute. Finally, the Ricci equations far ¢
and¢, ¢ are easily seen to be equivalent to (55). This proves the claim. The same
argument as used in the ruled case completes the proof. O

RemARrks 17. (i) In Cartan’s terminology, a hypersurface of tyiH) is com-
pletely determined by a set af + 3 homogeneous coordinate functiom$ =
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a’(u,v), 0 < j < n+ 2, all of which satisfy forM = M (u, v) the (same) differ-
ential equation of type either

ozj +Mal =0, 0<j<n+2,

and the conditiory_""}(e/)? — a®a™? = U + V, whereU = U(u) andV =
V(v) are arbitrary functlons of one variable, or

J tal +Ma) =0, 0<j<n+2

and the condnng"“(oz/)2 ala"t? = ¢, where¢ satisfiesp,, + ¢, = 0.
An argument S|m|Iar to the one in [9, Rem. 4] shows that Cartan’s character-
ization is equivalent to ours. It turns out that the deformable hypersurface is
given by (20) for the paify, r} defined asx®y = (al, ..., 2" anda®r =
(Z"Jrl(aj)z aoan+z)*l/2.

(||) Explicit examples of deformable hypersurfaces of cld$p can becon-
structed by applying the procedure of Theorem 13 to the surfaces of first species
given by [9, Prop. 15].

4. Further Results

We first show that the parametric classification of the Sbrana—Cartan hypersur-
faces (due to Sbrana[17] and Cartan [3]) can be derived from Theorem 13 together
with Corollary 4, but only for dimension > 5.

THEOREM 18 [9]. Let f: M" — R"* (n > 3) be a Sbrana—Cartan hypersur-
face. Then there is an open dense subset M" such that one of the following
holds on any connected componéhof /.

() (@) f(U) c L? x R""? whereL? is a surface inR3, or
(b) f(U) c CL? x R"~3whereCL? is a cone over a surface? c S% ¢
R4,
(I1) fisruled, thatis, foliated by open subsets of codimengiaffine subspaces
in R+,
(I11) The Gaussimage: V2 — S" c R"*1of f is a surface of first species, and
f has a Gauss parameterization

W(x, w) = (yv + v.grady)(x) + w (67)

along the normal bundle of, wherey satisfies the same differential equa-
tion that any one of the coordinate functionswtloes.

(IV) The Gauss image of f is a surface of second species afidhas a Gauss
parameterizatior{67),wherey is as in(l11).

Conversely, any simply connected hypersurface that can be describe@ gs in
(1, (1), or (V) is Sbrana—Cartan. Moreover, any deformation of a hypersur-
face of typg(l) is given by a deformation of the surfaéé, whereas the set of
deformations of a hypersurface of tyé), (111), or (IV) that is not of typ€l)
is, respectively, parametrized by all smooth functions in an interval, a continuous
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1-parameter family, or contains only one other immersion. In all cases, deforma-
tions are always of the same type.

Proofforn > 5. Setf =i o f, wherei is an inversion irR”*1 whose pole, which

we may assume to be the origin, does not lief@”). By Corollary 4, f is a
Cartan hypersurface whose spherical leaves, correspondent to the principal curva-
ture of multiplicityn — 2, are open subsets of sphere®ifi! through the origin.

By Theorem 13, for any connected compon&nof an open dense subgét C

M", f|U is of one of the types (1) to (1V). Class (I)(c) is ruled out because the
spheres containing the spherical leaves have a common point. Moreoyés, if
conformally congruent to a hypersurface in one of the classes (1)(a) or (I)(b), then
f|U must be in the corresponding isometric congruence class.

_Now assume that ]U is in one of the classd$ll) or (IV) in Theorem 13. Then

f ’ p 1S given, in terms of parameterization (20), by a fégir r} associated by (28)

to a surfacep: L? — Sf“ c L"*+3 of first or second species, respectively. We
consider the case whetk has real conjugate coordinates; the case of complex
conjugate coordinates is similar. We have that (1, v, ||¥|? — r?), and

r € C®(L?) is a solution of

r Hess (9, 8,) + ruyry, — (0., 8,) = 0. (68)

Since the spherical leaves ﬁﬁU are open subsets of sphere®iti through the
origin, there exists a vector fiejd € 7;- L of length

Il = r2@— | Vr)?) (69)
such that
Y —rVr4+u=0. (70)

We obtain from (70) thatyr, v,) — rr, = 0 = (¥, ) — rr,. Hence,||y||? — r?

is a constant, which by (69) and (70) must vanish. Hence there existda—

S+t ¢ R**! such thaty = rv. It is now easy to verify that ande are isomet-

ric and have the same conjugate coordinates. In particulara surface of first

or second species. A long but straightforward computation now shows that, after
applying the inversion, equation (20) takes the form (67) with= r—. Finally,

it is easy to check that satisfies (68) with respect to the metric inducedybif

and only ify = r~! satisfies the same differential equation that any one of the
coordinate functions of does with respect to the metric inducedigynamely,

Hessy (9, 3,) + (3., 9,)y = 0. (72)

Therefore,f|, =i o f|, is as in partglll) or (IV) in the statement.

Going backwards in the preceding argument shows thaisfas in partg111)
or (IV) in the statement and ifis an inversion whose pole does not lie V"),
thenf =i o f isin one of the classds$ll) or (IV) in Theorem 13. Using this, the
converse follows immediately from Theorem 13 and Corollary 4. O

Now we recall from [15] the possible pointwise structures of the second funda-
mental form of an isometric immersidid: V ¢ R**! — L"+3,
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LEmMA 19. At anyx € V one of the following possibilities holds

(i) there exist a null vector € TV and a symmetric bilinear formh on 7.V
such that
ap(X,Y)=h(X,Y)v;

(i) there exist a vectof € 'V with ||&]| = £1and a symmetric bilinear form
h onT,V of rank 1 such that

ag(X,Y) =h(X,Y)E;

(i) vi(x) =n—1and there are base¥;, X, of A}, andg, n of T;'V such that
(@) au (X1, X1) =&, ay (X1, X2) = n, anday (X2, X2) =0,
(b) ap (X1, X1) =&, an (X1, X2) =0, anday (X2, X2) =1,
(€) ay (X1, X1) =&, ay (X1, X2) = n, anday (X2, X2) = —&,
whereg, n is pseudo-orthonormal in caga) and orthonormal otherwise.

The next result characterizes isometric immersighsV ¢ R**! — [L"+3
whose second fundamental forms have one of the structures (i), (ii), or (iii)(a)
in Lemma 19.

ProrosiTioN 20. With the notation from Lemma 19, we have

(a) ap is everywhere as ifi) if and only if H is of trivial type

(b) ay is everywhere as ifii) if and only if H is a compositiord = joi, where
i is an isometric immersion o¥ into an open subse¥ of either R"*+2 or
L"*+2, j is an isometric immersion oV into "2, and eitheri or j is totally
geodesi¢

(c) ap is everywhere as ifiii)(a) if and only if H is ruled.

Proof. (a) Letv be a smooth null vector field arida smooth symmetric bilinear
form such that
ay(X,Y) = h(X, Y)v.

Differentiating (v, v) = 0, we getVyv = w(X)v for some 1-formw. The Ricci
equation yieldslw = 0 and thusy = dp locally for someo € C*° (V). It follows
thate; = e?v is constant ifl.”+3, so H(V) is contained in an affine degenerate
hyperplane of."+2 orthogonal tae;. Therefore,H is of trivial type by Proposi-
tion 7. The converse is trivial.

(b) This statement follows from [12, Thm. 1], which can easily be checked to
hold also for isometric immersions into Lorentzian space.

(c) Letg, n be a smooth pseudo-orthonormal framel'dfV, and letX;, X, be
smooth unit vector fields ol spanningA* such that

ag(Xy, X1) =&, ap(X1, X2) =1, and ay(Xz, X) =0.

We need only show that the distributidh = Ay @ spariX,} is totally geo-
desic. Taking thé-component of the Codazzi equation

(Vzan)(X,Y) = (Vyap)(Z,Y) (72)
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applied toZ = X; andX = Y = X, givesI'y, = 0, where thel'} are defined by
Vy, Xj = ZF,.’;Xk 1<, j, k <2). Hence,Vyx, X5 € D. On the other hand, tak-
ing then-component of (72) applied td € Ay andX = Y = X; yields that the
X;-components andg of Vx,Z andV; X, (respectively) are related ly= 28,
whereas taking the&-component of (72) appliedt6 € Ay, X = X5, andY = X3
givesa = B. Thereforew = 8 = 0, and we conclude thafy,Z, V; X, € D. O

Notice that if the second fundamental fosrg of an isometric immersiofl : V C
R*+! — L"*+3 s as in (iii)(c) of Lemma 19 at some pointe M", thenZ =
X1+ iX, andZ = X; — iX, form a complex conjugate diagonalizing basis for
ay(x). We call H of real (resp.,comple) type if ay is everywhere as in (iii)(b)
(resp., (iii)(c)). The easiest way to construct isometric immersions of real type is
through acomposition By that we mean composing two flat hypersurfaces, where
the first one lies in eitheR"** or L"*1. We say accordingly thall is of first or
second composition typ@®bserve that this construction can be done parametri-
cally because any flat hypersurface can be locally given by means of the Gauss
parameterization (see [11]). Many isometric immersions of real type that are not
of composition type can be obtained by a parametric construction similar to the
one given in the last section of [8].

If oy is everywhere as in (i) or (iii)(a) of Lemma 19, then it follows immedi-
ately from parts (ii) and (iii) of Proposition 20 th#f; is, respectively, conformally
flat and conformally ruled. On the other hand, we have the following result.

ProposITION 21. Let H: V ¢ R*t1 — LL"t3 pe as in Theorem 1. Then the fol-
lowing statements hold

(i) fu is arotation hypersurface over a surfaté c R3ifand only if H(V) C
N? x R"1, whereN? is a surface inlL*;

(i) fy is of type(l) but not a rotation hypersurface over a surfaté c R3 if
and only if H(V) c N2 x R"2, whereN?3 is the cone over a surface in a
totally umbilical hypersurface of.?;

(iii) fy is a Cartan hypersurface of real or complex type if and onlyfifis, re-
spectively, of real or complex type.

Proof. Let C andC denote the splitting tensors associated (respectively) to the
relative nullity distributionA z of H and to the eigenbundl& of fy correspon-
dent to the principal curvature of multiplicity — 2. Since the spherical leaves
of A are the intersections of the leavesff with the light cone, it follows that
Ap = At and

Cr=Cr forall TeA. (73)

In particular,éT is identically zero for alll € A or there existTy € A and a
smooth functioru such thaCy = u(T, To)l for all T € A if and only if the same
holds forCr. This is equivalent to saying that the distributiay; is totally geo-
desic or totally umbilical if and only if the same holds far-. The assertions in
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(i) and (ii) now follow from the main theorem of [10], which is also valid for iso-
metric immersions into Lorentzian space. The statementin (iii) follows from (73)
and

any(CrX,Y) =ay(X,CrY) forall X,YeA}, (74)
which is an easy consequence of the Codazzi equation. O

Let H;: U; ¢ R — R"™2 (1 < i < 2) be isometric embeddings that are
free of totally geodesic points. Assume thé&t and H, are ingeneral position

that is, assume their Gauss mapsn, satisfy 0 < (11, n2) < 1 alongM" =
Hy(Uy) N Ha(N™Y and that the relative nullity spaces Bf and H, are transver-

sal at any point od". Here and in the following, byZ;* we mean the inverse

of the mapH; : U; — H;(U). Define fy,: M" — R by fy, = HY .. It

was shown in [9] thatfy, and fy, are, generically, isometric nowhere congru-
ent Sbrana—Cartan hypersurfaces that admit no further isometric deformations.
Moreover, an explicit parameterization for the hypersurfaces obtained by this con-
struction was provided.

The procedure just described can be adapted to construct Cartan hypersurfaces.
Let H;: U c R**! — R"*2 be an isometric embedding that is free of totally geo-
desic points and leH,: N"*1 — R”"*2 be a conformally flat hypersurface free
of umbilic points. We assume that"+! is globally conformal to an open sub-
setV ¢ R"*! by a conformal diffeomorphisnd: N"*1 — V. Assume thatd;
and H, are ingeneral positionthat is, the Gauss maps, n, of Hi, H, (respec-
tively) satisfy O< (1, n2) < 1alongM” = Hy(U) N H>(N"*1), and the relative
nullity leaves ofH; and the spherical leaves of the eigenbundlé&/gtorrespon-
dent to the principal curvature with multiplicity are transversal at any point of
M". Then, we may produce a pdify,, fu,) of conformalimmersions a¥/” into
R"+1 by letting fp,: M" — R"*! be the isometric immersiofy, = H; |, and
setting fr, = ® o H; .

We say that a paitf, g), wheref : M" — R"*lisahypersurface angd M" —

R+ a conformal deformation of, is of first intersection typé there are isomet-
ric embeddingdd;: U ¢ R"*! — R"*2andH,: N"*! — R"*+? as before and an
isometryt: M" — Hy(U) N Hy(N"*1) such thatf = fy, ot andg = fu, o 7.
We call the pair( f, g) of second intersection tygeR”*2 is replaced byL"*2 in
the construction.

THEOREM 22. LetH:V C R**! — L"*3 be as in Theorem 1. Suppose further
that H is of first or second composition type. Then the @ggir, gy ) is of first or
second intersection type, respectively.

Conversely, if a hypersurfacg: M" — R"*! and a conformal deformation
g: M" — R"*!of f form a pair of first or second intersection type, then there
exist an isometric embeddirg: V ¢ R**? — L"*+3 as in Theorem 1 of first or
second composition tygeespectivelyand anisometry : M" — H(V)NV such
that f = fgorandg =gy o.
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Proof. AssumeH = K o Hy, whereH;: V — U c R"™2 andK: U — L"t3
are isometric embeddings. SEt*! = K(U) NV and leti: N*** — V denote
the inclusion map. Restricting if necessary, we may assume that'NR,, =
@ for somew € V. ThenC, (i) is a conformal diffeomorphism a¥"+! onto an
open subset oR”*%. Hence,N"*! is conformally flat and admits an isometric
embeddingd, = K7Y,,..: N"*t — U C R"™*2, SetM" = H(V) NV, M" =

Hy(M™) = Hy(V) N H(N"™Y), andt = Hp|,,,: M" — M". Then
fmot=Hi oK™, =HY,,=fu

and
frz 0t = (Cw(@) o HyY ) © Hal o = Cos(@)] 1y = Cu(i],,n) = 8-

Conversely, assume that there exist a conformally flat manifottf that ad-
mits a global conformal diffeomorphiss onto an open subset Bf'*%, isometric
embedding#: V ¢ R — R"*2 andH,: N"t! — R"*2in general position,
and an isometry;: M" — Hy(V) N Ha(N™Y) such thatf = fy, o 1y andg =
fu, o T1. By [8, Thm. 2.1], there exist an isometric embeddiig W C R**2 —
LL"*3 of an open subsé¥ > H,(N"+1) and an isometry,: Nt — K(W)NV
such thatd, = K 1o 15, and® = C,,(t2) for somew € V. We can assume that
Hi(V)C WandsetH = K o Hy, t = K o1y, andM" = H(V)NV. Then

fHO‘L'=H_1o7:=H{10K_1or:leorlzf
and
gHO‘L':Cw(i)OKO‘L'l:Cw(‘tg)O(‘EgloK)oflz®0H510r1=fH2011:g,

and this concludes the proof. O

Finally, we show that the class of conformally deformable hypersurfaces of inter-
section type is invariant under conformal deformations.

PrOPOSITION 23. LetH: V c R**! — L"+3 pe an isometric immersion of com-
position type and lef: M" := H(V) NV — R"*! be a conformal deformation
of 5. Then there is an isometric immersion of composition #pe/ c R*** —
LL"+3 such thatf = f;.

We need the following result.

LEMMA 24. LetH: V c R"t! — L"*3 pe an isometric immersion of real type.
Let &, n be an orthonormal normal frame off as in Lemma 19(iii)(b) and set
A = kerA; andA, = kerA,. ThenH is locally of composition type if and only
if either A; or A, is totally geodesic irV.

Proof. Define a 1-formw on V by w(X) = (Vg&, n). We have from [12] that/
is of composition type if and only if either ker C ker A or kerw C kerA4,,. We
show that ketv C kerA; if and only if A, is totally geodesic irV. In fact, let
X,Y e TV be unit length eigenvectors df; andA, (respectively) correspondent
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to the nonzero principal curvature; that ;X = AX andA,Y = Y, where
A, u # 0. The Codazzi equation gives

w(VsS' Yy = a(S", X)(w(Y)(S, X) —w(S)(Y, X)) forall S,S €A,

and the proof follows easily. O

Proof of Proposition 23As before, le andC denote the splitting tensors associ-
ated (respectively) to the relative nullity distributian, of H and to the eigenbun-
dle A of fy correspondent to the principal curvature of multiplioity- 2. With
the notation of Lemma 24, by (74) we have thatC; = C3A; andA,Cr =
CiA, forany T € Ay. It follows that the vectorsX, Y are eigenvectors of ;
for any T € Ay. By (73), the same holds far; for any T € A. In particular,
the unit vectory* orthogonal to¥ in A+, is an eigenvector of 7 for any 7 € A.
Using thatV}'Y = 0 and(V}. T, Y) = —(CrY*, Y) = 0, we conclude that,, =

A @ spar{Y*} is totally geodesic if and only ¥", Y+ = 0, which is an intrinsic
condition, and the proof follows. O
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