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On Cartan’s Conformally
Deformable Hypersurfaces

Marcos Dajczer & Ruy Tojeiro

Starting in1916, E.Cartan devoted five years to the study of isometric, conformal,
and projective deformations of submanifolds by the use of the method of moving
frames. In the first of a series of papers ([2]; see also [9]), he locally classified
the hypersurfacesMn (n ≥ 3) in flat Euclidean spaceRn+1 that are isometrically
deformable. Shortly after, he followed with a long and more difficult paper [3]
where he classified conformally deformable Euclidean hypersurfaces of dimen-
sionn ≥ 5. The special casesn = 4,3 were subsequently treated by Cartan in [4]
and [5]. In all cases, it turns out that hypersurfaces are generically conformally
rigid.

Quite similarly to the isometric case, conformally deformable hypersurfaces
of dimensionn ≥ 5, other than the conformally flat ones, can be separated into
four classes: surface-like, conformally ruled, those having precisely a continuous
1-parameter family of deformations, and those that admit only one deformation.
Cartan’s main result is a parametric description of the hypersurfaces in the last two
classes as envelopes of 2-parameter families of spheres determined by a certain
partial differential equation together with an additional condition.

Our first and main achievement is a nonparametric classification of all confor-
mally deformable Euclidean hypersurfaces of dimensionn ≥ 5 by means of a
rather simple geometric construction. Roughly speaking, we show that any hyper-
surfaceMn inRn+1(n ≥ 5) that admits a conformal deformatioñMn can be locally
characterized as the intersectionMn = Nn+1 ∩ V of a flat (n + 1)-dimensional
Riemannian submanifold of the standard flat Lorentzian spaceLn+3 with the light
coneV of Ln+3. Moreover,M̃n is obtained by projectingMn onto the standard
model ofRn+1 as an embedded hypersurface ofV. In addition, we characterize
how the conformally deformable hypersurfaces that are conformally congruent to
isometrically deformable ones can be produced by the procedure just described.
They are the ones obtained from the flat Riemannian submanifolds whose rela-
tive nullity leaves are open subsets of affine subspaces inLn+3 with a common
point inV.

For reasons we can only guess (perhaps uncertainty about the very existence
of examples), Cartan’s statement in the introduction of [3] completely ignores the
discrete last class (although the possibility of its existence arises in his proof; see
Sec. 41). This raises the question of whether the discrete class is nonempty. The
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similar problem for the isometric case was considered in [9], where many hyper-
surfaces admitting only one isometric deformation were explicitly described. It
follows from our main result that such hypersurfaces admit no further conformal
deformations, thus giving a positive answer to the question.

We continue the paper with our own version of Cartan’s classification. Our re-
sult provides a parametric description of conformally deformable hypersurfaces
in the spirit of the one given by Sbrana [17] for the isometric case. In particular,
this allows us to produce explicit examples admitting 1-parameter families of de-
formations. A classification of the Euclidean hypersurfaces that admit conformal
deformations preserving the Gauss map has been given in [13].

Further results are given in the last section. First, we derive the Sbrana–Cartan
classification of isometrically deformable hypersurfaces from our main results.
Then, we characterize the flat Riemannian submanifolds of Lorentzian space that
give rise to the different types of conformally deformable hypersurfaces in Cartan’s
classification. Finally, we show that then-dimensional conformally deformable
hypersurfaces obtained from flat Riemannian submanifolds that are compositions
of flat hypersurfaces are, precisely, the ones that arise as intersections between flat
and conformally flat hypersurfaces in eitherRn+2 or Ln+2. Moreover, we prove
that this last class is invariant under conformal deformations.

1. The Nonparametric Classification

In the standard flat Lorentzian spaceLn+3 with inner product

〈X, Y 〉 = −x1y1+ x2y2 + · · · + xn+3yn+3,

we consider its upper light cone

V = {X ∈Ln+3 : 〈X,X〉 = 0, x1 > 0}
endowed with the induced degenerate metric. The intersectionEw = Hw∩Vwith
the affine hyperplane

Hw = {X ∈Ln+3 : 〈X,w〉 = 1}
that is orthogonal tow ∈ V gives rise to thestandard modelof the (n + 1)-
dimensional Euclidean space into the light coneV. It is the image of the isometric
embeddingjBw : Rn+1 → V given byjBw(x) = (1, x, ‖x‖2) with respect to a
pseudo-orthonormalbasisBw = {e1, . . . , en+3 = −w/2} of Ln+3 such that

‖e1‖ = 0= ‖en+3‖, 〈e1, en+3〉 = −1/2,

and 〈ei, ej〉 = δi,j if i 6= 1, n+ 3.
(1)

If B̃w = {ẽ1, . . . , ẽn+3 = −w/2} is another such basis, letT ∈ O1(n + 3) be the
orthogonal transformation ofLn+3 given byTei = ẽi for 1≤ i ≤ n+ 3. ThenT
mapsEw ontoEw and hence induces an isometryT of Rn+1 such thatT B jBw =
jBw B T . ThusjB̃w = T B jBw = jBw B T . For this reason, from now on we use
the shorter notationjw to stand forjBw for any basisBw as just described. Notice
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that, given another vector̃w ∈V, there is aT ∈O1(n+ 3) mappingw to w̃ such
thatjw̃ = T B jw. SinceT restricts to an isometry ofV, it follows thatjw andjw̃
arecongruentisometric immersions intoV. Recall that any isometry of (an open
subset of )V is the restriction of a orthogonal transformation ofLn+3.

Let h : Mm → V (m ≤ n + 1) be a conformal immersion of a Riemannian
manifold. Denote byϕh > 0 its conformal factor, which is given by

〈h∗X, h∗Y 〉 = ϕ2
h〈X, Y 〉.

Using that〈h, h〉 = 0 and hence that〈h∗X, h〉 = 0 for anyX ∈ TM, it follows
that for any smooth functionλ∈C∞(M) the mapλh is also conformal with con-
formal factorλϕh. In particular, any conformal immersiong : Mm → Rn+1 can
be made into an isometric immersionLw(g) : Mm→ V by setting

Lw(g) = (1/ϕg)jw B g,
wherew ∈V is arbitrary. The observation in the preceding paragraph shows that
different choices ofw ∈V give rise to congruent isometric immersions intoV.

Conversely, letG : Mm→ V (m ≤ n+1) be an isometric immersion. Form =
n + 1, we assume the existence of a vectorw ∈ V with 〈G,w〉 > 0 everywhere;
that is,G(M) does not intersectRw = {tw; t > 0}. If m ≤ n, there always exists
such a vector. Otherwise, the immersionḠ : Mm×R+ → V given byḠ(x, t) =
tG(x) would be surjective, a contradiction. Let us defineCw(G) : Mm → Rn+1

by
jw B Cw(G) = 5w BG,

where5w : V \ Rw → V is the projection ontoEw given by5w(x) = x/〈x,w〉.
Since5w is conformal with conformal factorϕ5w(x) = 1/〈x,w〉, it follows
that Cw(G) is also conformal with conformal factorϕ5w B G = 〈G,w〉−1. For
any vectorw̃ ∈ V with G(M) ∩ Rw̃ = ∅, defineT : V \ Rw̃ → V by T(x) =
〈x,w〉5w̃(x). ThenT is conformal and mapsEw ontoEw̃. Hence,T induces a
conformal transformationC of Rn+1 (i.e., an inversion up to a dilation and a rigid
motion), so thatjw̃ B C = T B jw. Then,

jw̃ B C B Cw(G) = T B jw B Cw(G)
= T B5w BG = 5w̃ BG = jw̃ B Cw̃(G).

Sincejw̃ is an embedding, it follows thatCw̃(G)=CB Cw(G), that is,Cw̃(G) iscon-
formally congruentto Cw(G). Observe thatLw(Cw(G)) = G andCw(Lw(g)) =
g for any conformal immersiong : Mm → Rn+1 and any isometric immersion
G : Mm→ V with G(M) ∩ Rw = ∅.

Given a hypersurfacef : Mn→ Rn+1, a conformal immersiong : Mn→ Rn+1

not conformally congruent tof is said to be aconformal deformationof f. We say
thatg is nowhere conformally congruentto f if it is not conformally congruent to
f on any open subset ofMn. If any other conformal immersiong is conformally
congruent tof, thenf is said to beconformally rigid.A similar terminology is
used in the isometric case.
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We say that an isometric immersionH : V → Ln+3 of an open subsetV ⊂
Rn+1 is of trivial type if there exist a smooth real functionφ ∈C∞(V ) and a basis
of Ln+3 as in (1) such thatH is given parametrically by

H(x) = φ(x)e1+ en+3+
n+1∑
i=1

(xi + ki)ei+1,

wherex = (x1, . . . , xn+1) andki ∈R.
The pointwise structure of the second fundamental formαH : TV × TV →

T ⊥V of an isometric immersionH : V → Ln+3 of an open subsetV ⊂ Rn+1 was
determined in [15, Thm. 2]. It follows from this result (cf. Lemma 19 in this paper)
and Proposition 20(a) that ifH is not of trivial type on any open subset ofV then
it hasrelative nullityνH ≥ n−1 on an open dense subset ofV. Recall thatνH (x)
is the dimension of the kernel1H(x) of αH (x). It is then a standard fact that1H

is an integrable distribution with totally geodesic leaves on any open subset where
νH is constant. Moreover, the leaves are mapped byH onto open subsets of affine
subspaces ofLn+3. We say that an isometric immersionH : V → Ln+3 with con-
stant relative nullity and the light coneV are ingeneral positionif the relative
nullity leaves ofH through any point ofH(V ) ∩ V are transversal toV.

We are now in position to state our main result. For an embeddingH : V ⊂
Rn+1→ Ln+3, we writeH−1 to denote the inverse ofH : V → H(V ).

Theorem 1. LetH : V ⊂ Rn+1→ Ln+3 be an isometric embedding with con-
stant relative nullityνH that is not of trivial type on any open subset. Assume
that H and V are in general position and setMn = H(V ) ∩ V. EndowMn

with the Riemannian metric induced by the inclusioni : Mn → V and setfH =
H−1

∣∣
Mn : Mn→ Rn+1. Then, for anyw ∈V such thatMn ∩Rw = ∅, the confor-

mal immersiongH = Cw(i) is nowhere conformally congruent tofH .
Conversely, letf : Mn → Rn+1 (n ≥ 5) be a hypersurface with no flat points

and letg : Mn → Rn+1 be a conformal immersion. Then there is a dense union
of open subsetsU =⋃3

i=1U i such thatf has a principal curvature of multiplicity
at leastn− 2 onU2 ∪ U3 that vanishes onU2 and such that:

(i) g is conformally congruent tof on any connected component ofU1;
(ii) g is conformally congruent to an isometric deformation off on any con-

nected component ofU2; and
(iii) at each point ofU3 there is an open neighborhoodU ⊂ U3, an isometric em-

beddingH : V → Ln+3 transversal toV of an open subsetV ⊂ Rn+1, and
an isometryT : U → H(V ) ∩ V such that

f
∣∣
U
= fH B T and g

∣∣
U
= gH B T .

Remark 2. The assumption thatH is an embedding and not just an immersion
could be avoided by definingMn = H−1(V), fH as the inclusion map ofMn into
Rn+1, andgH = Cw

(
H
∣∣
Mn

)
. Our choice, however, was made so as not to lose the

geometrical nature of our characterization of conformally deformable hypersur-
faces ofRn+1 asintersectionsof flat (n + 1)-dimensional submanifolds ofLn+3

with V.
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The following criterion (due to Cartan [3]) for conformal rigidity is a consequence
of Theorem 1.

Corollary 3. A hypersurfacef : Mn → Rn+1 (n ≥ 5) is conformally rigid if
all principal curvatures have multiplicity less thann− 2 everywhere.

It is a classical result due to Schouten (cf. [7]) that ann-dimensional Euclidean
hypersurface has a principal curvature of multiplicity at leastn−1 everywhere if
and only if it is conformally flat and hence highly conformally deformable. By
Corollary 3, if a Euclidean hypersurface of dimensionn ≥ 5 has principal curva-
tures of multiplicity less thann− 1 everywhere and admits a conformal nowhere
conformally congruent deformation, then it must have a principal curvatureλ

of constant multiplicityn − 2 everywhere. We call it aCartan hypersurfaceif,
in addition,λ is nowhere zero. Then, it is a standard fact that the correspond-
ing eigenspaces form an integrable distribution whose leaves are open subsets of
round spheres inRn+1. By Theorem 1, Cartan hypersurfaces are precisely those
fH with νH = n−1 on an open neighborhood ofMn, where the spherical leaves
correspondent to the principal curvature of multiplicityn− 2 are the intersections
of the relative nullity leaves ofH with the light cone.

The hypersurfaces that play the role of Cartan hypersurfaces in the isometric
case were namedSbrana–Cartan hypersurfacesin [9]. They all have everywhere
a zero principal curvature of multiplicityn−2, and the corresponding eigenspaces
form an integrable distribution whose leaves are open subsets of affine subspaces
of Rn+1.

Corollary 4. A hypersurface is conformally but not isometrically congruent to
a Sbrana–Cartan hypersurface if and only if it is a Cartan hypersurface such that
the spheres inRn+1 containing the spherical leaves correspondent to the principal
curvature of multiplicityn − 2 have a common point. Moreover, any conformal
(nowhere conformally congruent) deformation of the hypersurface is conformally
congruent to an isometric(nowhere congruent) deformation of the Sbrana–Cartan
hypersurface.

Many explicit examples of Sbrana–Cartan hypersurfaces in the discrete class of
Sbrana–Cartan’s classification were constructed in [9]. It follows from Corol-
lary 4 that any hypersurface conformally congruent to one of these examples also
belongs to the discrete class in Cartan’s classification.

Corollary 4 also yields the following characterization of the isometric immer-
sionsH in Theorem 1 that give rise to hypersurfaces conformally congruent to
Sbrana–Cartan hypersurfaces.

Corollary 5. The hypersurfacefH constructed in Theorem 1 is conformally
but not isometrically congruent to a Sbrana–Cartan hypersurface if and only if
(a) νH = n − 1 on an open neighborhoodW of Mn and (b) the relative nullity
leaves ofH onW are open subsets of affine subspaces inLn+3 with a common
point in the light coneV.
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2. Proof of Theorem 1

We first prove the following basic result.

Proposition 6. Letf, g : Mm → Rn+1 be conformal immersions, and setF =
Lv(f ) andG = Lw(g) for v,w ∈ V. Then there exists a conformal transforma-
tion ν of Rn+1 such thatg = ν B f if and only if there exists an isometry3 of V
such thatG = 3 B F.
Proof. Assume first thatg = ν B f for some conformal transformationν of Rn+1.

Then the conformal factors off, g, andν are related byϕg = (ϕν B f )ϕf . Since
5v is conformal with conformal factorϕ5v(x) = 1/〈x, v〉, the map

jw B ν B j−1
v B5v : V \ Rv → V \ Rw

is also conformal with conformal factor(ϕν B j−1
v B5v)ϕ5v . Therefore, the map

3 : V \ Rv → V \ Rw given by

3(x) = (〈x, v〉/(ϕν B j−1
v B5v)(x))(jw B ν B j−1

v B5v)(x)

is an isometry, which extends to an isometry3 : V → V by setting3(tv) = tw
for anyt > 0. Moreover,

3 B F = 3 B ((1/ϕf)jv B f ) = (1/(ϕν B f )ϕf)jw B ν B f = (1/ϕg)jw B g = G.
Suppose that3 BF = G for some isometry3 : V→ V. SetV = j−1

v (V \Rw)
and defineν : V → Rn+1 by

jw B ν = 5w B3 B jv.
Thenν is conformal withϕν = ϕ5w B3 B jv = 1/〈3 B jv, w〉. Moreover,

jw B ν B f = 5w B3 B jv B f = ϕf5w B3 B F
= ϕf5w BG = (ϕf/ϕg)5w B jw B g = jw B g;

henceg = ν B f.
Proof of Theorem 1.Assume thatgH is conformally congruent tofH on some
open subsetU ⊂ Mn. SetF = Lw(fH ) andG = Lw(gH ). ThenF = jw B fH
becausefH is isometric andG = Lw(Cw(i)) = i. By Proposition 6, there exists
an isometry3 : V → V such that3 B F ∣∣

U
= G∣∣

U
. As already pointed out, the

isometry3 is the restriction of a orthogonal transformationT of Ln+3. Let us still
denote byF andG the mapsk BF andk BG,wherek : V→ Ln+3 is the inclusion
map. Then

H B fH
∣∣
U
= G∣∣

U
= T B F ∣∣

U
= jv B fH

∣∣
U
,

wherev = T(w). Hence,U = H(fH (U)) = jv(fH (U)) ⊂ Ev.
LetW ⊂ V be an open neighborhood ofH−1(U) such thatH(W )∩V ⊂ U. For

each leaf of relative nullityσ ofH inW, we have thatH(σ) intersectsV transver-
sally and

H(σ) ∩ V ⊂ U ⊂ Hv.
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SinceH(σ) is an open subset of an affine subspace ofLn+3, it follows thatH(σ) ⊂
Hv. ThusH(W ) ⊂ Hv. The following result yields a contradiction with our as-
sumption thatH is nowhere of trivial type and so completes the proof of the direct
statement.

Proposition 7. An isometric immersionH : V ⊂ Rn+1→ Ln+3 is of trivial type
if and only if there existsv ∈V such thatH(V ) ⊂ Hv.

Proof. Assume thatH(V ) ⊂ Hv for somev ∈ V. Let e1 = −v/2, . . . , en+3 be a
basis ofLn+3 as in (1). Then we may write

H(x) = φ1(x)e1+ en+3+
n+1∑
i=1

φi(x)ei+1, x = (x1, . . . , xn+1),

for someφ1, . . . , φn+1 ∈ C∞(V ). SinceH is isometric, it is easily seen that
e2, . . . , en+2 can be chosen so thatφi(x) = xi + ki (ki ∈R) for all 1≤ i ≤ n+1.
The converse is trivial.

We shall now prove the converse statement of Theorem 1. Given a hypersurface
f :Mn→ Rn+1 (n ≥ 5) and a conformal immersiong : Mn → Rn+1, setG =
Lw(g) forw ∈V. For the rest of the proof, we regardG as a map intoLn+3; that is,
we writeG for k BG, wherek : V→ Ln+3 is the inclusion map. Setδ = jw∗Ng,
whereNg is a smooth unit vector field normal tog. DifferentiatingG = ϕ−1

g jw Bg
twice, we easily obtain that

〈αG(X, Y ), δ〉 = ϕ−1
g 〈∇̃Yjw∗g∗X, jw∗Ng〉 = ϕ−1

g 〈αg(X, Y ),Ng〉
for anyX, Y ∈ TM, where∇̃ denotes the derivative inLn+3. Hence, the shape
operatorsAGδ andAgNg are related by

AGδ = ϕ−1
g A

g

δ . (2)

On the other hand, differentiating〈G,G〉 = 0 implies that the position vectorG
is a normal vector field. Differentiating once more shows that

〈αG,G〉 = −〈·, ·〉. (3)

Moreover, sincẽ∇XG = G∗X is a tangent vector, it follows thatG is parallel in
the normal connection.

Let us denote byL2 ⊂ T ⊥G M the Lorentzian plane subbundle orthogonal toδ.
Since the position vectorG ∈ L2 is null, one can easily verify that there exists
a unique smooth orthonormal frame{ξ, η} of L2 with ‖ξ‖ = −1 such thatG =
ξ + η. For eachx ∈Mn, letW 2,2 = T ⊥f M ⊕ span{ξ} ⊕ span{η} ⊕ span{δ} be en-
dowed with the natural inner product〈〈·, ·〉〉 of type(2,2) and define a symmetric
bilinear formβ : TxM × TxM → W by

β(X, Y ) = 〈AfNX, Y 〉N − 〈αG(X, Y ), ξ〉ξ + 〈αG(X, Y ), η〉η + 〈AGδ X, Y 〉δ,
whereN is a smooth unit vector field normal tof. Sinceβ = 〈AfN ·, ·〉N ⊕ αG, it
follows from the Gauss equations forf andG thatβ is flat, that is,
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〈〈β(X, Y ), β(Z,W )〉〉− 〈〈β(X,W ), β(Z, Y )〉〉 = 0 for all X, Y,Z,W ∈ TxM.
Let V1 be the closed subset of pointsx ∈Mn whereβ is null, that is,

〈〈β(X, Y ), β(Z,W )〉〉 = 0 for all X, Y,Z,W ∈ TxM.
Lemma 8. (i) At each pointx ∈ V1, G extends to a pseudo-orthonormal basis
G, ζ1, ζ2 of T ⊥G(x)M with 〈G, ζ2〉 = 1 and‖ζ2‖ = 0 such that

αG(X, Y ) = 〈AfNX, Y 〉ζ1− 〈X, Y 〉ζ2. (4)

(ii) At each point ofV2 := M\V1, f andg have principal curvaturesλ, λ̃ hav-
ing the same eigenspace1 with dim1 ≥ n− 2. Moreover:

(a) for eachx in the closed subsetV3 ⊂ V2 whereλ vanishes, there existsρ ∈V
with 〈ρ,G〉 = 1 such that〈αG(X, Y ), ρ〉 = 0;

(b) for eachx ∈ U3 := V2\V3 there existµ ∈ T ⊥G(x)M of unit length as well as a
flat bilinear formγ : TxM × TxM → (span{µ})⊥ with kerγ = 1 such that

αG(X, Y ) = 〈AfNX, Y 〉µ+ γ (X, Y ). (5)

Proof. (i) Write β = β̄⊕ β̃,whereβ̄ denotes the span{N, ξ}-component ofβ and
β̃ the span{η, δ}-component. Thatβ is null means that

〈β̄(X, Y ), β̄(Z,W )〉 = 〈β̃(X, Y ), β̃(Z,W )〉.
Hence, there exists a linear isometryT : span{N, ξ} → span{η, δ} such that

β̃ = T B β̄. (6)

Thus, for someθ ∈ [0,2π) we may assume that

T(N ) = sinθη − cosθδ, T (ξ) = cosθη + sinθδ. (7)

By (3), we have

〈αG, η〉 + 〈αG, ξ〉 = 〈αG,G〉 = −〈·, ·〉. (8)

It follows from (6), (7), and (8) that

〈αG, η〉(1− cosθ) = cosθ〈·, ·〉 + sinθ〈AfN ·, ·〉. (9)

In particular, 1− cosθ 6= 0. From (6)–(9) we obtain

AGδ =
sinθ

1− cosθ
I + AfN, (10)

where I denotes the identity map. We conclude from (8)–(10) that (4) holds for

ζ1= δ + sinθ

1− cosθ
(ξ + η), ζ2 = 1

cosθ −1
(sinθδ + ξ + cosθη).

(ii) We make use of the following lemma from [6] or [7].

Lemma 9. Letβ : V × V → W 2,2 be a nonull flat symmetric bilinear form with
dim ker(β) < dimV − 4. ThenW 2,2 admits an orthogonal direct sum decom-
position into Lorentzian planesW = W1⊕ W2 such that theW1-componentβ0
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of β is nonzero but null and theW2-componentγ of β is nonzero and flat with
dim ker(γ ) ≥ dimV − 2.

We have from (8) thatβ(X,X) 6= 0 forX 6= 0. Moreover,n− 4> 0 by assump-
tion. By Lemma 9, at anyx ∈V2 there is an orthogonal direct sum decomposition
β = β0⊕ γ such that the kernel1 of γ satisfies dim1 ≥ n−2. Then, there exist
θ, ψ ∈ [0,2π) and a bilinear formφ : TxM × TxM → R such that

β0 = φ(cosθN + sinθξ + cosψδ + sinψη).

Thus, forT ∈1 we have that

(i) 〈AfNX, T 〉 = cosθφ(X, T ),

(ii) 〈αG(X, T ), ξ〉 = − sinθφ(X, T ),

(iii) 〈AGδ X, T 〉 = cosψφ(X, T ),

(iv) 〈αG(X, T ), η〉 = sinψφ(X, T ).

(11)

From (8), (11)(ii), and (11)(iv) we have that〈X, T 〉 = (sinθ − sinψ)φ(X, T ).
Hence, sinθ − sinψ 6= 0. Then (i), (iii), and (iv) of (11) yield

〈AfNX, T 〉 =
cosθ

sinθ − sinψ
〈X, T 〉, (12)

〈AGδ X, T 〉 =
cosψ

sinθ − sinψ
〈X, T 〉, (13)

〈αG(X, T ), η〉 = sinψ

sinθ − sinψ
〈X, T 〉. (14)

The subspace1 is an eigenspace forf andg from (2), (12), and (13). At a point
x ∈V3 where the principal curvatureλ = cosθ/(sinθ − sinψ) of f vanishes, we
derive from (8), (13), and (14) that

αG(X, T ) = −〈X, T 〉ρ, where ρ = (sinψ−1)−1(cosψδ+ξ +sinψη), (15)

for all T ∈1. Then‖ρ‖ = 0, 〈ρ,G〉 = 1, and (12) and (15) yield

〈αG(X, T ), αG(Y, T )〉 = 0= 〈AfNX, T 〉〈AfNY, T 〉.
ForT ∈1 of unit length, the Gauss equations forf andG give

〈αG(X, Y ), ρ〉 = −〈αG(X, Y ), αG(T, T )〉 = −〈AfNX, Y 〉〈AfNT, T 〉 = 0.

Finally, letx ∈U3. Then (8), (13), and (14) yield

αG(X, T ) = λ〈X, T 〉µ, where µ = (1/ cosθ)(sinθξ + cosψδ + sinψη).

Since‖µ‖ = 1, we obtain using (12) that

〈αG(X, T ), αG(Y, T )〉 = 〈AfNX, T 〉〈AfNY, T 〉 for all X, Y ∈ TxM.
ChoosingT ∈1 of unit length, the Gauss equations forf andG give

λ〈αG(X, Y ), µ〉 = 〈αG(X, Y ), αG(T, T )〉 = 〈AfNX, Y 〉〈AfNT, T 〉 = λ〈AfNX, Y 〉.
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HenceAGµ = AfN. Sinceβ0 = cosθφ(N + µ), we have

αG = β − 〈AfN ·, ·〉N = (cosθφ − 〈AfN ·, ·〉)N + cosθφµ+ γ.
Then theN component must vanish, and (5) follows.

We now show that (i) holds on the interiorU1 of V1. It is easily seen from (4) that
ζ1, ζ2 can be chosen to be smooth vector fields along any connected componentU

of U1. Comparing the Codazzi equations forf andG for AfN = AGζ1 yields

AG∇⊥
X
ζ1
Y = AG∇⊥

Y
ζ1
X for all X, Y ∈ TU. (16)

But∇⊥X ζ1 = 〈∇⊥X ζ1, ζ2〉G, sinceG is parallel in the normal connection. We con-
clude from (16) that{ζ1, ζ2,G} is a parallel normal frame.

SetF = Lv(f ) = jv B f : Mn→ V ⊂ Ln+3 for v ∈V, regarded as a map into
Ln+3. Then

αF (X, Y ) = 〈AfNX, Y 〉jv∗N − 〈X, Y 〉v, (17)

where the pseudo-orthonormal frame{jv∗N, v, F } is parallel in the normal con-
nection ofF. Define a parallel vector bundle isometryτ : T ⊥F U → T ⊥G U by setting
τ(jv∗N) = ζ1, τ (v) = ζ2, andτ(F ) = G. ThenαG = τ B αF from (4) and (17).
By the fundamental theorem for submanifolds there exists an isometry3 of Ln+3,

preservingV, such thatG = 3 B F. By Proposition 6, there is a conformal trans-
formationν of Rn+1 such thatg

∣∣
U
= ν B f ∣∣

U
.

Now, letU2 be the interior ofV3. It follows from (15) thatρ is smooth on any
connected componentU of U2. The Codazzi equation forAGρ (= 0) yields

〈∇⊥X ρ, δ̄〉AGδ̄ Y = 〈∇⊥Y ρ, δ̄〉AGδ̄ X, (18)

where δ̄ is a smooth unit vector field orthogonal to the Lorentzian plane bun-
dle spanned byρ andG. Assume that the linear functionalX 7→ 〈∇⊥X ρ, δ̄〉 is
nonzero at some pointx ∈U2, and letZ be a vector spanning the orthogonal com-
plement of its kernelK. Applying (18) toX ∈K andZ yieldsAG

δ̄
X = 0. Hence

αG(X, Y ) = −〈X, Y 〉ρ + 〈AGδ̄ X, Y 〉δ̄ is flat, which is a contradiction. This proves
thatρ is constant inLn+3. Now an easy argument shows thatG(U) is contained
in an affine hyperplane inLn+3 orthogonal toρ, say,G(U) ⊂ Eρ. Hence there
exists an isometric immersion̄f : Mn → Rn+1 such thatG = jρ B f̄ = Lρ(f̄ ).
We conclude from Proposition 6 that̄f is conformally congruent tog.

Finally, we prove that (iii) holds onU3. LetU ⊂ U3 be an open subset where1
has constant dimension. Thenµ andγ in (5) are smooth onU. Moreover, standard
arguments (see e.g. [16]) show that1 is an integrable distribution,µ is parallel
along1 in the normal connection, and the leaves of1 are totally umbilic subman-
ifolds of bothRn+1 andLn+3. We denote the Riemannian connections inMn and
Ln+3 by∇ and∇̃, respectively, and consider the smooth line bundleπG : LG→ U

with fibers

LG = span{(∇̃T T )� for all T ∈1}, where� = 1⊥ ⊕ span{µ}.
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Notice thatLG 6⊂ TU becauseλ 6= 0. The Codazzi equation forξ ⊥ µ yields

∇T AGξ X − AGξ [X, T ] + AG∇⊥
X
ξT = 0 for all T ∈1, X ∈ TU.

Taking the inner product withT gives〈∇̃T T, ∇̃Xξ〉 = 0. Since〈∇̃T T, ξ〉 = 0, we
obtain that∇̃X∇̃T T ∈ TU ⊕ span{µ}. Therefore,

∇̃X∇̃T T = ∇̃X(∇T T + λµ) = ∇X∇T T − λAGµX + 〈AGµ∇T T +∇λ,X〉µ,
which easily implies that

∇̃X(∇̃T T )� = ∇X(∇T T )1⊥ − λAGµX + 〈AGµ(∇T T )1⊥ + ∇λ,X〉µ. (19)

Denote byπf : Lf → U the line bundle similarly defined asLG and by
τ : Lf → LG the obvious bundle isometry. RestrictingU, if necessary, so that
f
∣∣
U

is an embedding, the map̄f : Lf → Rn+1 given by

f̄ (ζ) = f(x)+ ζ, x = πf (ζ),
is a diffeomorphism of an open neighborhoodNn+1 of the zero section ofLf onto
a tubular neighborhood off(U). A similar calculation shows that (19) also holds
for f when we replaceµ byN. We easily conclude usingAfN = AGµ that the map

G̃ : Lf → Ln+3 given by

G̃(ζ) = G(x)+ τ(ζ), x = πG(ζ),
is isometric with respect to the flat metric induced byf̄ . Therefore, the map

H = G̃∣∣
Nn+1 B

(
f̄
∣∣
Nn+1

)−1
: V → Ln+3, V = f̄ (N n+1),

is an isometric immersion andG
∣∣
U
= H B f ∣∣

U
. Moreover, by restrictingNn+1

if necessary, we may also assume thatH is an embedding and that̃G(ζ)∈V if
and only ifζ = 0, that is,H(V ) ∩ V = G(U). Thus,T = G∣∣

U
: U → G(U) =

H(V ) ∩ V is an isometry. Moreover,fH B τ = H−1 BG∣∣
U
= f ∣∣

U
and

jw B gH B τ = jw B Cw(i) B τ = 5w B i B τ = 5w BG
∣∣
U
= jw B Cw

(
G
∣∣
U

)
= jw B Cw

(
(Lw(g))

∣∣
U

) = jw B g∣∣U ;
hencegH B τ = g

∣∣
U
.

Proof of Corollary 4.Let f : Mn → Rn+1 be a hypersurface such thatf̃ = i B f
is a Sbrana–Cartan hypersurface for some inversionI on Rn+1. Thenf has a
principal curvatureλ of multiplicity n− 2 everywhere, the spherical leaves corre-
spondent toλ being the images byi of the relative nullity leaves of̃f . Therefore,
all spheres containing such leaves pass through the image byi of the point at in-
finity. Let g̃ : Mn → Rn+1 be an isometric nowhere congruent deformation of
f̃ . Theng̃ is conformal tof. Assume that̃g

∣∣
U

is conformally congruent tof
∣∣
U

for some open subsetU ⊂ Mn; theng̃
∣∣
U

is also conformally congruent tõf
∣∣
U
.

Sinceg̃ andf̃ are isometric, this implies thatg̃
∣∣
U

andf̃
∣∣
U

are isometrically con-
gruent. Therefore, any isometric nowhere congruent deformation off̃ is also a
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conformal nowhere conformally congruent deformation off. Thusf is a Cartan
hypersurface.

Conversely, letf : Mn→ Rn+1 be a Cartan hypersurface such that the spheres
in Rn+1 containing the spherical leaves correspondent to the principal curvature
of multiplicity n− 2 have a common pointP0 ∈Rn+1. Let i be an inversion with
pole atP0. Thenf̃ = i B f has a zero principal curvature of multiplicityn − 2.
Let g : Mn→ Rn+1 be a conformal nowhere conformally congruent deformation
of f. Theng is also a conformal nowhere conformally congruent deformation of
f̃ . By the converse of Theorem 1 applied tof̃ , g is conformally congruent to an
isometric nowhere isometrically congruent deformation off̃ . This proves thatf̃
is a Sbrana–Cartan hypersurface and also shows the last assertion.

3. Cartan’s Classification

In this section we give our own version of Cartan’s classification obtained in [3]
by characterizing in the following result from [1] the pairs{ψ, r} that give rise to
Cartan hypersurfaces in the two interesting classes.

Proposition 10. Letf : Mn→ Rn+1 be a hypersurface with Gauss mapN and
a principal curvatureλ > 0of multiplicityn−2. Then the focal map9 = f +rN,
r = 1/λ, induces an(isometric) immersionψ : L2→ Rn+1 such that‖∇r‖ < 1,
andf can be locally parametrized along the unit normal bundleT ⊥1 L of ψ by

X (φ) = ψ − r(ψ∗∇r +√1− ‖∇r‖2φ). (20)

Conversely, given a surfaceψ : L2 → Rn+1 and anr ∈ C∞(L2) positive whose
gradient satisfies‖∇r‖ < 1, the parametrized hypersurface(20) determined by
the pair {ψ, r} has, on the open subset of regular points, a nonzero principal cur-
vatureλ = 1/r of multiplicityn− 2.

First, however, we briefly discuss some special classes of surfaces in the unit
Lorentzian sphereSm1 = {x ∈ Lm+1 : ‖x‖ = 1}; we refer to [9] for further de-
tails. By a pair{ϕ, (u, v)} we denote a surfaceϕ : V 2 → Sm1 , with Riemannian
induced metric, carrying a global system(u, v) of either real or complex conju-
gate coordinates. Recall that the coordinates(u, v) beingreal conjugatemeans
that the second fundamental form ofϕ satisfies everywhere the condition

αϕ(∂u, ∂v) = 0 (21)

for the coordinate vector fields. The coordinates arecomplex conjugatewhen con-
dition (21) holds for the complexified coordinate vector fields, that is, when

αϕ(∂z, ∂z̄) = αϕ(∂u, ∂u)+ αϕ(∂v, ∂v) = 0. (22)

Forϕ regarded as anLm+1-valued map, (21) takes the form

ϕuv − 01ϕu − 02ϕv + 〈∂u, ∂v〉ϕ = 0,
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where01, 02 are the Christoffel symbols of the Levi–Civita connection∇′ of the
metric induced onV 2 byϕ; that is,∇′∂u∂v = 01∂u+02∂v. Assume that there exists
an everywhere positive solution, other than the trivial oneτ ≡ 1, of the system{

τu= 202τ(1− τ),
τv = 201(1− τ), (23)

whose integrability condition is

(1− τ)[(02
v − 20102)τ − 01

u+ 20102] = 0. (24)

The surface{ϕ, (u, v)} is called offirst specieswhen, in addition,

01
u = 02

v = 20102, (25)

that is, when (24) is trivially satisfied. It is called ofsecond speciesif it is not
of first species and henceτ = (02

v − 20102)/(01
u − 20102) is the (necessarily

unique) nontrivial positive solution of (23).
When {ϕ, (u, v)} has complex conjugate coordinates, we define a complex-

valued connection function0 = 0(z, z̄) by∇′∂z∂z̄ = 0∂z + 0̄∂z̄. Then (22) takes
the form

ϕuu + ϕvv − 201ϕu − 202ϕv + (〈∂u, ∂u〉 + 〈∂v, ∂v〉)ϕ = 0,

where0 = 01+ i02. In this case, the differential equation to consider is

ρz̄ + 0(ρ − ρ̄ ) = 0, (26)

whereρ = ρ(z, z̄) takes values in the unit circle. The surface{ϕ, (u, v)} is called
of first species when the integrability condition

Im ρ(0z − 200̄) = 0 (27)

of (26) is trivially satisfied; that is, when0z (= 0̄z̄) = 200̄, which is the complex
analog of (25). It is said to be of second species when it is not of first species and
(26) has a unique solution determined by (27).

Proposition 11. For a surface of first species with real(resp., complex) con-
jugate coordinates, system(23) (resp., (26)) has a1-parameter family of local
solutions.

Proof. See [9] or [17].

Consider a surfaceϕ = (ϕ0, ϕ1, . . . , ϕn+2) : L2 → Sn+2
1 ⊂ Ln+3 given in a

pseudo-orthonormal basis as in (1). Whenϕ0 6= 0 everywhere, we may associate
to ϕ a mapψ : L2→ Rn+1 and anr ∈C∞(L2) given by

ψ = r(ϕ1, . . . , ϕn+1) and r = 1/ϕ0. (28)

Clearly,ϕ can be recovered from(ψ, r) by

ϕ = r−1(1, ψ, ‖ψ‖2 − r 2). (29)
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Lemma 12. L2 is Riemannian if and only ifψ is an immersion and the gradient
∇ψr of r in the metric induced byψ satisfies‖∇ψr‖ < 1.

Proof. Setλ = ϕ0. We have

‖ϕu‖2‖ϕv‖2 − 〈ϕu, ϕv〉2 = λ4(‖ψu‖2‖ψv‖2 − 〈ψu,ψv〉2)− ‖λvψu − λuψv‖2.
Assume thatϕ induces a Riemannian metric. Thenψ is an immersion, and a
straightforward computation now yields

‖ϕu‖2‖ϕv‖2 − 〈ϕu, ϕv〉2 = λ4(1− ‖∇ψλ−1‖2)(‖ψu‖2‖ψv‖2 − 〈ψu,ψv〉2). (30)

Hence‖∇ψr‖ < 1. The converse follows from (30).

Given a surfaceϕ : L2 → R3+ contained in the upper half-space, we denote by
ϕ hyp: L2

hyp → H3(−1) the surfaceϕ with the metric induced from the standard
hyperbolic metric onR3+.

We are now ready to state our version of Cartan’s classification.

Theorem 13. Let f : Mn → Rn+1 (n ≥ 5) be a Cartan hypersurface. Then
there exists an open dense subsetV ⊂ Mn such that one of the following holds on
any connected componentU of V.

(I) Up to a conformal transformation ofRn+1, either: (a)f(U) ⊂ L2×Rn−2,

whereL2 ⊂ R3; or (b) f(U) ⊂ CL2 × Rn−3, whereCL2 ⊂ R4 is a cone
overL2 ⊂ S3; or (c) f is a rotation hypersurface overL2 ⊂ R3.

(II) f is conformally ruled, that is, foliated by open subsets of codimension-1
round spheres inRn+1.

(III) In terms of parameterization(20),f is determined by a pair{ψ, r} associ-
ated by(28) to a surfaceϕ of first species.

(IV) In terms of parameterization(20);f is determined by a pair{ψ, r} associ-
ated by(28) to a surfaceϕ of second species.

Conversely, any simply connected hypersurface that can be described as in(I)(c),
(II), (III), and(IV), or that differs by an inversion from a hypersurface as in(I)(a)
or (I)(b), is a Cartan hypersurface.

Moreover, all deformations are type-preserving. For hypersurfaces of type(I)(a)
and (I)(b), all deformations are given by isometric deformations ofL2, whereas
deformations of hypersurfaces of type(I)(c) are given by isometric deformations
ofL2

hyp. The set of deformations of a hypersurface of type(II), (III), or (IV) that is
not of type(I) is, respectively, parametrized by all smooth functions in an interval,
a continuous1-parameter family, or contains only one other immersion.

Proof. Let g : Mn → Rn+1 be a conformal immersion that is nowhere confor-
mally congruent tof, and setG = Lw(g). By Theorem 1, there exist an open
dense subsetU = U3 ⊂ Mn, a smooth unit vector fieldµ ∈ T ⊥G U, and a smooth
flat bilinear formγ : T U × T U → (span{µ})⊥ such that (5) holds everywhere.
Furthermore,1 = kerγ is an eigenbundle off andg of rankn− 2.
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We have an orthogonal splittingT U = 1 ⊕ 1⊥ and writeX = Xv + Xh ac-
cordingly for anyX ∈ T U . Recall that thesplitting tensorC of 1 assigns to each
T ∈1 the endomorphismCT of 1⊥ given by

CTX = −∇hXT .
Defineζ ∈ T ⊥G U by ζ = λG+ µ. We have from (5) that

−1= 〈αG(T, T ),G〉 = 〈AfNT, T 〉〈µ,G〉 = λ〈µ,G〉
for any unit vectorT ∈1. Hence‖ζ‖ = −1, 〈µ, ζ〉 = 0, and

Aζ = Aµ − λI. (31)

Differentiatingζ and taking the normal component yields

∇⊥X (µ− ζ) = λ−1X(λ)(µ− ζ) for all X ∈ T U . (32)

Extendµ, ζ to an orthonormal frame{µ, ζ, ζ̄}, and letAµ,Aζ ,Aζ̄ also denote the
restrictions of the shape operators to1⊥. We get from (32) that

∇⊥X ζ̄ = ω(X)(µ− ζ) and ∇⊥X ζ = −λ−1X(λ)µ− ω(X)ζ̄, (33)

whereω(X) = 〈∇⊥X ζ̄, µ〉. Moreover, we easily conclude thatζ andζ̄ are parallel
along1.

The Codazzi equation forA := AfN yields

∇hT A = (A− λI )CT . (34)

Similarly, the Codazzi equation forAζ̄ gives

∇hT Aζ̄ = Aζ̄CT . (35)

It follows from (34) and (35) that

(A− λI )CT = C∗T (A− λI ) and Aζ̄CT = C∗T Aζ̄ , (36)

whereC∗T stands for the adjoint operator ofCT .

Lemma 14. The endomorphismD := (A− λI )−1Aζ̄ : 1⊥ → 1⊥ satisfies:

(i) detD = 1;
(ii) [D,CT ] = 0; and
(iii) ∇hT D = 0 for T ∈1.
Proof. (i) Flatness ofγ implies that detAζ̄ = detAζ = det(A− λI ).

(ii) Using (36), we have

(A− λI )DCT = Aζ̄CT = C∗T Aζ̄ = C∗T (A− λI )D = (A− λI )CTD.

(iii) Equation (34) yields(A− λI )CTD = (∇hT A)D, whereas (35) gives

(A− λI )DCT = Aζ̄CT = ∇hT Aζ̄ = ∇hT (A− λI )D = ∇hT (AD)− λ∇hT D.
Hence,(A− λI )[D,CT ] = (A− λI )∇hT D, and the proof follows from (ii).
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Lemma 15. For any Cartan hypersurface,dim cokerC ≤ 2. Moreover, if equal-
ity holds, then eitherCT is symmetric for allT ∈ 1 or there existsS ∈ cokerC
such thatCS = µI.

Proof. The first assertion is an immediate consequence of Lemma 14(ii). When
equality holds, by dimension reasons we know there exists anS̄ ∈ cokerC such that
CS̄ is symmetric. The last assertion then follows easily using again Lemma 14(ii).

LetM0 ⊂ U be the interior of the subset in which there existsT ∈1 of unit length
such that cokerC = span{T } andCT = µI. This is clearly equivalent to1⊥ be-
ing a totally umbilic distribution. We conclude from the main result in [10] thatf

is as in(I ) of the theorem on each connected component.
Now letM1 ⊂ U be the interior of the set for which dim kerC is locally con-

stant and there exists anS ∈ cokerC such thatCS is not symmetric and has one
eigenvalue of multiplicity 2. It follows from Lemma 15 that there exist a smooth
vector fieldS ∈ cokerC and a unique (up to signs) orthonormal frame{Z,W } in
1⊥ with respect to which

CS =
[
a 0
b a

]
, b 6= 0. (37)

Since(A− λI )CS is symmetric by (34), we have

a〈(A− λI )W,Z〉 = 〈(A− λI )CSW,Z〉 = 〈W, (A− λI )CSZ〉
= a〈(A− λI )W,Z〉 + b〈(A− λI )W,W 〉,

which implies that
〈AW,W 〉 = λ. (38)

A similar argument using symmetry ofAζ̄CS shows that

〈Aζ̄W,W 〉 = 0. (39)

We conclude from (31), (38), and (39) that there exist smooth functionsα, β, θ

such that

Aζ =
[
α β

β 0

]
, Aζ̄ =

[
α + θ β

β 0

]
. (40)

We claim that the distributionx 7→ span{W(x)} ⊕ 1(x) is totally umbilical.
Comparing the Codazzi equations forAfN = Aµ = A for f andG, we have

A∇⊥
X
µY = A∇⊥

Y
µX for all X, Y ∈ T U . (41)

Equations (33) and (41) yield

λω(W )+W(λ) = 0, λω(Z)+ Z(λ)+ θβ−1W(λ) = 0. (42)

A straightforward computation using (33) and (42) shows that the Codazzi equa-
tion forAζ̄−ζ is equivalent to

〈∇WT,Z〉 = 0= 〈∇TW,Z〉 (43)

and
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〈∇T T, Z〉 = −β−1W(λ) = 〈∇WW,Z〉 (44)

and that
W(θ) = 〈∇ZZ,W 〉θ and T(θ) = 〈∇ZZ, T 〉θ (45)

for all T ∈ 1. The claim follows from (43) and (44). Moreover, the images by
f of the leaves are also totally umbilical inRn+1 by (38), sof

∣∣
M1

is conformally
ruled.

Consider now the open subsetM2 ⊂ U for which there exists anS ∈ 1 such
thatCS has two distinct real eigenvalues. By (i) and (ii) of Lemma 14, there exists
a unique (up to signs) frame{Y1, Y2} of unit eigenvectors ofCT , for all T ∈ 1,
with respect to whichD has the form

D =
[
θ 0
0 1/θ

]
, θ 6= 0,±1. (46)

Set9 = f + λ−1N. We need the following result.

Lemma 16. (i) There are smooth functionsµ1, µ2 such that the frame{X1 =
µ1Y1, X2 = µ2Y2} satisfies:

(a) ∇̃T9∗Xj = 0, 1≤ j ≤ 2;
(b) [X1, X2] ∈1.

(ii) The following equations hold:

∇̃X1λθ
−19∗X2 + θ−1X2(λ)9∗X1= ∇̃X2λθ9∗X1− θX1(λ)9∗X2; (47)

X2(λ
−1θX1(λ))−X1((θλ)

−1X2(λ))− λ2θ−1(1− θ 2)〈9∗X1, 9∗X2〉 = 0. (48)

Proof. (i) We have

9∗Xj = −λ−1(A− λI )Xj +Xj(λ−1)N. (49)

Using the Codazzi equation forf yields

∇̃T9∗Xj = −λ−1(A− λI )[T,Xj ] + [T,Xj ](λ
−1)N.

Therefore, (i)(a) is equivalent to [Xj, T ] ∈ 1 (1 ≤ j ≤ 2) for all T ∈ 1. Since
∇hT Yj = 0 (1≤ j ≤ 2) by Lemma14(iii), in order to prove Lemma16(i) it suffices
to prescribe eachµj arbitrarily along an integral curveγ of Yj, and then extend
it along each integral curve ofYi (i 6= j) and each geodesic of1 throughγ as a
solution of the linear differential equations of first order

T(µj )+ bjµj = 0, Yi(µj )+ rjµj = 0,

whereCT Yj = bjYj and [Y1, Y2] + r1Y1− r2Y2 ∈1.
(ii) We obtain from

〈Aζ̄Y1, Y2〉 = 〈(λI − A)DY1, Y2〉 = θ〈(λI − A)Y1, Y2〉 = θ 2〈Aζ̄Y1, Y2〉
that〈Aζ̄Y1, Y2〉 = 0 and that

〈(A− λI )Y1, Y2〉 = 0. (50)
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On the other hand, equations (33) and (41) yield

λω(X1) = −θX1(λ) and λθω(X2) = −X2(λ). (51)

Using (33), (i)(b), and (51), the Codazzi equation forAζ̄ gives

∇X1(A− λI )θ−1X2 + θX1(λ)X2 = ∇X2(A− λI )θX1+ θ−1X2(λ)X1,

which can be written using (50) as

∇̃X1(A− λI )θ−1X2 − θ−1〈(A− λI )X1, (A− λI )X2〉N + θX1(λ)X2

= ∇̃X2(A− λI )θX1− θ〈(A− λI )X1, (A− λI )X2〉N + θ−1X2(λ)X1. (52)

Using (49), it is easily seen that (52) is equivalent to(
X2(λ

−1θX1(λ))−X1((θλ)
−1X2(λ))− λ2θ−1(1− θ 2)〈9∗X1, 9∗X2〉

)
N

= ∇̃X1λθ
−19∗X2 + θ−1X2(λ)9∗X1− ∇̃X2λθ9∗X1− θX1(λ)9∗X2. (53)

A straightforward computation using (33) and (51) shows that the Ricci equa-
tion 〈R⊥(X1, X2)µ, ξ̄〉 = 〈[Aµ,Aξ̄ ]X1, X2〉 is equivalent to the vanishing of the
left-hand side of (53).

Let π : M2 → L2 be the quotient map onto the space of leaves of1. By Propo-
sition 10, the focal map9 induces an immersionψ : L2→ Rn+1 so thatψ B π =
9. By Lemma 16(i), there exists a coordinate system(u1, u2) on L2 such that
ψ∗∂uj = 9∗Xj . It follows from Lemma 14(iii) thatT(θ) = 0 for anyT ∈ 1;
henceθ can be regarded as a function onL2. Then, equations (47) and (48) can
be rewritten as

∇̃∂u1λθ−1∂u2 + λu2θ
−1∂u1 = ∇̃∂u2

λθ∂u1 + λu1θ∂u2 (54)

and

(λλu1u2− λu1λu2+ λ4〈∂u1, ∂u2〉)θ−1(1− θ 2)− λ(λu1θu2+ θ−2λu2θu1) = 0. (55)

It follows easily from (54) that

αψ(∂u1, ∂u2) = 0 (56)

and {
θu1 = θ(1− θ 2)(02 + λ−1λu1),

θu2 = θ−1(1− θ 2)(01+ λ−1λu2).
(57)

Then (55) takes the form

λu1u2 − 01λu1 − 02λu2 − 3λ−1λu1λu2 + λ3〈∂u1, ∂u2〉 = 0. (58)

Defineϕ : L2→ Sn+2
1 ⊂ Ln+3 by (29), wherer = λ−1. It follows from Propo-

sition 10 and Lemma 12 that the metric induced byϕ is Riemannian. A straight-
forward computation using (57) and (58) yields

ϕu1u2 = (01+ λ−1λu2)ϕu1 + (02 + λ−1λu1)ϕu2 − 〈ϕu1, ϕu2〉ϕ. (59)

Hence, the coordinates(u1, u2) are real-conjugate forϕ, and

0̃1= 01+ λ−1λu2, 0̃2 = 02 + λ−1λu1
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are the Christoffel symbols of the induced metric. We conclude from (57) thatτ =
θ 2 satisfies (23) for̃01 and0̃2. Thus,ϕ is a surface of first or second species along
any connected component of an open dense subset ofL2.

Finally, letM3 ⊂ U be the open subset for which there existsS ∈1 such thatCS
has two complex conjugate eigenvalues. One can verify using similar arguments
as in the real case that equations (54) and (55) now take the form

∇̃∂zλρ̄∂z̄ + λz̄ρ̄∂z = ∇̃∂z̄λρ∂z + λzρ∂z̄ (60)

and
(λλzz̄ − λzλz̄ + λ4〈∂z, ∂z̄〉)(ρ̄ − ρ)+ λ(λz̄ρ̄z − λzρz̄) = 0. (61)

It follows from (60) that

αϕ(∂z, ∂z̄) = 0 and ρz̄ = (ρ̄ − ρ)(0 + λ−1λz̄). (62)

Then (61) becomes

λzz̄ − 0λz − 0̄λz̄ − 3λ−1λzλz̄ + λ3〈∂z, ∂z̄〉 = 0. (63)

We can now easily check using (63) that the surfaceϕ given by (29) satisfies

ϕzz̄ = (0 + λ−1λz̄)ϕz + (0̄ + λ−1λz)ϕz̄ − 〈ϕz, ϕz̄〉ϕ. (64)

It follows from (62) and (64) thatϕ is a surface of first or second species along
any connected component of an open dense subset ofL2. We have shown that the
statement of the theorem holds onV =⋃3

i=0Mi.

We now prove the converse. First observe that the distributions associated to
the principal curvatures of multiplicityn− 2 of a Cartan hypersurfacef : Mn→
Rn+1 and any of its conformal deformationsg : Mn→ Rn+1 coincide. Then, it is
easily seen that the splitting tensors off andg are related by

C
g

T = CfT − (1/2)T (logµ)I, (65)

whereµ is the conformal factor. By the proof of the direct statement, the type of
f is determined by the structure of its splitting tensor. Since the splitting tensors
of f andg have the same structure by (65), it follows thatf andg are necessarily
of the same type.

Letf : Mn→ Rn+1 be as in parts (I)(a) or (b). It was shown in [9] that isomet-
ric deformations off are given by isometric deformations ofL2. The assertion on
the set of conformal deformations off is then a consequence of Corollary 4.

It follows from these considerations that any conformal deformationg of a Car-
tan hypersurfacef as in part (I)(c) must also be as in part (I)(c). Consider the
isometric embeddingi×j : H3×Sn−2→ L4×Rn−1= Ln+3,wherei : H3→ L4

andj : S n−2→ Rn−1 are the standard inclusions. Choose a pseudo-orthonormal
basisB = {e1, . . . , en+3} of Ln+3 such that

‖e1‖ = 0= ‖e4‖, 〈e1, e4〉 = −1/2, and 〈ei, ej〉 = δij if i 6= 1,4.

It is easily seen that(i × j)(H3 × Sn−2) ⊂ V \ Rw, wherew = −2e4. Hence,
i×j induces a conformal diffeomorphismCw(i×j) : H3×Sn−2→ Rn−1,whose
inverse is easily checked to be given with respect toB by
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2(a1, . . . , an+1) =
( n+1∑
j=3

a2
j

)−1/2(
1, a1, a2,

n+1∑
i=1

a2
j , a3, . . . , an+3

)
.

Sincef is as in part (I)(c), it can be parametrized byf : L2 × Sn−2→ Rn+1,

f(x, t) = (ϕ1(x), ϕ2(x), ϕ3(x)φ(t)),

whereϕ = (ϕ1, ϕ2, ϕ3) parametrizesL2 inR3+ andφ parametrizes the unit sphere.
Then2 B f : L2 × Sn−2→ H3 × Sn−2 is given by2 B f = (8 B ϕ)× I, where
8 : R3+ → H3 ⊂ L4 given by

8(x1, x2, x3) = x−1
3 (1, x1, x2, x

2
1 + x 2

2 + x 2
3)

is an isometry between the half-space and hyperboloidal models ofH3. Denote
by ψ : L2 → R3+ the profile ofg. Then(8 B ϕ)× I and(8 B ψ)× I are confor-
mal and hence isometric because they agree on the second factor. It follows that
8 B ϕ and8 B ψ are isometric; that is,ϕhyp andψhyp are isometric.

We now show that the set of conformal deformations of a simply connected con-
formally ruled hypersurface is parametrized by the set of smooth functions in an
interval. Let{Z,W } be an orthonormal frame of1⊥ with Z orthogonal to the rul-
ings. Equations (38) and (43) hold becausef is conformally ruled. Letα, β be
smooth functions such that

A =
[
α + λ β

β λ

]
(66)

with respect to{Z,W }. Then (44) follows from the Codazzi equation and the fact
thatf is conformally ruled.

We need only prove that a functionθ satisfying (45) gives rise to a conformal de-
formation off, since each such function is completely determined once an initial
condition is chosen along a fixed orthogonal trajectory to the rulings. Consider the
trivial vector bundleE = Mn×L3,whereL3 = span{µ, ζ, ζ̄} is endowed with the
Lorentzian inner product that makes{µ, ζ, ζ̄} into an orthonormal frame such that
‖ζ‖ = −1. Next, define a 1-formω by requiringω(Z) andω(W ) to be given by
(42) andω = 0 on1. Finally, endowE with the connection∇′ determined by (33),
and defineα ∈C∞(Hom(TM ×TM, E )) byα = 〈A·, ·〉µ−〈Aζ ·, ·〉ζ +〈Aζ̄ ·, ·〉ζ̄,
whereAζ andAζ̄ are determined by (40). We claim that(E,∇′, α) satisfies the
Gauss, Codazzi, and Ricci equations for an isometric immersion intoLn+3.

The Gauss equation is trivial. Using the Codazzi equation forA = AfN, the Co-
dazzi equation forA = Aµ reduces to (41), which follows easily using (33) and
(42). To verify the Codazzi equation forAζ , it suffices to do the same forAµ−ζ =
λI. But the latter is trivially satisfied by (33). Similarly, the Codazzi equation for
Aζ̄ holds if and only if the same is true forAζ̄−ζ . As before, this is equivalent to
(43), (44), and (45).

It remains to verify the Ricci equations. An easy calculation using (33) shows
that the left-hand side of〈R⊥(Z,W )µ, ζ〉 = 〈[Aµ,Aζ ]Z,W 〉 vanishes, and the
same holds for the right-hand side becauseA andAζ commute. On the other hand,
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a long but straightforward computation making use of (33), (40), (42), (44), and
(45) shows that the Ricci equations forµ, ζ̄ andζ, ζ̄ reduce to

W(β−1W(λ))+ λβ = 0.

This equality follows by using (43) and (44) to compute the left-hand side of the
Gauss equation〈R(W, T )T, Z〉 = λβ, which concludes the proof of the claim.

By the fundamental theorem of submanifolds,E, ∇′, andα are (respectively)
the normal bundle, normal connection, and second fundamental form of an iso-
metric immersionFθ : Mn → Ln+3. Setκ = (1/λ)(ζ − µ). Thenκ is a null
vector field satisfyingAκ = (1/λ)(Aζ −Aκ) = I. Moreover,κ is parallel with re-
spect to∇′ by (33). This implies thatFθ(Mn) ⊂ V; thus,Fθ induces a conformal
immersionfθ : Mn→ Rn+1, as we wished.

Finally, assume thatf is of type(III) or (IV). We argue for thereal case; the
proof for the complex case is similar. Assume thatf is given in terms of param-
eterization (20) by a pair{ψ, r} associated by (28) to a surface of first or second
species endowed with real conjugate coordinates. We show that each positive so-
lution τ of (23) gives rise to a conformal deformation off, and the proof then
follows from Proposition 11.

Setτ = θ 2. Going backwards in the proof of the direct statement shows that the
functionλ = r−1 satisfies (54) and (55). Defining vector fieldsX1, X2 byπ∗Xj =
∂/∂uj, it follows that9∗Xj = ψ∗∂/∂uj and then (54) and (55) yield (53), which
is equivalent to (52). Equality of theN -components implies thatX1, X2 are con-
jugate directions forA− λI (i.e., 〈(A− λI )X1, X2〉 = 0). DefineD by (46) with
respect to this frame. Consider the trivial vector bundleE = Mn × L3, where
L3 = span{µ, ζ, ζ̄} is endowed with the Lorentzian inner product that makes
{µ, ζ, ζ̄} into an orthonormal frame with‖ζ‖ = −1. Define a 1-formω by requir-
ingω(X1), ω(X2) to be given by (51) andω = 0 on1. Finally, endowE with the
connection∇′ determined by (33), and defineα ∈ C∞(Hom(TM × TM, E )) by
α = 〈A·, ·〉µ−〈Aζ ·, ·〉ζ +〈Aζ̄ ·, ·〉ζ̄,whereAζ andAζ̄ are determined by (31) and
Aζ̄ = Aζ B D. We claim that(E,∇′, α) satisfies the Gauss, Codazzi, and Ricci
equations for an isometric immersion intoLn+3.

The Gauss equation is trivial. Using the Codazzi equation forA = AfN, the Co-
dazzi equation forA = Aµ reduces to (41), which follows easily using (33) and
(51). To verify the Codazzi equation forAζ , it suffices to do the same forAµ−ζ =
λI. But the latter is also trivially satisfied by (33) and (51). The Codazzi equa-
tion forAζ̄ follows by taking tangential components in (52). An easy calculation
using (33), Lemma 16(i)(b), and (51) showsthat the left-hand side of the Ricci
equation〈R⊥(Z,W )µ, ζ〉 = 〈[Aµ,Aζ ]Z,W 〉 vanishes, and the same holds for
the right-hand side sinceA andAζ commute. Finally, the Ricci equations forµ, ζ̄
andζ, ζ̄ are easily seen to be equivalent to (55). This proves the claim. The same
argument as used in the ruled case completes the proof.

Remarks 17. (i) In Cartan’s terminology, a hypersurface of type(III) is com-
pletely determined by a set ofn + 3 homogeneous coordinate functionsαj =
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αj(u, v), 0 ≤ j ≤ n+ 2, all of which satisfy forM = M(u, v) the (same) differ-
ential equation of type either

αjuv +Mαj = 0, 0 ≤ j ≤ n+ 2,

and the condition
∑n+1

j=1(α
j )2 − α0αn+2 = U + V, whereU = U(u) andV =

V(v) are arbitrary functions of one variable, or

αjuu + αjvv +Mαj = 0, 0 ≤ j ≤ n+ 2,

and the condition
∑n+1

j=1(α
j )2 − α0αn+2 = φ, whereφ satisfiesφuu + φvv = 0.

An argument similar to the one in [9, Rem. 4] shows that Cartan’s character-
ization is equivalent to ours. It turns out that the deformable hypersurface is
given by (20) for the pair{ψ, r} defined asα0ψ = (α1, . . . , αn+1) andα0r =(∑n+1

j=1(α
j )2 − α0αn+2

)−1/2
.

(ii) Explicit examples of deformable hypersurfaces of class(III) can becon-
structed by applying the procedure of Theorem 13 to the surfaces of first species
given by [9, Prop. 15].

4. Further Results

We first show that the parametric classification of the Sbrana–Cartan hypersur-
faces (due to Sbrana [17] and Cartan [3]) can be derived from Theorem 13 together
with Corollary 4, but only for dimensionn ≥ 5.

Theorem 18 [9]. Let f : Mn → Rn+1 (n ≥ 3) be a Sbrana–Cartan hypersur-
face. Then there is an open dense subsetU ⊂ Mn such that one of the following
holds on any connected componentU of U .

(I) (a) f(U) ⊂ L2 × Rn−2 whereL2 is a surface inR3, or
(b) f(U) ⊂ CL2 × Rn−3 whereCL2 is a cone over a surfaceL2 ⊂ S3 ⊂

R4.

(II) f is ruled, that is, foliated by open subsets of codimension-1affine subspaces
in Rn+1.

(III) The Gauss imageν : V 2→ Sn ⊂ Rn+1 of f is a surface of first species, and
f has a Gauss parameterization

9(x,w) = (γν + ν∗ gradγ )(x)+ w (67)

along the normal bundle ofν, whereγ satisfies the same differential equa-
tion that any one of the coordinate functions ofν does.

(IV) The Gauss imageν of f is a surface of second species andf has a Gauss
parameterization(67),whereγ is as in(III).

Conversely, any simply connected hypersurface that can be described as in(I),
(II), (III), or (IV) is Sbrana–Cartan. Moreover, any deformation of a hypersur-
face of type(I) is given by a deformation of the surfaceL2, whereas the set of
deformations of a hypersurface of type(II), (III), or (IV) that is not of type(I)
is, respectively, parametrized by all smooth functions in an interval, a continuous
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1-parameter family, or contains only one other immersion. In all cases, deforma-
tions are always of the same type.

Proof forn ≥ 5. Setf̄ = i Bf,wherei is an inversion inRn+1 whose pole, which
we may assume to be the origin, does not lie onf(Mn). By Corollary 4,f̄ is a
Cartan hypersurface whose spherical leaves, correspondent to the principal curva-
ture of multiplicityn− 2, are open subsets of spheres inRn+1 through the origin.
By Theorem 13, for any connected componentU of an open dense subsetU ⊂
Mn, f̄

∣∣
U

is of one of the types (I) to (IV). Class (I)(c) is ruled out because the
spheres containing the spherical leaves have a common point. Moreover, iff̄ is
conformally congruent to a hypersurface in one of the classes (I)(a) or (I)(b), then
f
∣∣
U

must be in the corresponding isometric congruence class.
Now assume that̄f

∣∣
U

is in one of the classes(III) or (IV) in Theorem 13. Then
f̄
∣∣
U

is given, in terms of parameterization (20), by a pair{ψ, r} associated by (28)
to a surfaceϕ : L2 → Sn+2

1 ⊂ Ln+3 of first or second species, respectively. We
consider the case whereψ has real conjugate coordinates; the case of complex
conjugate coordinates is similar. We have thatϕ = r−1(1, ψ, ‖ψ‖2 − r 2), and
r ∈C∞(L2) is a solution of

r Hessr(∂u, ∂v)+ rurv − 〈∂u, ∂v〉 = 0. (68)

Since the spherical leaves off̄
∣∣
U

are open subsets of spheres inRn+1 through the
origin, there exists a vector fieldµ∈ T ⊥h L of length

‖µ‖2 = r 2(1− ‖∇r‖2) (69)

such that
ψ − r∇r + µ = 0. (70)

We obtain from (70) that〈ψ,ψu〉 − rru = 0= 〈ψ,ψv〉 − rrv. Hence,‖ψ‖2− r 2

is a constant, which by (69) and (70) must vanish. Hence there exists aν : L2→
Sn+1 ⊂ Rn+1 such thatψ = rν. It is now easy to verify thatν andϕ are isomet-
ric and have the same conjugate coordinates. In particular,ν is a surface of first
or second species. A long but straightforward computation now shows that, after
applying the inversioni, equation (20) takes the form (67) withγ = r−1. Finally,
it is easy to check thatr satisfies (68) with respect to the metric induced byψ if
and only if γ = r−1 satisfies the same differential equation that any one of the
coordinate functions ofν does with respect to the metric induced byν, namely,

Hessγ (∂u, ∂v)+ 〈∂u, ∂v〉γ = 0. (71)

Therefore,f
∣∣
U
= i B f̄ ∣∣

U
is as in parts(III) or (IV) in the statement.

Going backwards in the preceding argument shows that iff is as in parts(III)
or (IV) in the statement and ifi is an inversion whose pole does not lie onf(Mn),

thenf̄ = i B f is in one of the classes(III) or (IV) in Theorem 13. Using this, the
converse follows immediately from Theorem 13 and Corollary 4.

Now we recall from [15] the possible pointwise structures of the second funda-
mental form of an isometric immersionH : V ⊂ Rn+1→ Ln+3.
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Lemma 19. At anyx ∈V one of the following possibilities holds:

(i) there exist a null vectorv ∈ T ⊥x V and a symmetric bilinear formh on TxV
such that

αH (X, Y ) = h(X, Y )v;
(ii) there exist a vectorξ ∈ T ⊥x V with ‖ξ‖ = ±1 and a symmetric bilinear form

h onTxV of rank1 such that

αH (X, Y ) = h(X, Y )ξ ;
(iii) νH (x) = n−1and there are basesX1, X2 of1⊥H andξ, η of T ⊥x V such that

(a) αH (X1, X1) = ξ, αH (X1, X2) = η, andαH (X2, X2) = 0,
(b) αH (X1, X1) = ξ, αH (X1, X2) = 0, andαH (X2, X2) = η,
(c) αH (X1, X1) = ξ, αH (X1, X2) = η, andαH (X2, X2) = −ξ,
whereξ, η is pseudo-orthonormal in case(a)and orthonormal otherwise.

The next result characterizes isometric immersionsH : V ⊂ Rn+1 → Ln+3

whose second fundamental forms have one of the structures (i), (ii), or (iii)(a)
in Lemma 19.

Proposition 20. With the notation from Lemma 19, we have:

(a) αH is everywhere as in(i) if and only if H is of trivial type;
(b) αH is everywhere as in(ii) if and only ifH is a compositionH = j B i, where

i is an isometric immersion ofV into an open subsetW of eitherRn+2 or
Ln+2, j is an isometric immersion ofW intoLn+3, and eitheri or j is totally
geodesic;

(c) αH is everywhere as in(iii)(a) if and only if H is ruled.

Proof. (a) Letv be a smooth null vector field andh a smooth symmetric bilinear
form such that

αH (X, Y ) = h(X, Y )v.
Differentiating〈v, v〉 = 0, we get∇⊥X v = ω(X)v for some 1-formω. The Ricci
equation yieldsdω = 0 and thusω = dρ locally for someρ ∈C∞(V ). It follows
thate1 = e−ρv is constant inLn+3, soH(V ) is contained in an affine degenerate
hyperplane ofLn+3 orthogonal toe1. Therefore,H is of trivial type by Proposi-
tion 7. The converse is trivial.

(b) This statement follows from [12, Thm. 1], which can easily be checked to
hold also for isometric immersions into Lorentzian space.

(c) Let ξ, η be a smooth pseudo-orthonormal frame ofT ⊥V, and letX1, X2 be
smooth unit vector fields onV spanning1⊥ such that

αH (X1, X1) = ξ, αH (X1, X2) = η, and αH (X2, X2) = 0.

We need only show that the distributionD = 1H ⊕ span{X2} is totally geo-
desic. Taking theξ -component of the Codazzi equation

(∇⊥Z αH )(X, Y ) = (∇⊥X αH )(Z, Y ) (72)
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applied toZ = X1 andX = Y = X2 gives01
22 = 0, where the0kij are defined by

∇XiXj =
∑
0kijXk (1≤ i, j, k ≤ 2). Hence,∇X2X2 ∈D. On the other hand, tak-

ing theη-component of (72) applied toZ ∈1H andX = Y = X2 yields that the
X1-componentsα andβ of ∇X2Z and∇ZX2 (respectively) are related byα = 2β,
whereas taking theξ -component of (72) applied toZ ∈1H, X = X2, andY = X1

givesα = β. Thereforeα = β = 0, and we conclude that∇X2Z,∇ZX2 ∈D.
Notice that if the second fundamental formαH of an isometric immersionH : V ⊂
Rn+1 → Ln+3 is as in (iii)(c) of Lemma 19 at some pointx ∈ Mn, thenZ =
X1+ iX2 andZ̄ = X1− iX2 form a complex conjugate diagonalizing basis for
αH (x). We callH of real (resp.,complex) type if αH is everywhere as in (iii)(b)
(resp., (iii)(c)). The easiest way to construct isometric immersions of real type is
through acomposition.By that we mean composing two flat hypersurfaces, where
the first one lies in eitherRn+1 or Ln+1. We say accordingly thatH is of first or
second composition type.Observe that this construction can be done parametri-
cally because any flat hypersurface can be locally given by means of the Gauss
parameterization (see [11]). Many isometric immersions of real type that are not
of composition type can be obtained by a parametric construction similar to the
one given in the last section of [8].

If αH is everywhere as in (ii) or (iii)(a) of Lemma 19, then it follows immedi-
ately from parts (ii) and (iii) of Proposition 20 thatfH is, respectively, conformally
flat and conformally ruled. On the other hand, we have the following result.

Proposition 21. LetH : V ⊂ Rn+1→ Ln+3 be as in Theorem 1. Then the fol-
lowing statements hold:

(i) fH is a rotation hypersurface over a surfaceL2 ⊂ R3 if and only ifH(V ) ⊂
N 2 × Rn−1, whereN 2 is a surface inL4;

(ii) fH is of type(I) but not a rotation hypersurface over a surfaceL2 ⊂ R3 if
and only ifH(V ) ⊂ N 3 × Rn−2, whereN 3 is the cone over a surface in a
totally umbilical hypersurface ofL4;

(iii) fH is a Cartan hypersurface of real or complex type if and only ifH is, re-
spectively, of real or complex type.

Proof. Let Ĉ andC denote the splitting tensors associated (respectively) to the
relative nullity distribution1H of H and to the eigenbundle1 of fH correspon-
dent to the principal curvature of multiplicityn − 2. Since the spherical leaves
of 1 are the intersections of the leaves of1H with the light cone, it follows that
1⊥H = 1⊥ and

CT = ĈT for all T ∈1. (73)

In particular,ĈT is identically zero for allT ∈ 1 or there existT0 ∈ 1 and a
smooth functionµ such thatĈT = µ〈T, T0〉I for all T ∈1 if and only if the same
holds forCT . This is equivalent to saying that the distribution1⊥H is totally geo-
desic or totally umbilical if and only if the same holds for1⊥. The assertions in
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(i) and (ii) now follow from the main theorem of [10], which is also valid for iso-
metric immersions into Lorentzian space. The statement in (iii) follows from (73)
and

αH (ĈT X, Y ) = αH (X, ĈT Y ) for all X, Y ∈1⊥H , (74)

which is an easy consequence of the Codazzi equation.

Let Hi : Ui ⊂ Rn+1 → Rn+2 (1 ≤ i ≤ 2) be isometric embeddings that are
free of totally geodesic points. Assume thatH1 andH2 are ingeneral position;
that is, assume their Gauss mapsη1, η2 satisfy 0< 〈η1, η2〉 < 1 alongMn =
H1(U1)∩H2(N

n+1) and that the relative nullity spaces ofH1 andH2 are transver-
sal at any point ofMn. Here and in the following, byH−1

i we mean the inverse
of the mapHi : Ui → Hi(Ui). DefinefHi : M

n → Rn+1 by fHi = H−1
i

∣∣
Mn. It

was shown in [9] thatfH1 andfH2 are, generically, isometric nowhere congru-
ent Sbrana–Cartan hypersurfaces that admit no further isometric deformations.
Moreover, an explicit parameterization for the hypersurfaces obtained by this con-
struction was provided.

The procedure just described can be adapted to construct Cartan hypersurfaces.
LetH1: U ⊂ Rn+1→ Rn+2 be an isometric embedding that is free of totally geo-
desic points and letH2 : Nn+1 → Rn+2 be a conformally flat hypersurface free
of umbilic points. We assume thatNn+1 is globally conformal to an open sub-
setV ⊂ Rn+1 by a conformal diffeomorphism8 : Nn+1 → V. Assume thatH1

andH2 are ingeneral position; that is, the Gauss mapsη1, η2 of H1, H2 (respec-
tively) satisfy 0< 〈η1, η2〉 < 1 alongMn = H1(U) ∩H2(N

n+1), and the relative
nullity leaves ofH1 and the spherical leaves of the eigenbundle ofH2 correspon-
dent to the principal curvature with multiplicityn are transversal at any point of
Mn. Then, we may produce a pair(fH1, fH2) of conformal immersions ofMn into
Rn+1 by lettingfH1 : Mn → Rn+1 be the isometric immersionfH1 = H−1

1

∣∣
M

and
settingfH2 = 8 BH−1

2

∣∣
M
.

We say that a pair(f, g),wheref : Mn→ Rn+1 is a hypersurface andg : Mn→
Rn+1 a conformal deformation off, is of first intersection typeif there are isomet-
ric embeddingsH1: U⊂ Rn+1→ Rn+2 andH2 : Nn+1→ Rn+2 as before and an
isometryτ : Mn → H1(U) ∩ H2(N

n+1) such thatf = fH1 B τ andg = fH2 B τ.
We call the pair(f, g) of second intersection typeif Rn+2 is replaced byLn+2 in
the construction.

Theorem 22. LetH : V ⊂ Rn+1→ Ln+3 be as in Theorem 1. Suppose further
thatH is of first or second composition type. Then the pair(fH , gH ) is of first or
second intersection type, respectively.

Conversely, if a hypersurfacef : Mn → Rn+1 and a conformal deformation
g : Mn → Rn+1 of f form a pair of first or second intersection type, then there
exist an isometric embeddingH : V ⊂ Rn+1→ Ln+3 as in Theorem 1 of first or
second composition type(respectively) and an isometryτ : Mn→ H(V )∩V such
thatf = fH B τ andg = gH B τ.
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Proof. AssumeH = K B H1, whereH1: V → U ⊂ Rn+2 andK : U → Ln+3

are isometric embeddings. SetNn+1 = K(U) ∩ V and leti : Nn+1→ V denote
the inclusion map. RestrictingU if necessary, we may assume thatNn+1∩Rw =
∅ for somew ∈ V. ThenCw(i) is a conformal diffeomorphism ofNn+1 onto an
open subset ofRn+1. Hence,Nn+1 is conformally flat and admits an isometric
embeddingH2 = K−1

∣∣
Nn+1 : Nn+1→ U ⊂ Rn+2. SetMn = H(V ) ∩ V, M̃ n =

H2(M
n) = H1(V ) ∩H(Nn+1), andτ = H2

∣∣
Mn : Mn→ M̃n. Then

fH1 B τ = H−1
1 BK−1

∣∣
Mn = H−1

∣∣
Mn = fH

and

fH2 B τ =
(Cw(i) BH−1

2

∣∣
M̃n

) BH2

∣∣
Mn = Cw(i)

∣∣
Mn = Cw

(
i
∣∣
Mn

) = gH .
Conversely, assume that there exist a conformally flat manifoldNn+1 that ad-

mits a global conformal diffeomorphism8 onto an open subset ofRn+1, isometric
embeddingsH1: V ⊂ Rn+1→ Rn+2 andH2 : Nn+1→ Rn+2 in general position,
and an isometryτ1: Mn → H1(V ) ∩ H2(N

n+1) such thatf = fH1 B τ1 andg =
fH2 B τ1. By [8, Thm. 2.1], there exist an isometric embeddingK : W ⊂ Rn+2→
Ln+3 of an open subsetW ⊃ H2(N

n+1) and an isometryτ2 : Nn+1→ K(W )∩V
such thatH2 = K−1 B τ2 and8 = Cw(τ2) for somew ∈ V. We can assume that
H1(V ) ⊂ W and setH = K BH1, τ = K B τ1, andM̃n = H(V ) ∩ V. Then

fH B τ = H−1 B τ = H−1
1 BK−1 B τ = fH1 B τ1= f

and

gH B τ = Cw(i) BK B τ1= Cw(τ2) B (τ−1
2 BK) B τ1= 8 BH−1

2 B τ1= fH2 B τ1= g,
and this concludes the proof.

Finally, we show that the class of conformally deformable hypersurfaces of inter-
section type is invariant under conformal deformations.

Proposition 23. LetH : V ⊂ Rn+1→ Ln+3 be an isometric immersion of com-
position type and letf̄ : Mn := H(V ) ∩ V→ Rn+1 be a conformal deformation
offH . Then there is an isometric immersion of composition typeH̄ : V̄ ⊂ Rn+1→
Ln+3 such thatf̄ = fH̄ .
We need the following result.

Lemma 24. LetH : V ⊂ Rn+1→ Ln+3 be an isometric immersion of real type.
Let ξ, η be an orthonormal normal frame ofH as in Lemma 19(iii)(b) and set
1ξ = kerAξ and1η = kerAη. ThenH is locally of composition type if and only
if either1ξ or 1η is totally geodesic inV.

Proof. Define a 1-formω onV by ω(X) = 〈∇⊥X ξ, η〉. We have from [12] thatH
is of composition type if and only if either kerω ⊂ kerAξ or kerω ⊂ kerAη. We
show that kerω ⊂ kerAξ if and only if 1η is totally geodesic inV. In fact, let
X, Y ∈ TV be unit length eigenvectors ofAξ andAη (respectively) correspondent
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to the nonzero principal curvature; that is,AξX = λX andAηY = µY, where
λ,µ 6= 0. The Codazzi equation gives

µ〈∇SS ′, Y 〉 = λ〈S ′, X〉(ω(Y )〈S,X〉 − ω(S)〈Y,X〉) for all S, S ′ ∈1η,

and the proof follows easily.

Proof of Proposition 23.As before, letĈ andC denote the splitting tensors associ-
ated (respectively) to the relative nullity distribution1H ofH and to the eigenbun-
dle1 of fH correspondent to the principal curvature of multiplicityn − 2. With
the notation of Lemma 24, by (74) we have thatAξĈT = Ĉ∗TAξ andAηĈT =
Ĉ∗TAη for anyT ∈ 1H. It follows that the vectorsX, Y are eigenvectors of̂C∗T
for anyT ∈ 1H. By (73), the same holds forC∗T for anyT ∈ 1. In particular,
the unit vectorY⊥ orthogonal toY in 1⊥H is an eigenvector ofCT for anyT ∈1.
Using that∇hT Y = 0 and〈∇hY⊥T, Y 〉 = −〈CT Y⊥, Y 〉 = 0,we conclude that1η =
1⊕ span{Y⊥} is totally geodesic if and only if∇h

Y⊥Y
⊥ = 0, which is an intrinsic

condition, and the proof follows.
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