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Global Plurisubharmonic Defining Functions

RAacHID BELHACHEMI & ALAN NOELL

1. Introduction

Given a bounded pseudoconvex domain with smooth (i.e., infinitely differentiable)
boundary inC", the Levi condition ensures that, for every defining function, the
Levi form restricted to complex tangent vectors is positive semi-definite at each
boundary point. Here we study the stronger condition that there exists a defining
function plurisubharmonic on the boundary in the sense that, at each boundary
point, the Levi form is positive semi-definite @l complex vectors. For strongly
pseudoconvex domains (i.e., when the Levi form is positive definite on complex
tangent vectors) it is elementary that there is a strongly plurisubharmonic defin-
ing function. For weakly pseudoconvex domains, a defining function plurisubhar-
monic on the boundary need not exist. The well-known “worm” domain intro-
duced by Diederich and Fornaess in [7] has no such defining function, nor does
the version of that domain with real-analytic boundary defined by Fornaess in [8].
In fact, a defining function plurisubharmonic on the boundary need not exist even
locally. Fornaess gave such an example with only smooth boundary in [8], and later
Behrens [1] gave a simpler example: There is a domain with a polynomial defin-
ing function such that (a) the Levi form degenerates at only one boundary point
but (b) near this point, there is no local defining function plurisubharmonic on the
boundary. Her example shows that any sufficient condition for the existence of a
local defining function plurisubharmonic on the boundary must involve more than
merely the structure of the degeneracy set of the Levi form.

Here we are interested in conditions under which the existence at each bound-
ary point of a local defining function plurisubharmonic on the boundary implies
the existence of a global defining function with this property. In this setting the
structure of the degeneracy set enters naturally, since an obstruction can exist in
the attempt to patch local defining functions along this set. This situation is illus-
trated by the real-analytic version of the “worm” domain constructed by Fornaess
in [8], which does have local defining functions of the desired type even though
(as just mentioned) there is no such global function. In this example the degener-
acy set is a curve whose tangent space at each point is contained in the null space
of the Levi form restricted to complex tangent vectors. Our condition that the do-
main be linearly regular (as defined in Section 2) rules out the existence of such
curves, and this condition, along with the existence of local defining functions
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plurisubharmonic on the boundary, turns out to be sufficient for the existence of a
global function on bounded domains with real-analytic boundary. Thus we have
the following result.

THEOREM. Let D be a linearly regular domain with real-analytic boundary in
C”, and suppose that for eaghe dD there is a neighborhood, of p on which
D has a smooth defining function that is plurisubharmoni®dn U,. ThenD
has a global smooth defining function plurisubharmonicdfn

For the case = 2 this theorem was proved in [11]. The higher-dimensional case
we treat is considerably more complicated owing to the CR geometry that comes
into play. We need the stratification theorem from [3] to describe the degeneracy
set of the Levi form in terms of this geometry, and we use the real Frobenius the-
orem to find nonholomorphic coordinates that simplify the description of how to
patch local defining functions. In Section 2 we describe this stratification along
with other background material, and we prove the preliminary patching results in
Section 3. In Section 4 we prove our main result.

2. Background

If ¢ isasmooth functiondefined negae C"(zy, ..., z,), thenforr = (f1,...,t,) €
C" we writed¢, (1) for

"9

> 22
j=1 7%
and writeL, (¢, t) for

n 2

> 838@ (P)tjtr,
k=1 U%iO%k

the Levi form of¢ at p applied tor.

Let S be a smooth submanifold @" and letp € S. We write 7,,(S) for the
(real) tangent space tHat p. The complex tangent space fat p is, by defini-
tion, the maximal complex subspace®Bf(S); it is denotedTpC(S). We say that
S is a CR manifold if the dimension dpr(S) is independent op.

Let D denote a bounded pseudoconvex domain with smooth bound&¥,in
and letr be a local defining function neare dD. Then it is easy to see that

TC(@D) = {t €C" : dr,(r) = O}

We write N(p) for the null space in the complex tangent space of the Levi form
atp, so
N(p) = {t e T,S(@D) : L,(r,1) =0}.

We letw(dD) denote the set of weakly pseudoconvex boundary poinis, dhat
is, the set of allp € D such thatN(p) # {0}. We say thatD is linearly regu-
lar if there does not exist a nontrivial smooth cugvén 9D such that/'(¢) lies in
N(y(@)) forall ¢.
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Let D be a bounded domain with smooth boundarZihand letS be a smooth
submanifold ofdD. We say thatS is complex-tangential at a point € S if
T,(S) C Tpc(aD). If L is a smooth vector field near a poipte dD, we say that
L is complex-tangential at if its value there belongs tﬁpc(aD).

The following theorem is proved in [3, Thm. 5]. It shows that, for linearly reg-
ular domains, the degeneracy set of the Levi form can be locally stratified by CR
submanifolds whose tangent directions lying in the complex-tangent space to the
boundary are positive for the Levi form of the boundary. (In [3] the domain is as-
sumed to be convex, but, as noted in [3], the proof shows that linear regularity
suffices. Also, the statement about the dimension of the null space in part (b) of
the Stratification Theorem that follows is implicit in the proof in [3].)

STRATIFICATION THEOREM. LetD be a bounded pseudoconvex domain with real-
analytic boundary irC", and assume thab is linearly regular. Then each point
in w(dD) has a neighborhood such that the following statements hold.

(a) We havew(dD) N U = |J2'5°s;. where eacts; is a finite disjoint union of
j-dimensional real-analytic CR submanifolds & N U. Furthermore, for
all p € S; we haveT, (S;) N N(p) = {0}.

(b) If Sis a component of sontg, then the null spac& has constant dimension
along S. Also, if S is complex-tangential at some point then it is complex-
tangential at every point.

(c) Eachs; is closed in(dD N U) \ (U}‘:‘(}Sj).

We remark that the concept of linear regularity was defined (under a different
name) for domains with real-analytic boundaryG@? in [9]. The concept was
extended to domains with smooth boundaryGfh in [10], where it was proved

that bounded convex domains with real-analytic boundayirare linearly reg-

ular. As a consequence, a smooth bounded domain is linearly regular if it has a
proper holomorphic embedding into a bounded convex domain with real-analytic
boundary, assuming the embedding extends smoothly to the boundary. In fact, the
context of [10] was the study of passing from local to global maps into convex do-
mains. The original setting in [9] was patching local peak functions on linearly
regular domains it€2. This study of local peak functions was extendecCfoin

[3] with the aid of the Stratification Theorem. This stratification was also used in
[2] to study compact subsets of peak set€ih

3. Patching Functions along Strata

The key part of the proof of our main result is to patch local defining functions

near a given stratum from the Stratification Theorem. To control the Levi form we
require that the cutoff functions be constant in weakly pseudoconvex directions.
The following proposition shows how to accomplish this in terms of a smooth (but
not holomorphic) diffeomorphism. The result itself does not refer to any stratifi-

cation and may be of general interest.
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ProrosiTioN. Let D be a bounded pseudoconvex domain with smooth boundary
in C", and fixp € aD. Write the complex dimension 8f( p) asn — m — 1. Then
there exist: a neighborhoo® of p; a subbundlé of T(C") over W of real di-
mensior2m such that the fiber oE over each point; € 9D N W is contained in
ch(aD); a smooth real vector field on W that, at each point obD N'W, is tan-
gential todD but not complex-tangentigdnd a smooth diffeomorphisthon W

with the properties irfa) and (b) below. In stating these properties we wrkidor

the real subbundle of (C") over W generated by and the vector field, and

we denote with a subscrigtthe fiber of a bundle over a poigte W.

(a) Forall g € 9D N W we have thaitV(gq) is contained in the orthogonal com-
plement ofE,, relative to7,%(3D).

(b) If we write® = (¢1, ..., ¢2,), thenLy; = 0onWif Le Fand2m + 1 <
j < 2n.

Proof. We work in a neighborhoo® of p, which we will shrink without com-
ment. We define the real vector fields we seek in terms of the complex vector fields
L; andT that arise naturally in the study of the CR geometry of real hypersurfaces
(see e.g. [6, Sec. 3.1]). Letbe a local defining function fob nearp. After an
orthogonal change of coordinates, we may assume thatrgpad= (0, ...,0,1)

and thatV(p) is the span of

d ad
azm-',-l7 o aZn—l

atp. Forj=1,...,n —1, define neap the smooth complex vector fields by

d rj 0
Li=——-2+—,
0zj 1, 0z,
where we writer; for the partial derivative of with respect ta;. Note that these
are complex-tangential alordg and in fact spaff’ ©(dD). Define the pure imag-
inary vector fieldT" by
T=—1—-———,
'n 8Zn i azn

wherer; denotes the partial derivative ofwith respect t,.

Nowwe usd.y, ..., L, tofindacomplexvector bund@ of dimensiom —m—1
so thatN(g) C G, C TqC(E)D) if ¢ € 9D NW. (See the beginning of the construc-
tion in [5, Sec. 2].) Toward this end, 4f € W then we identify a vector at of the
forms = Z;lej(a/azj) with (s1, ..., s,). Ifalsor = 3°7_,1;(3/dz;) is a vector
atq, we define

Lg(s,1) En o (@)s)t;

s, 1) = - itk

1 L= 37,07 1R
J k=1

With this notation we define the bund& by requiring that its fiber over a point
g € W satisfy

G, ={s:0r,(s) =0andL,(s,L;) =0forl<j <m}.
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It remains to check tha¥(q) C G, for ¢ € 9D NW. For suchy, the Levi form of
r restricted tquC(aD) is positive semi-definite, from which it follows that

N(q) = {s e T(3D) : L,(s.1) = 0 whenever € 7,°(aD)}.

We conclude tha®G has the desired property.

Now we define the bundIE by the requirement that its fiber over each point
g € W be the orthogonal complement G, relative to{s : dr,(z) = 0}. Then it
follows easily that part (a) is true.

Next we put

1
T = 2T.

We will apply the Frobenius theorem (see e.g. [4, Sec. 4.1]) to obtain a smooth
diffeomorphism® satisfying part (b). Let:[ -] denote the Lie bracket of vector
fields, so KX, Y1(f) = X(Y(f)) — Y(X(f)). Standard computations show that,
forl<j,k<n-1

[Lj, Lk] = 0, [Lj, Ek] = bjkT, and [Lj, T] = CjT

for some smooth functioris; andc;. (Note that these are identities; they do not
hold merely modulo complex-tangential terms.) Sifge. .., L,_; spanT ©(3D)
alongaD, itfollows easily that the subbundkeéis involutive in the sense thaX] Y]
belongs td= wheneverX andY belong toF. Thus by the real Frobenius theorem
there exists a smooth diffeomorphisinon W such that part (b) holds. O

In the following lemma we employ the Proposition to patch local defining func-
tions. Using the notation of the Stratification Theorem, wekfixith 1 < k& <

2n — 3 and patch along, away from the lower-dimensional strata. Here the cru-
cial property ofSy is that7,(Sy) N N(p) = {0} for all p € Si.

PAaTcHING LEMMA. LetD be alinearly regular domain with real-analytic bound-
aryinC", let vV be a neighborhood oU}‘;&S,-, and putk = S;\V. Suppose that

for eachp € K there is a neighborhood, of p on whichD has a smooth defin-

ing function that is plurisubharmonic o®D N U,. Then there exists a defining
function on a neighborhood & that is plurisubharmonic on the boundary.

Proof. We will apply the Proposition at each point &f and then use the diffeo-
morphisms to obtain the desired defining function n€aAt the outset we note
that the local bundl€& can be globalized over a neighborhood Kfsince (by
part (b) of the Stratification Theorem) the null space has constant dimension along
each component df;.

First we fix p € K. We will shrink the neighborhood, without comment. We
apply the proposition to obtain a smooth diffeomorphiénon U,. We want to
patch defining functions nearusing a functiory defined in terms of this diffeo-
morphism. Toward this end, assume tkgtp) = 0 and letyy be a smooth non-
negative function with compact support on a small neighborhood offR?it?
so thatyy = 1 near 0. Defingg = ¥ o (¢4, ..., ¢2,41), and IetU; Cc U, bea
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small neighborhood g on whichy = 1. We observe that restricted tok N U,

has compact support relative to that set. This is so because the Proposition and
the conditionT, (Sx) N N(p) = {0} together imply that the orthogonal projection
from T,,(Sx) N T,C(8D) to E, is injective.

This choice ofy enables us to control the Levi form in complex-tangential di-
rections. To gain control in the complex-normal direction, we modify the given
defining function. Let be a smooth defining function that is plurisubharmonic on
dD N U,. Define, forM > 0 to be chosen, the modified function= r + Mr2.

A simple computation shows that

Ly(o,1) = Ly(r, 1) + 2M|dr, (1) |? @

if ¢ € 3D NU,. This equation certainly shows that the smooth local defining func-
tion o is plurisubharmonic 0dD N U,,.

Now choose from the collection of all] with p € K a finite subcover ok,
say{Vj}f:l, and for eacly let x; be the function corresponding 1. Let A be the
local defining functiom. = Zle Xjoj, Whereg; is the modified defining func-
tion for V; as before. This is well-defined on a thin neighborhébdf K by our
choice ofy;.

We claim thatx is plurisubharmonic on the boundary. In order to see this, first
compute that foy € 0D N Q andt € C" we have

J
L.t =Y {xj(@)L(oy. 1) + 2 RePy;(1)do; (1]}, 2
j=1

where, for ease of notation, we have suppressed the subscripts invghilig
now fix ¢ (with1 < ¢ < J) and prove thaL (A, t) > 0 ondaD N V,. This will com-
plete the proof. For a givepe aD NV, andr € C" we writet’ for the orthogonal
projection oft ontoE,. It follows from part (a) of the Proposition that there exists
a constant > 0 independent o# such that, for aly € 9D N V, andr € C",

2.
Ly(re, 1) > cllt'l5

here, of coursey is the defining function on which, is based. Using this in (1)
yields
Ly(oe, 1) = cllt'I? + Mlorc(1)[? ®)

forg e aD NV, andr € C". Also, by our definition ofy ; and the Proposition there
exists a constart > 0 independent oM such that, if1< j < J, g € dD NV,
andr € C", then

|0x;(1)d0; ()] < C(llt"13re(1)] + [9re (1) ). “4)

We combine (2), (3), (4), and the fact that eaghis plurisubharmonic on the
boundary to get that, for all e 9D N V, andr € C",

LG, 1) = clltI? + M1ore@)|? — 2CI (|11 [[18re(1)] + 18re(D[?). ®)

Now we use the elementary inequality
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af < Aa® + iﬁZ
- 4A
with @ = ||t'||, B = |dr,(¢t)|, and A small to see that the quantity on the right in

(5) is nonnegative iM is sufficiently large. O

4. Proof of the Theorem
In this section we prove our main result.

THEOREM. Let D be a linearly regular domain with real-analytic boundary in
C", and suppose that for eaghe dD there is a neighborhood, of p on which
D has a smooth defining function that is plurisubharmoni®@®m U,. ThenD
has a global smooth defining function plurisubharmonid@én

Proof. We fix a pointinw(dD) and apply the Stratification Theorem to get a neigh-
borhoodU and stratgS;}3"°. We will show how to obtain a defining function

onU that is plurisubharmonic on the boundary. The procedure for finding such a
function on the entire boundary is similar.

We patch defining functions inductively using the Patching Lemma. Trivially
there exists a smooth defining function that is plurisubharmonic on a neighbor-
hood of the finite seSo. Assume that > 1and that a neighborhodd of [ J/ 5 S;
exists on which there is a smooth defining function plurisubharmonic on the bound-
ary. Apply the Patching Lemma to obtain such a function on a neighborhood of
St \ Vi. Then patch together these two functions aldhgusing the method of
proof in the Patching Lemma to obtain a smooth defining function on a neighbor-
hood ofo:O S; thatis plurisubharmonic on the boundary. By induction we obtain
a smooth defining function on a neighborhoodu@®D) in U that is plurisubhar-
monic on the boundary. Now it is a standard fact that, for any bounded pseudo-
convex domain with smooth boundary, there exists a strictly plurisubharmonic
defining function away from a neighborhoodwdD); a moment’s reflection on
equation (1) in the proof of the Patching Lemma suggests the proof of this fact.
Given this fact, it is a simple matter to patch these two functions to get one on all
of U. O
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