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Global Plurisubharmonic Defining Functions

Rachid Belhachemi & Alan Noell

1. Introduction

Given a bounded pseudoconvex domain with smooth (i.e., infinitely differentiable)
boundary inCn, the Levi condition ensures that, for every defining function, the
Levi form restricted to complex tangent vectors is positive semi-definite at each
boundary point. Here we study the stronger condition that there exists a defining
function plurisubharmonic on the boundary in the sense that, at each boundary
point, the Levi form is positive semi-definite onall complex vectors. For strongly
pseudoconvex domains (i.e., when the Levi form is positive definite on complex
tangent vectors) it is elementary that there is a strongly plurisubharmonic defin-
ing function. For weakly pseudoconvex domains, a defining function plurisubhar-
monic on the boundary need not exist. The well-known “worm” domain intro-
duced by Diederich and Fornæss in [7] has no such defining function, nor does
the version of that domain with real-analytic boundary defined by Fornæss in [8].
In fact, a defining function plurisubharmonic on the boundary need not exist even
locally. Fornæss gave such an example with only smooth boundary in [8], and later
Behrens [1] gave a simpler example: There is a domain with a polynomial defin-
ing function such that (a) the Levi form degenerates at only one boundary point
but (b) near this point, there is no local defining function plurisubharmonic on the
boundary. Her example shows that any sufficient condition for the existence of a
local defining function plurisubharmonic on the boundary must involve more than
merely the structure of the degeneracy set of the Levi form.

Here we are interested in conditions under which the existence at each bound-
ary point of a local defining function plurisubharmonic on the boundary implies
the existence of a global defining function with this property. In this setting the
structure of the degeneracy set enters naturally, since an obstruction can exist in
the attempt to patch local defining functions along this set. This situation is illus-
trated by the real-analytic version of the “worm” domain constructed by Fornæss
in [8], which does have local defining functions of the desired type even though
(as just mentioned) there is no such global function. In this example the degener-
acy set is a curve whose tangent space at each point is contained in the null space
of the Levi form restricted to complex tangent vectors. Our condition that the do-
main be linearly regular (as defined in Section 2) rules out the existence of such
curves, and this condition, along with the existence of local defining functions
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plurisubharmonic on the boundary, turns out to be sufficient for the existence of a
global function on bounded domains with real-analytic boundary. Thus we have
the following result.

Theorem. LetD be a linearly regular domain with real-analytic boundary in
Cn, and suppose that for eachp ∈ ∂D there is a neighborhoodUp of p on which
D has a smooth defining function that is plurisubharmonic on∂D ∩ Up. ThenD
has a global smooth defining function plurisubharmonic on∂D.

For the casen = 2 this theorem was proved in [11]. The higher-dimensional case
we treat is considerably more complicated owing to the CR geometry that comes
into play. We need the stratification theorem from [3] to describe the degeneracy
set of the Levi form in terms of this geometry, and we use the real Frobenius the-
orem to find nonholomorphic coordinates that simplify the description of how to
patch local defining functions. In Section 2 we describe this stratification along
with other background material, and we prove the preliminary patching results in
Section 3. In Section 4 we prove our main result.

2. Background

If φ is a smooth function defined nearp ∈Cn(z1, . . . , zn), then fort = (t1, . . . , tn)∈
Cn we write∂φp(t) for

n∑
j=1

∂φ

∂zj
(p)tj

and writeLp(φ, t) for
n∑

j,k=1

∂2φ

∂zj∂z̄k
(p)tj t̄k,

the Levi form ofφ atp applied tot.
Let S be a smooth submanifold ofCn and letp ∈ S. We writeTp(S) for the

(real) tangent space toS atp. The complex tangent space toS atp is, by defini-
tion, the maximal complex subspace ofTp(S); it is denotedT C

p (S). We say that
S is a CR manifold if the dimension ofT C

p (S) is independent ofp.
LetD denote a bounded pseudoconvex domain with smooth boundary inCn,

and letr be a local defining function nearp ∈ ∂D. Then it is easy to see that

T C
p (∂D) = {t ∈Cn : ∂rp(t) = 0}.

We writeN(p) for the null space in the complex tangent space of the Levi form
atp, so

N(p) = {t ∈ T C
p (∂D) : Lp(r, t) = 0}.

We letw(∂D) denote the set of weakly pseudoconvex boundary points ofD, that
is, the set of allp ∈ ∂D such thatN(p) 6= {0}. We say thatD is linearly regu-
lar if there does not exist a nontrivial smooth curveγ in ∂D such thatγ ′(t) lies in
N(γ (t)) for all t.
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LetD be a bounded domain with smooth boundary inCn and letS be a smooth
submanifold of∂D. We say thatS is complex-tangential at a pointp ∈ S if
Tp(S) ⊂ T C

p (∂D). If L is a smooth vector field near a pointp ∈ ∂D, we say that
L is complex-tangential atp if its value there belongs toT C

p (∂D).

The following theorem is proved in [3, Thm. 5]. It shows that, for linearly reg-
ular domains, the degeneracy set of the Levi form can be locally stratified by CR
submanifolds whose tangent directions lying in the complex-tangent space to the
boundary are positive for the Levi form of the boundary. (In [3] the domain is as-
sumed to be convex, but, as noted in [3], the proof shows that linear regularity
suffices. Also, the statement about the dimension of the null space in part (b) of
the Stratification Theorem that follows is implicit in the proof in [3].)

Stratification Theorem. LetD be a bounded pseudoconvex domain with real-
analytic boundary inCn, and assume thatD is linearly regular. Then each point
in w(∂D) has a neighborhoodU such that the following statements hold.

(a) We havew(∂D) ∩ U = ⋃2n−3
j=0 Sj, where eachSj is a finite disjoint union of

j-dimensional real-analytic CR submanifolds of∂D ∩ U. Furthermore, for
all p ∈ Sj we haveTp(Sj ) ∩N(p) = {0}.

(b) If S is a component of someSj, then the null spaceN has constant dimension
along S. Also, if S is complex-tangential at some point then it is complex-
tangential at every point.

(c) EachSk is closed in(∂D ∩ U) \ (⋃k−1
j=0 Sj

)
.

We remark that the concept of linear regularity was defined (under a different
name) for domains with real-analytic boundary inC2 in [9]. The concept was
extended to domains with smooth boundary inCn in [10], where it was proved
that bounded convex domains with real-analytic boundary inCn are linearly reg-
ular. As a consequence, a smooth bounded domain is linearly regular if it has a
proper holomorphic embedding into a bounded convex domain with real-analytic
boundary, assuming the embedding extends smoothly to the boundary. In fact, the
context of [10] was the study of passing from local to global maps into convex do-
mains. The original setting in [9] was patching local peak functions on linearly
regular domains inC2. This study of local peak functions was extended toC3 in
[3] with the aid of the Stratification Theorem. This stratification was also used in
[2] to study compact subsets of peak sets inCn.

3. Patching Functions along Strata

The key part of the proof of our main result is to patch local defining functions
near a given stratum from the Stratification Theorem. To control the Levi form we
require that the cutoff functions be constant in weakly pseudoconvex directions.
The following proposition shows how to accomplish this in terms of a smooth (but
not holomorphic) diffeomorphism. The result itself does not refer to any stratifi-
cation and may be of general interest.



380 Rachid Belhachemi & Alan Noell

Proposition. LetD be a bounded pseudoconvex domain with smooth boundary
in Cn, and fixp ∈ ∂D. Write the complex dimension ofN(p) asn−m−1. Then
there exist: a neighborhoodW of p; a subbundleE of T(Cn) overW of real di-
mension2m such that the fiber ofE over each pointq ∈ ∂D ∩W is contained in
T C
q (∂D); a smooth real vector fieldτ onW that, at each point of∂D ∩W, is tan-

gential to∂D but not complex-tangential; and a smooth diffeomorphism8 onW
with the properties in(a)and (b) below. In stating these properties we writeF for
the real subbundle ofT(Cn) overW generated byE and the vector fieldτ, and
we denote with a subscriptq the fiber of a bundle over a pointq ∈W.
(a) For all q ∈ ∂D ∩W we have thatN(q) is contained in the orthogonal com-

plement ofEq relative toT C
q (∂D).

(b) If we write8 = (φ1, . . . , φ2n), thenLφj = 0 onW if L ∈ F and 2m + 1<
j ≤ 2n.

Proof. We work in a neighborhoodW of p, which we will shrink without com-
ment. We define the real vector fields we seek in terms of the complex vector fields
Lj andT that arise naturally in the study of the CR geometry of real hypersurfaces
(see e.g. [6, Sec. 3.1]). Letr be a local defining function forD nearp. After an
orthogonal change of coordinates, we may assume that gradr(p) = (0, . . . ,0,1)
and thatN(p) is the span of

∂

∂zm+1
, . . . ,

∂

∂zn−1

atp. For j = 1, . . . , n−1, define nearp the smooth complex vector fieldsLj by

Lj = ∂

∂zj
− rj

rn

∂

∂zn
,

where we writerj for the partial derivative ofr with respect tozj . Note that these
are complex-tangential along∂D and in fact spanT C(∂D). Define the pure imag-
inary vector fieldT by

T = 1

rn

∂

∂zn
− 1

rn̄

∂

∂z̄n
,

wherern̄ denotes the partial derivative ofr with respect tōzn.
Now we useL1, . . . , Lm to find a complex vector bundleG of dimensionn−m−1

so thatN(q) ⊂ Gq ⊂ T C
q (∂D) if q ∈ ∂D ∩W. (See the beginning of the construc-

tion in [5, Sec. 2].) Toward this end, ifq ∈W then we identify a vector atq of the
form s =∑n

j=1 sj(∂/∂zj ) with (s1, . . . , sn). If also t =∑n
j=1 tj(∂/∂zj ) is a vector

atq, we define

Lq(s, t) =
n∑

j,k=1

∂2r

∂zj ∂z̄k
(q)sj t̄k.

With this notation we define the bundleG by requiring that its fiber over a point
q ∈W satisfy

Gq = {s : ∂rq(s) = 0 andLq(s, Lj ) = 0 for 1≤ j ≤ m}.
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It remains to check thatN(q) ⊂ Gq for q ∈ ∂D ∩W. For suchq, the Levi form of
r restricted toT C

q (∂D) is positive semi-definite, from which it follows that

N(q) = {s ∈ T C
q (∂D) : Lq(s, t) = 0 whenevert ∈ T C

q (∂D)}.
We conclude thatG has the desired property.

Now we define the bundleE by the requirement that its fiber over each point
q ∈W be the orthogonal complement ofGq relative to{t : ∂rq(t) = 0}. Then it
follows easily that part (a) is true.

Next we put

τ = i

2
T .

We will apply the Frobenius theorem (see e.g. [4, Sec. 4.1]) to obtain a smooth
diffeomorphism8 satisfying part (b). Let [·, ·] denote the Lie bracket of vector
fields, so [X, Y ](f ) = X(Y(f )) − Y(X(f )). Standard computations show that,
for 1≤ j, k ≤ n−1,

[Lj, Lk] = 0, [Lj, L̄k] = bjkT, and [Lj, T ] = cjT
for some smooth functionsbjk andcj . (Note that these are identities; they do not
hold merely modulo complex-tangential terms.) SinceL1, . . . , Ln−1 spanT C(∂D)

along∂D, it follows easily that the subbundleF is involutive in the sense that [X, Y ]
belongs toF wheneverX andY belong toF. Thus by the real Frobenius theorem
there exists a smooth diffeomorphism8 onW such that part (b) holds.

In the following lemma we employ the Proposition to patch local defining func-
tions. Using the notation of the Stratification Theorem, we fixk with 1 ≤ k ≤
2n−3 and patch alongSk away from the lower-dimensional strata. Here the cru-
cial property ofSk is thatTp(Sk) ∩N(p) = {0} for all p ∈ Sk.
Patching Lemma. LetD be a linearly regular domain with real-analytic bound-
ary in Cn, letV be a neighborhood of

⋃k−1
j=0 Sj, and putK = Sk \V. Suppose that

for eachp ∈K there is a neighborhoodUp of p on whichD has a smooth defin-
ing function that is plurisubharmonic on∂D ∩ Up. Then there exists a defining
function on a neighborhood ofK that is plurisubharmonic on the boundary.

Proof. We will apply the Proposition at each point ofK and then use the diffeo-
morphisms to obtain the desired defining function nearK. At the outset we note
that the local bundleE can be globalized over a neighborhood ofK since (by
part (b) of the Stratification Theorem) the null space has constant dimension along
each component ofSk.

First we fixp ∈K. We will shrink the neighborhoodUp without comment. We
apply the proposition to obtain a smooth diffeomorphism8 onUp. We want to
patch defining functions nearp using a functionχ defined in terms of this diffeo-
morphism. Toward this end, assume that8(p) = 0 and letψ be a smooth non-
negative function with compact support on a small neighborhood of 0 inR2m+1

so thatψ ≡ 1 near 0. Defineχ = ψ B (φ1, . . . , φ2m+1), and letU ′p ⊂ Up be a
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small neighborhood ofp on whichχ ≡ 1. We observe thatχ restricted toK ∩Up
has compact support relative to that set. This is so because the Proposition and
the conditionTp(Sk) ∩N(p) = {0} together imply that the orthogonal projection
from Tp(Sk) ∩ T C

p (∂D) to Ep is injective.
This choice ofχ enables us to control the Levi form in complex-tangential di-

rections. To gain control in the complex-normal direction, we modify the given
defining function. Letr be a smooth defining function that is plurisubharmonic on
∂D ∩ Up. Define, forM > 0 to be chosen, the modified functionσ = r +Mr 2.

A simple computation shows that

Lq(σ, t) = Lq(r, t)+ 2M|∂rq(t)|2 (1)

if q ∈ ∂D∩Up. This equation certainly shows that the smooth local defining func-
tion σ is plurisubharmonic on∂D ∩ Up.

Now choose from the collection of allU ′p with p ∈ K a finite subcover ofK,
say{Vj }Jj=1, and for eachj letχj be the function corresponding toVj . Letλ be the
local defining functionλ = ∑J

j=1χjσj, whereσj is the modified defining func-
tion for Vj as before. This is well-defined on a thin neighborhood� of K by our
choice ofχj .

We claim thatλ is plurisubharmonic on the boundary. In order to see this, first
compute that forq ∈ ∂D ∩� andt ∈Cn we have

L(λ, t) =
J∑
j=1

{χj(q)L(σj, t)+ 2 Re[∂χj(t)∂σj(t)]}, (2)

where, for ease of notation, we have suppressed the subscripts involvingq. We
now fix ` (with 1≤ ` ≤ J ) and prove thatL(λ, t) ≥ 0 on∂D∩V`. This will com-
plete the proof. For a givenq ∈ ∂D ∩V` andt ∈Cn we writet ′ for the orthogonal
projection oft ontoEq . It follows from part (a) of the Proposition that there exists
a constantc > 0 independent ofM such that, for allq ∈ ∂D ∩ V` andt ∈Cn,

Lq(r`, t) ≥ c‖t ′‖2;
here, of course,r` is the defining function on whichσ` is based. Using this in (1)
yields

Lq(σ`, t) ≥ c‖t ′‖2 +M|∂r`(t)|2 (3)

for q ∈ ∂D∩V` andt ∈Cn. Also, by our definition ofχj and the Proposition there
exists a constantC > 0 independent ofM such that, if 1≤ j ≤ J, q ∈ ∂D ∩ V`,
andt ∈Cn, then

|∂χj(t)∂σj(t)| ≤ C(‖t ′‖|∂r`(t)| + |∂r`(t)|2). (4)

We combine (2), (3), (4), and the fact that eachσj is plurisubharmonic on the
boundary to get that, for allq ∈ ∂D ∩ V` andt ∈Cn,

L(λ, t) ≥ c‖t ′‖2 +M|∂r`(t)|2 − 2CJ(‖t ′‖|∂r`(t)| + |∂r`(t)|2). (5)

Now we use the elementary inequality
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αβ ≤ Aα2 + 1

4A
β2

with α = ‖t ′‖, β = |∂r`(t)|, andA small to see that the quantity on the right in
(5) is nonnegative ifM is sufficiently large.

4. Proof of the Theorem

In this section we prove our main result.

Theorem. LetD be a linearly regular domain with real-analytic boundary in
Cn, and suppose that for eachp ∈ ∂D there is a neighborhoodUp of p on which
D has a smooth defining function that is plurisubharmonic on∂D ∩ Up. ThenD
has a global smooth defining function plurisubharmonic on∂D.

Proof. We fix a point inw(∂D) and apply the Stratification Theorem to get a neigh-
borhoodU and strata{Sj }2n−3

j=0 . We will show how to obtain a defining function
onU that is plurisubharmonic on the boundary. The procedure for finding such a
function on the entire boundary is similar.

We patch defining functions inductively using the Patching Lemma. Trivially
there exists a smooth defining function that is plurisubharmonic on a neighbor-
hood of the finite setS0. Assume thatk ≥ 1 and that a neighborhoodVk of

⋃k−1
j=0Sj

exists on which there is a smooth defining function plurisubharmonic on the bound-
ary. Apply the Patching Lemma to obtain such a function on a neighborhood of
Sk \Vk. Then patch together these two functions alongSk using the method of
proof in the Patching Lemma to obtain a smooth defining function on a neighbor-
hood of

⋃ k
j=0 Sj that is plurisubharmonic on the boundary. By induction we obtain

a smooth defining function on a neighborhood ofw(∂D) in U that is plurisubhar-
monic on the boundary. Now it is a standard fact that, for any bounded pseudo-
convex domain with smooth boundary, there exists a strictly plurisubharmonic
defining function away from a neighborhood ofw(∂D); a moment’s reflection on
equation (1) in the proof of the Patching Lemma suggests the proof of this fact.
Given this fact, it is a simple matter to patch these two functions to get one on all
of U.
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