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On the Coverings of Proper Families
of 1-Dimensional Complex Spaces

M. CoLTOo1U & K. DIEDERICH

1. Introduction

In this article we want to show the following result concerning the stability of
holomorphic convexity for covering spaces.

THeoreM 1.1. Letw: X — T be a proper holomorphic surjective map of com-
plex spaces, leb € T be any point, and denote 1, := 7 ~1(¢) the fiber of =
atzo. Assume thadim X,, = 1. Leto: X — X be a covering space and Ié’;o =

oY X,,). If f(,o is holomorphically convex, then there is an open neighborhood
D, of to such that(rr o o)~(Dy) is holomorphically convex.

REMARK 1.2. This result is the main achievement of the note of T. Ohsawa [8].
However, as will be explained at the end of our article, we have serious questions
about his proof. Therefore, we consider it necessary to give a complete and clear
proof of Theorem.1.

Our theorem will be a consequence of the following proposition.

ProrosiTiON 1.3. Letn: X — T be a proper holomorphic surjective map of
complex spaces, leg € T be any point, and denote by, := 7 (¢,) the fiber
of = atzo. Assume thatlimX,, = 1. Leto: X — X be a covering space and let
X, i= 07Y(X,,). If X,, is holomorphically convex, then there exist

(1) an open neighborhoof of ¢¢;
(2) a continuous plurisubharmonic vertical exhaustion function

fiD:=(@oo) (D) > Ry

(i.e., the restriction ofr oo : D — D to {f < ¢} is proper for every € R);
and

(3) anincreasing sequende,}, a, — oo, such thatf is strongly plurisubhar-
monic near the level sefy = a,}, veN.

ReEMARK 1.4. This propositionis proved by Napier [5] for dixkh= 2, dim7T =1,
andX, T smooth.
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2. Some Important Lemmas

For the proof of the main results we will need a few lemmas, which we will ex-
plain in this section. Narasimhan showed the following.

LemMma 2.1[7, Cor. 1]. LetX be a complex space. Suppose thas a continu-
ous plurisubharmonic function ok and that{a, } is a sequence of real numbers
with a, — oo and such that each open set

X, ={xeX:pkx) <a,}

is holomorphically convex; = 1, 2, .... ThenX is holomorphically convex.

An important approximation lemma of Runge type on open Riemann surfaces,
also proved by Narasimhan [6], is the following.

LemMma 2.2. Let X be an open Riemann surface, and{lgt,},,.n be a sequence
of mutually disjoint simply connected domains such that the family is locally
finite. LetK, C D, be compact subsets for everys, > 0, and let holomor-
phic functionsf, on D, be given. Then there is a holomorphic functigron X
satisfying

[f(x) = fu(x)] <&y

forallx e K, andforallv=12,....
Finally, we will need the following lemma.

LeEmMMA 2.3. Let X be a complex space of bounded Zariski dimension and let
A C X be a closed Stein complex submanifold. Then there exists a holomorphic
retractionr: V — A, whereV is a suitable open neighborhood af

Proof. By a result of Siu (see [11]), the submanifoldhas an open Stein neigh-
borhoodW C X. We embed¥ into someC” and use the result of Docquier and
Grauert [2] on the existence of holomorphic retractions for closed submanifolds
of CV. O

3. Proof of Proposition 1.3

The main work to be done lies in the proof of Proposition 1.3, which will be rather
technical.

3.1. Step 1: Construction of a Continuous Plurisubharmonic Vertical
Exhaustion Function with Some “Nice” Properties

Without loss of generality, we may assume tha} is connected and tha,, is
connected and noncompact.

Select a finite set of pointd/ = {x1,...,x} C X,, =: S such thatF :=
S\ M is Stein and smooth. Hence, by Lemma 2.3 there is a holomorphic retract
r: W — F, whereW is an open neighborhood éfin X \ M.
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We useM := o (M) to denote a discrete subsetXdf(say, {a;};c,) and put
F:=0"YF)=X,,\MandW := o %(W). After shrinkingW (see [1]), we may
assume that can be lifted to a holomorphic retragt W — F. Also, shrinking
W again if necessary, we may suppose this defined in a neighborhood o,
where the closure is taken &\ M, and such that
(C) %K) cc X foreveryK cC F.

Foreveryi =1, ..., k we choose connected and simply connected neighborhoods

of x;, L; cC T; CC H;, contained in a local system of coordinates and having

the following properties:

(1) H N H; =@ fori # j;

(2) all the intersections of;, T;, H; with the local irreducible components §f
atx; are connected and simply connected;

(3) under the normalization morphispn. Z — S, the intersection of{; with
every local irreducible component Sfatx; corresponds irZ with respect to
a local system of coordinates to the &gt < 1+ ¢, and the corresponding
intersections witll; andL; correspond (in the same coordinates) to the sets
|z| <1—pand|z| < 1— p; (respectively), with O< p < p1 =  ande = ;

@ r(LinW)ycT,NnFfori=1,... k.

Now let A be the union of all noncompact irreducible componenté’gf It is

Stein. SinceX,, is noncompact and holomorphically convex, it also follows that

A # 0.

We denote by the union of all compact irreducible componentstgf and let
' = |JTI; be the decomposition df into connected components. Sinﬁ‘gJ is
holomorphically convex, each componéhtis compact.

We will explain the proof of Proposition 1.3 only for the cd3e# ¢, since the
other case is simpler and can easily be read off from the version given here. For
every index;, the setl; N A is finite and non-empty. We begin by constructing
at first a continuous plurisubharmonic exhaustion functiod — R that is lo-
cally constant in a uniformly thick neighborhood @fN A and such that, for any
fixed i, this constant is the same for all pointslinN A (i.e., the constant de-
pends only on). We write the following decompositions into disjoint unions of
connected components:

0_1(U L) = Ujes Bis
o HUT) =Ue, B].
-1 "
o (UH;) = U, B
We denote by/; C J those indiceg e J for which B; intersectsA. Thus we can
write M N A = {aj}jen-
Let nowgy: A — R, be aC* plurisubharmonic exhaustion function. For
J €,
M

j i= supg.
Bj'ﬂA
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We associate to each point (j € J1) a constant; > 0 with the following
properties:
(@) ¢; = oo;
(b) for each fixed, the constants belonging to the pointdpf A are always the
same;
(c) exceptinthe situation of (b), the constasjtare always different and any two
of them differ by more than 4;
(d) ¢; > M; for everyj € Ji.
Letm: A; — A denote the normalization of. For j € J1, we have that the
setm‘l(Bj” N A) is, in suitable local coordinates, a finite union of discs (i.e., bi-
holomorphic to discs) of radius ¢, sayD/, ..., Df/, . Similarly,

71
(BjNA)=Dj,U---UDj,

(discs of radius * p, concentric with theD?;, in the same local systems of co-
ordinates) and

m™(B;NA)=D;1U---UDjy

(discs of radius - p;, again concentric to the previous ones in the same local
systems of coordinates).

We now apply Lemma 2.2 to the open Riemann surfacéNamely, we use it for
the locally finite family of mutually disjoint disc®/’, (j € Ji, @ € {1, 2, ..., k;}).
On each such disb/', there is a holomorphic functiog . such that, foK; , :=
{zeD/, Izl <1},

suplgj«l <c¢; and inflgj4| >c¢; +1

D, 0K«
foreveryj e Jyanda =1, ..., k; (herec; is, of course, the constant associated to
the pointa;). Hence the approximation lemma gives us a holomorphic fungtion
on Az with
(2) sup[, |g| < ¢j and
(2) Inf(,KW|g| > ¢j +1
foreveryjeJi, a=1... k.

If we consider onD/’, the function makg|, ¢;), then this coincides with; on
D’ and with|g| on aKj «; it can therefore be extended outs|deX; , by Ig]. In
th|s way we have obtained a continuous plurisubharmonic fungtion 0 on A;
that has the constant valagon DM. Clearly,q; induces a continuous plurisub-
harmonic functior; > 0 on A, andg has the constant valug on B/ N A for
everyj € Ji.

Now consider the function

s = maxXq, ¢}

defined onA. It is continuous, plurisubharmonic, and exhaustive. By condition
(d), ¢; > M;, the functions is constant orBj’ N A for all j € J1, where it has the
valuec;.
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Since the same constant is associated to all pointg of A for fixed i, the
function s can be uniquely extended to a continuous plurisubharmonic exhaus-
tion functions; defined on the whole fibeX,,. On W = o~X(W) we consider
the functions; o 7 and onl ;. , B; we consider the function that, a8y, has the
constant values(a;), j € J; by condition (4), it is well-defined and we obtain a
functiont defined on the saturated neighborheod(W U (|J L;)). This func-
tion t is continuous, plurisubharmonic, and vertically exhaustive (by condition
(C) and the fact that is exhaustive). Moreovet, has constant values d# and
near the compact connected componéhts

3.2. Step 2: Modifying the FunctianSuitably

We now wish to modify the functiom from step 1 in such a way that it becomes
strongly plurisubharmonic in the neighborhood of some suitably chosen level sets.
Consider open neighborhoosts Ccc L; of the pointsy; i =1, ..., k) thatare
connected and simply connected and such that all their intersections with the local
irreducible components ¢fatx; are again connected and simply connected. Fur-
thermore, under the normalization mgp Z — S, these intersections should, in
the local coordinates from step 1, correspondkto< 1 — u for some O< p <
p1 < U
We writeo —1(U M;) = U, ., B (disjointunion of connected components) and
denoted’ := A\ M andU = r‘l(A ). Using again Lemma 2.2 (and shrinking
W if necessary and taking sufficiently close to 1) we can construct, as in step 1,
a continuous plurisubharmonic functipn U — R with the properties

1) p’(B”\B)ﬂU >1
) p
Q) p

for everyj € J;. (One first constructs a functiopy on A with these properties;
then putp := pg o ¥ and shrinkW a little bit.)

Let nowx > 0 be aC* strongly plurisubharmonic function defined in a neigh-
borhood of¥ (the closure being taken i\ M). We puth := 1 o0. The function

v = =gg9 < —, and

B”mU — 2

max @ p+2i)

Uje (B \BONU

can be extended by 1 tg Ujell B¢ and by the strongly plurisubharmonic function

p + A outside of J;,, B (i.e., onU \ (Ujey, Bj))- Inthis way we obtain a con-
tlnuous functiorw > 0 that is plurlsubharmonlc oty = U U ., B}, strongly
plurisubharmonic outsideJ, ;, B;, and= 1 onlJ,.,, B;. Since therefore the
functiona = 1onANM = {aj}jejl, from « we derive (exactly as in step 1) a
continuous plurisubharmonic functigh> 0 defined in a saturated neighborhood
of the fiberX, . a neighborhood of the type = WUl J,_,, BY = o ~X(D), where
D = W U M;. Furthermoreg is an extension by 1 af to everything outside

the domain of definition of. Hence,8 = 1onD \ Us.
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With 7 the function constructed in step 1, we put= 7 + 8, which is a contin-
uous plurisubharmonic vertical exhaustion functionforNow consider the level
sets{f = a,}, wherea, = ¢, + 2 (v € N). In the neighborhood of these level
sets the functiory is strongly plurisubharmonic, since these level sets intef3ect
only inU \ (Uje,1 Bj), wheref = «a is strongly plurisubharmonic. Therefore,
the proof of Proposition 1.3 is complete. O

4. Proof of Theorem 1.1

We use the results concerning 1-convex morphisms from [4] and [10]. For this,
let D1 CC D be a Stein neighborhood aof, where D is chosen with the prop-
erties from Proposition 1.3. By Richberg’s approximation theorem [9] it follows
that, for D, := (7 o 0)"X(D1), the restriction ofr o o: D1 — Dy to {f < a,}

is a 1-convex morphism, so by [4] and [10] it is a holomorphically convex mor-
phism. SinceD; is Stein, it follows from [10, Prop. 3.6] that the det < a,} is

a holomorphically convex space. By Lemma 2.1 we obtain thato) (D) is
holomorphically convex, as desired. The proof of Theorem 1.1 is completel.

REMaRrk 4.1.  Consider the case when, in the situation of Thedrdthefiber
5(,0 is Stein. Then allth€; are empty. Now, in step 2 of the proof of Proposition1.3
we obtained a plurisubharmonic function > 0 on Uy = U UJ;.,, B; that
was strongly plurisubharmonic outsidg,_, B;. Therefore, it follows from the
maximum principle for plurisubharmonic functions tHat does not contain any
compact analytic subsets of positive dimension. Hence, Theorem 1.1 implies the

following.

CoroLLARY 4.2. Under the hypothesis of Theorem 1.1 and the additional as-
sumption that the fibek,, is Stein, there is a neighborhodd; of o such that
(r 0 0)~X(Dy) is Stein.

5. Some Concluding Remarks

We want to explain here what our questions are concerning the proof of Oh-
sawa [8].

(1) The existence of a proper holomorphic map blowing down the connected
compact componenis, as claimed in [8, p. 110] is not proved. We show this here
by deducing the holomorphic convexity 6f o o) "(Dy).

(2) It seems to us that it is actually necessary to construct the “uniformly thick”
neighborhood as we did. Otherwise, it does not seem to be possible to construct
the required plurisubharmonic function in a saturated neighborhood of the given
fiber.

(3) Ohsawa [8, p. 111] uses a theorem of Docquier and Grauert [2] on semicon-
tinuous extensions of Stein open sets. But in [2] this was proved for the nonsin-
gular case, whereas Ohsawa needs it for singular complex spaces. In this case,
however, the problem is still open (see [3]).
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(4) Ohsawa [8, p. 111] also uses a theorem of Grauert and Narasimhan about
holomorphic convexity of strongly pseudoconvex domains. However, the domains
he considers also have boundary points which are not strongly pseudoconvex. We
avoid this difficulty by using the results on 1-convex morphisms from [4] and [10].
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