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On the Coverings of Proper Families
of 1-Dimensional Complex Spaces
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1. Introduction

In this article we want to show the following result concerning the stability of
holomorphic convexity for covering spaces.

Theorem 1.1. Let π : X → T be a proper holomorphic surjective map of com-
plex spaces, lett0 ∈ T be any point, and denote byXt0 := π−1(t0) the fiber ofπ
at t0. Assume thatdimXt0 = 1. Letσ : X̃→ X be a covering space and letX̃t 0 =
σ−1(Xt0). If X̃t0 is holomorphically convex, then there is an open neighborhood
D1 of t0 such that(π B σ)−1(D1) is holomorphically convex.

Remark 1.2. This result is the main achievement of the note of T. Ohsawa [8].
However, as will be explained at the end of our article, we have serious questions
about his proof. Therefore, we consider it necessary to give a complete and clear
proof of Theorem1.1.

Our theorem will be a consequence of the following proposition.

Proposition 1.3. Let π : X → T be a proper holomorphic surjective map of
complex spaces, lett0 ∈ T be any point, and denote byXt0 := π−1(t0) the fiber
of π at t0. Assume thatdimXt0 = 1. Let σ : X̃→ X be a covering space and let
X̃t0 := σ−1(Xt 0). If X̃t0 is holomorphically convex, then there exist:

(1) an open neighborhoodD of t0;
(2) a continuous plurisubharmonic vertical exhaustion function

f : D̃ := (π B σ)−1(D)→ R+

(i.e., the restriction ofπ B σ : D̃→ D to {f ≤ c} is proper for everyc ∈R);
and

(3) an increasing sequence{aν}, aν → ∞, such thatf is strongly plurisubhar-
monic near the level sets{f = aν}, ν ∈N.

Remark1.4. This proposition is proved by Napier [5] for dimX = 2,dimT = 1,
andX, T smooth.
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2. Some Important Lemmas

For the proof of the main results we will need a few lemmas, which we will ex-
plain in this section. Narasimhan showed the following.

Lemma 2.1 [7, Cor. 1]. LetX be a complex space. Suppose thatϕ is a continu-
ous plurisubharmonic function onX and that{aν} is a sequence of real numbers
with aν →∞ and such that each open set

Xν := {x ∈X : ϕ(x) < aν}
is holomorphically convex,ν = 1,2, . . . . ThenX is holomorphically convex.

An important approximation lemma of Runge type on open Riemann surfaces,
also proved by Narasimhan [6], is the following.

Lemma 2.2. LetX be an open Riemann surface, and let{Dν}ν∈N be a sequence
of mutually disjoint simply connected domains such that the family{Dν} is locally
finite. LetKν ⊂ Dν be compact subsets for everyν, εν > 0, and let holomor-
phic functionsfν onDν be given. Then there is a holomorphic functionf onX
satisfying

|f(x)− fν(x)| < εν

for all x ∈Kν and for all ν = 1,2, . . . .

Finally, we will need the following lemma.

Lemma 2.3. Let X be a complex space of bounded Zariski dimension and let
A ⊂ X be a closed Stein complex submanifold. Then there exists a holomorphic
retractionr : V → A, whereV is a suitable open neighborhood ofA.

Proof. By a result of Siu (see [11]), the submanifoldA has an open Stein neigh-
borhoodW ⊂ X. We embedW into someCN and use the result of Docquier and
Grauert [2] on the existence of holomorphic retractions for closed submanifolds
of CN.

3. Proof of Proposition 1.3

The main work to be done lies in the proof of Proposition 1.3, which will be rather
technical.

3.1. Step 1: Construction of a Continuous Plurisubharmonic Vertical
Exhaustion Functionτ with Some “Nice” Properties

Without loss of generality, we may assume thatXt0 is connected and that̃Xt0 is
connected and noncompact.

Select a finite set of pointsM = {x1, . . . , xk} ⊂ Xt0 =: S such thatF :=
S \M is Stein and smooth. Hence, by Lemma 2.3 there is a holomorphic retract
r : W → F, whereW is an open neighborhood ofF in X \M.
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We useM̃ := σ−1(M) to denote a discrete subset ofX̃ (say,{aj }j∈J ) and put
F̃ := σ−1(F ) = X̃t0\ M̃ andW̃ := σ−1(W ). After shrinkingW (see [1]), we may
assume thatr can be lifted to a holomorphic retractr̃ : W̃ → F̃ . Also, shrinking
W again if necessary, we may suppose thatr is defined in a neighborhood of̄W,
where the closure is taken inX \M, and such that

(C) r̃−1(K) ⊂⊂ X̃ for everyK ⊂⊂ F̃ .
For everyi = 1, . . . , k we choose connected and simply connected neighborhoods
of xi, Li ⊂⊂ Ti ⊂⊂ Hi, contained in a local system of coordinates and having
the following properties:

(1) H̄i ∩ H̄j = ∅ for i 6= j ;
(2) all the intersections ofLi, Ti, Hi with the local irreducible components ofS

atxi are connected and simply connected;
(3) under the normalization morphismγ : Z → S, the intersection ofHi with

every local irreducible component ofS atxi corresponds inZ with respect to
a local system of coordinates to the set|z| < 1+ ε, and the corresponding
intersections withTi andLi correspond (in the same coordinates) to the sets
|z| < 1− ρ and|z| < 1− ρ1 (respectively), with 0< ρ < ρ1= 1

7 andε = 1
4;

(4) r(L̄i ∩W) ⊂ Ti ∩ F for i = 1, . . . , k.

Now letA be the union of all noncompact irreducible components ofX̃t0. It is
Stein. SinceX̃t0 is noncompact and holomorphically convex, it also follows that
A 6= ∅.

We denote by0 the union of all compact irreducible components ofX̃t0 and let
0 = ⋃

0i be the decomposition of0 into connected components. SinceX̃t0 is
holomorphically convex, each component0i is compact.

We will explain the proof of Proposition 1.3 only for the case0 6= ∅, since the
other case is simpler and can easily be read off from the version given here. For
every indexi, the set0i ∩ A is finite and non-empty. We begin by constructing
at first a continuous plurisubharmonic exhaustion functions : A→ R+ that is lo-
cally constant in a uniformly thick neighborhood ofM̃ ∩A and such that, for any
fixed i, this constant is the same for all points in0i ∩ A (i.e., the constant de-
pends only oni). We write the following decompositions into disjoint unions of
connected components:

σ−1
(⋃

Li
) =⋃j∈J Bj,

σ−1
(⋃

Ti
) =⋃j∈J B

′
j ,

σ−1
(⋃

Hi

) =⋃j∈J B
′′
j .

We denote byJ1⊂ J those indicesj ∈ J for whichBj intersectsA. Thus we can
write M̃ ∩ A = {aj }j∈J1.

Let now ϕ : A → R+ be aC∞ plurisubharmonic exhaustion function. For
j ∈ J1,

Mj := sup
B̄ ′
j
∩A
ϕ.
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We associate to each pointaj (j ∈ J1) a constantcj > 0 with the following
properties:

(a) cj →∞;
(b) for each fixedi, the constants belonging to the points of0i ∩A are always the

same;
(c) except in the situation of (b), the constantscj are always different and any two

of them differ by more than 4;
(d) cj > Mj for everyj ∈ J1.

Let m : A1 → A denote the normalization ofA. For j ∈ J1, we have that the
setm−1(B ′′j ∩ A) is, in suitable local coordinates, a finite union of discs (i.e., bi-
holomorphic to discs) of radius 1+ ε, sayD ′′j,1, . . . , D

′′
j,kj
. Similarly,

m−1(B ′j ∩ A) = D ′j,1∪ · · · ∪D ′j,kj
(discs of radius 1− ρ, concentric with theD ′′j,l, in the same local systems of co-
ordinates) and

m−1(Bj ∩ A) = Dj,1∪ · · · ∪Dj,kj
(discs of radius 1− ρ1, again concentric to the previous ones in the same local
systems of coordinates).

We now apply Lemma 2.2 to the open Riemann surfaceA1. Namely, we use it for
the locally finite family of mutually disjoint discsD ′′j,α (j ∈ J1, α ∈ {1,2, . . . , kj }).
On each such discD ′′j,α there is a holomorphic functiongj,α such that, forKj,α :=
{z∈D ′′j,α : |z| < 1},

sup
D̄ ′
j,α

|gj,α| < cj and inf
∂Kj,α

|gj,α| > cj +1

for everyj ∈ J1 andα = 1, . . . , kj (herecj is, of course, the constant associated to
the pointaj ). Hence the approximation lemma gives us a holomorphic functiong

onA1 with

(1) supD̄ ′
j,α
|g| < cj and

(2) inf∂Kj,α|g| > cj +1

for everyj ∈ J1, α = 1, . . . , kj .
If we consider onD ′′j,α the function max(|g|, cj ), then this coincides withcj on

D̄ ′j,α and with|g| on∂Kj,α; it can therefore be extended outside
⋃
Kj,α by |g|. In

this way we have obtained a continuous plurisubharmonic functionq1 > 0 onA1

that has the constant valuecj on D̄ ′j,α. Clearly,q1 induces a continuous plurisub-
harmonic functionq > 0 onA, andq has the constant valuecj on B ′j ∩ A for
everyj ∈ J1.

Now consider the function

s := max{q, ϕ}
defined onA. It is continuous, plurisubharmonic, and exhaustive. By condition
(d), cj > Mj, the functions is constant onB ′j ∩ A for all j ∈ J1, where it has the
valuecj .



On the Coverings of Proper Families of 1-Dimensional Complex Spaces373

Since the same constant is associated to all points of0i ∩ A for fixed i, the
function s can be uniquely extended to a continuous plurisubharmonic exhaus-
tion functions1 defined on the whole fiber̃Xt0. On W̃ = σ−1(W ) we consider
the functions1 B r̃ and on

⋃
j∈J Bj we consider the function that, onBj, has the

constant values1(aj ), j ∈ J ; by condition (4), it is well-defined and we obtain a
functionτ defined on the saturated neighborhoodσ−1

(
W ∪ (⋃Li

))
. This func-

tion τ is continuous, plurisubharmonic, and vertically exhaustive (by condition
(C) and the fact thats is exhaustive). Moreover,τ has constant values onBj and
near the compact connected components0i.

3.2. Step 2: Modifying the Functionτ Suitably

We now wish to modify the functionτ from step 1 in such a way that it becomes
strongly plurisubharmonic in the neighborhood of some suitably chosen level sets.

Consider open neighborhoodsMi ⊂⊂ Li of the pointsxi (i = 1, . . . , k) that are
connected and simply connected and such that all their intersections with the local
irreducible components ofS atxi are again connected and simply connected. Fur-
thermore, under the normalization mapγ : Z→ S, these intersections should, in
the local coordinates from step 1, correspond to|z| < 1− µ for some 0< ρ <

ρ1 < µ.

We writeσ−1
(⋃

Mi

) =⋃j∈J B
◦
j (disjoint union of connected components) and

denoteA′ := A \ M̃ andU := r̃−1(A′). Using again Lemma 2.2 (and shrinking
W if necessary and takingµ sufficiently close to 1) we can construct, as in step 1,
a continuous plurisubharmonic functionp : U → R+ with the properties

(1) p
∣∣
(B ′′
j
\Bj )∩U > 1,

(2) p
∣∣
B̄◦
j
∩U = ε0 <

1
4, and

(3) p
∣∣
B ′′
j
∩U ≤ 3

2

for everyj ∈ J1. (One first constructs a functionp0 onA with these properties;
then putp := p0 B r̃ and shrinkW a little bit.)

Let nowλ > 0 be aC∞ strongly plurisubharmonic function defined in a neigh-
borhood ofW̄ (the closure being taken inX \M). We putλ̃ := λBσ. The function

max⋃
j∈J1(B

′′
j
\B◦
j
)∩U
(1, p + λ̃)

can be extended by 1 to
⋃
j∈J1

B◦j and by the strongly plurisubharmonic function

p+ λ̃ outside of
⋃
j∈J1

B̄j
(
i.e., onU \ (⋃j∈J1

B̄j
))
. In this way we obtain a con-

tinuous functionα > 0 that is plurisubharmonic onU1= U ∪⋃j∈J1
B◦j , strongly

plurisubharmonic outside
⋃
j∈J1

B̄j, and≡ 1 on
⋃
j∈J1

B◦j . Since therefore the
functionα ≡ 1 onA ∩ M̃ = {aj }j∈J1, from α we derive (exactly as in step 1) a
continuous plurisubharmonic functionβ > 0 defined in a saturated neighborhood
of the fiberX̃t0, a neighborhood of the typẽD = W̃ ∪⋃j∈J1

B◦j = σ−1(D),where
D = W ∪⋃Mi. Furthermore,β is an extension by 1 ofα to everything outside
the domain of definition ofα. Hence,β ≡ 1 onD̃ \ U1.
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With τ the function constructed in step 1, we putf := τ +β,which is a contin-
uous plurisubharmonic vertical exhaustion function forD̃. Now consider the level
sets{f = aν}, whereaν = cν + 2 (ν ∈ N). In the neighborhood of these level
sets the functionf is strongly plurisubharmonic, since these level sets intersectD̃

only in U \ (⋃j∈J1
B̄j
)
, whereβ = α is strongly plurisubharmonic. Therefore,

the proof of Proposition 1.3 is complete.

4. Proof of Theorem 1.1

We use the results concerning 1-convex morphisms from [4] and [10]. For this,
let D1 ⊂⊂ D be a Stein neighborhood oft0, whereD is chosen with the prop-
erties from Proposition 1.3. By Richberg’s approximation theorem [9] it follows
that, forD̃1 := (π B σ)−1(D1), the restriction ofπ B σ : D̃1→ D1 to {f < aν}
is a 1-convex morphism, so by [4] and [10] it is a holomorphically convex mor-
phism. SinceD1 is Stein, it follows from [10, Prop. 3.6] that the set{f < aν} is
a holomorphically convex space. By Lemma 2.1 we obtain that(π B σ)−1(D1) is
holomorphically convex, as desired. The proof of Theorem 1.1 is complete.

Remark 4.1. Consider the case when, in the situation of Theorem1.1, thefiber
X̃t0 is Stein. Then all the0i are empty. Now, in step 2 of the proof of Proposition1.3
we obtained a plurisubharmonic functionα > 0 on U1= U ∪⋃j∈J1

B◦j that
was strongly plurisubharmonic outside

⋃
j∈J1

B̄j . Therefore, it follows from the
maximum principle for plurisubharmonic functions thatU1 does not contain any
compact analytic subsets of positive dimension. Hence, Theorem 1.1 implies the
following.

Corollary 4.2. Under the hypothesis of Theorem 1.1 and the additional as-
sumption that the fiber̃Xt0 is Stein, there is a neighborhoodD1 of t0 such that
(π B σ)−1(D1) is Stein.

5. Some Concluding Remarks

We want to explain here what our questions are concerning the proof of Oh-
sawa [8].

(1) The existence of a proper holomorphic map blowing down the connected
compact components0i, as claimed in [8, p. 110] is not proved. We show this here
by deducing the holomorphic convexity of(π B σ)−1(D1).

(2) It seems to us that it is actually necessary to construct the “uniformly thick”
neighborhood as we did. Otherwise, it does not seem to be possible to construct
the required plurisubharmonic function in a saturated neighborhood of the given
fiber.

(3) Ohsawa [8, p. 111] uses a theorem of Docquier and Grauert [2] on semicon-
tinuous extensions of Stein open sets. But in [2] this was proved for the nonsin-
gular case, whereas Ohsawa needs it for singular complex spaces. In this case,
however, the problem is still open (see [3]).
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(4) Ohsawa [8, p. 111] also uses a theorem of Grauert and Narasimhan about
holomorphic convexity of strongly pseudoconvex domains. However, the domains
he considers also have boundary points which are not strongly pseudoconvex. We
avoid this difficulty by using the results on 1-convex morphisms from [4] and [10].

Acknowledgment. The first author is grateful to the DFG for financial support
during this research.
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