Michigan Math. J. 47 (2000)

The Worst Sums in Ergodic Theory

MUSTAFA AKCOGLU, ROGER L. JONES,
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1. Introduction

Let(X, B, P) be a nonatomic probability space andddte an invertible measure-
preserving transformation afX, 8, P). Fix a sequencém; : k = 1,2,3,...)
inZandletf e L,(X), 1< p < oo. Depending on what the powers are, the
averages,% Y iy f(z™x) may or may not converge a.e., and they may or may
not stay bounded a.e. We then have the natural question: when this does not con-
verge a.e., what extra weight is needed to control the sum %imiﬂz not control
it? Fix some nondecreasing sequeritg) and consider the ratioR, f(x) =
(/L) > ;4 f(x™x). As long as lim,_.»(n/L,) = 0, R, f(x) will converge
to 0 a.e. for all functiong € L..(X). In this case, the question is: what else is
needed so thak,, f(x) will converge a.e. to O for alf € L,(X)? For example,
for f € L1(X) it is easy to see (as we will show) that there is no problem here
if >°21(1/L,) < oco. We are looking for examples, if any exist, of cases where
> > ,(/L,) = oo yetR, f(x) converges to 0 a.e. for any integrable functjon

In Section 2 we consider the related problem of how fast the powers of a trans-
formation can sweep out a space. This will show that= o(n(logn)¥?) is not
adequate foL ,(X). In Section 3, we use a method that reduces the problemto a
large deviation question. This shows that a wider class of sequences also will not
work, but the method does not yet apply to all sequences. Hence, it is still open
whether there is a sequentg with nonsummable reciprocals that hRgf(x)
converging to 0 a.e. for all integrable functiofisWe would conjecture that no
such sequence exists.

2. Fastest Sweeping Out

Itis not hard to see that there is a connection between the rate of sweeping out and
the rate of growth of sums likg_;_; f(t"x).

ProposiTiON 2.1. Fix p, 1 < p < oco. Assume that is ergodic. Let(L,) be a
fixed sequence of real numbers. Suppose that, for all sequenge Z and all

feLlyX),
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n

1
lim — E f(x"™x) =0 for a.e.x.
n—oo

Ly k=1

Then there is an absolute constaf) such that, for any sequen¢e:) in Z and
any f € L,(X),

P{xeX sup —

n>1

LY s

"kl

P )4
>A} < NI

Proof. The existence of the constaqt, (.,), perhaps depending am:;), fol-

lows by applying the Stein—Sawyer theorem in this context; see Garsia [2] for the
argument that we are using. Although in general the smallest weak-type constant
Cp.(myp could depend oimy), it is not hard to see that the hypothesis of the the-
orem implies that there is a constarj such thatC,, .,y < C, for all sequences
(my). To see this, note that if there were no such uniform bound then one could put
together a sequence:;) in blocks by an inductive construction for which there
would be no finite constant. O

REMARK 2.2. By the Conze principle, the same inequality must then hold for any
transformatioro in place ofr because is ergodic. If lim,_, . (n/L,) = 0, this

means that the same convergence result holds for all dynamical systems once we
know that it holds on one ergodic dynamical system.

Now suppose thdf is ameasurable setwitP(E) = «. Letmy, ..., my be chosen
so that

forall x € X.

I\JII—\

sup - Z 1p(t™ix) >

1<k<N

Assume thatL,) grows rapidly enough for Proposition 2.1 to hold. Also, sup-
pose for simplicity thatL,) is nondecreasing and that, = nw,,, where(w,) is
nondecreasing, too. Applying the weak inequalityfte= 15 yields

C
Pix: sup — Y 1g(t™x) > A 1|l = L P(E
{x Sup wNZ £ (2"x) }_M 1121} = =5 P(E).

If we now taker = 1/2wy then it follows from this inequality that 1<
27C,P(E)wj},. But thenN depends o, and if wy does not grow too quickly
then, by lettingx tend to O, one could havew}, converge to 0, contradicting the
inequality. In fact, it is not hard to see that, for ergodic transformations, there is
a constantk such thatn,, ..., my can be chosen so that < exp(K/a); see
Proposition 2.7. Denote the natural logarithm bytod his estimate means there
could not have been a weak inequality as in Proposition 2.1, i nw,, with

(w,) nondecreasing and, = o(logn)¥?. From Sawyer’s lemma in [4], the fol-
lowing proposition is an immediate consequence.
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ProrosiTioN 2.3.  Fix p, 1 < p < oo. For any ergodic transformatiom, if (L)
is such thatL,, = o(n(logn)¥?) and if L, /n is nondecreasing, then there exists a
sequencém) in Z and a positive functiorf € L,(X) such that

sup— Zf(r””x) o a.e.

n>l —y

REMARK 2.4. Forp = 1, this restriction or(L,,) will be relaxed using other tech-
nigues in the next section.

The argument given here could be improved if there were fast ways to sweep out
the probability spacéX, 8, P). But it turns out that the rate just quoted is essen-
tially the best one possible. To facilitate a discussion of the idea of the rate of
sweeping out, here is a definition.

DEerFINITIONS 2.5.  Fix atransformationand numbera andp, witha, p € (0, 1).
Let N(«, p, 7) be the smallest whole numbat such that there exists (a) a mea-
surable sef with P(E) = « and (b)mq, ..., my € Z such that

k

sup = ZlE(r’"fx) >p forall xeX.
l<k<N

Let N(«, p, T) be the smallest whole numbeé¥ such that there exists (a) a
Lebesgue measurable getn the circleT with P(E) = « and (b)yy, ..., yy €T
such that

k

su 1 > for all T.
1<k<9vk2 £(VY) = p y €

Let N(a, p) be the smallest whole numbarsuch that there exist measurable sets
Eq, ..., Exywith P(Ey) =aforallk =1, ..., N such that

k

su 1. (x) = p forall x e X.
SR Z g

REMARKS 2.6. (a) We refer to these functions generallysageping-out rates.
They are increasing by jumps, as the variabtbecreases and/or the variaple-
creases. The graphs of these functions typically are Devil's staircase graphs—that
is, graphs with rectangular regions where they are constant, only simple disconti-
nuities, and heights of the constant rectangular regions increasing to infinity as
and 1— p decrease to zero.

(b) The valueN(a, p) is obtained if one allows arbitrary measure-preserving
transformations instead of just powers of one transformatiolb turns out that
N(a, p, ) and N(«, p, T) are closely related when is ergodic. In any case,
N(e, p) < N(e, p, ) andN(a, p) < N(a, p, T).
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(c) There is another class of sweeping-out rates that could also be considered:
those that occur when the sequence of powers is a fixed, strongly sweeping-out se-
guence. For example, consider the sweeping-outVade p, 2%), which is taken
to be defined as the smallest vaiesuch that there exists a measurableieiith
P(E) = o such that

sup — ZlE(r x) >p forall xeX.
1<k<N —1

What is not clear is whether thi¥(«, p, 2V) is really larger than the formally
smaller valueN(a, p, ). The same question applies to other universally bad se-
guences that are strongly sweeping out, like the powers of 2.

Our first observation concerns how to overestimate the sweeping-out rate. This is
easiest to do in the case of the cirle

PROPOSITION 2.7. Suppose1 and % > are whole numbers. Then there is an over-

estimateN(a, p, T) < (1= p)l/a !
Proof. Let M = (% andr = 1_Lp. We takeT as [Q 1) with addition modulo 1. We
take the seE to be [Q o) and construct the translatioqs;) in successive blocks
By, ..., By. The first blockB; consists just ofc; = 0. Then each blockB,, 1
consists of a numbey, 1 of repetitions ofma, which are chosen subject to the
inequality

Im+1

m+1

Z] Jr]. t]

This gives a totalV = Z;”:l t; of translationscy, ..., xy and guarantees that

k

sup = ZlE(xj +x)>p forall xe]0,1).
1<k<N

Becauseol—l andr are whole numbers here, the inequality needed for,thean
be taken as an equality definimg, inductively withy; = 1. It givesz,, 1 =
ry " tand soZT*lltj =@+ gforallm =1,...,M -1 Italso gives
1 \M-1
Using this argument to obtain an overestimate N, p, T) generally requires
solving an integer programming problem. WeMt= [ 1 Follow the construc-
tion just described starting withy = 0, but shift all the other; down by the
amountMa — 1. This is the amount needed for the rest of the terms from the
blocksB,, ..., By to cover the remaining intervak|[ 1) as efficiently as possible.
Now, in order to choos&' as small as possible requires choosing whole numbers
t, ..., ty that minimizeN = Z;”zl t;, subject to the constraints
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Im+1 -

Yty g
form =1,..., M —1 The most obvious estimate that this gives &, p, T) is
thatN(a, p, T) < ([ﬁ] +1) el Because our main interest lies in the behav-
ior of this estimate as both-1 p and« tend to 0, this does not seem to be a very
good estimate. This is particularly the case when considering the lower estimate
in Proposition 2.14, which suggests tf(g_%)l/ “!is perhaps asymptotically the
correct value.

Itis helpful to see how the different sweeping-out rates may relate to one another.
First notice thatitv; < ap andp, < p1thenN(a1, p1, T) > N(az, p2, ). Thein-
equality ina uses the fact that the underlying measure space is nonatomic, but the
inequality inp is immediate from the definition. The same inequalities hold for
the other sweeping-out rates. Generally, the sweeping-out rates are finite-valued
and tend to infinity as botla and 1— p decrease to 0. Moreover,fis a rotation
of the circle with Lebesgue measure, then by the definition we Nawep, T) <
N(a, p, 7).

LEmMA 2.8. Let t be an ergodic rotation ofl' with Lebesgue measure, and let
a1 < ap Withe; € (0,1) fori =1, 2. ThenN(ay, p, ) < N(ag, p, T).

Proof. Fix a measurable sdt with P(E) = a; and some rotationg, ..., yn

such that .

1
sup = 1p(yjy) = p forall yeT.
k=N k4o

The transformation is given byt (y) = wy for somew of infinite order. There-
fore, for anye > 0, there exist whole numbers,, ..., my such thatw™i so well
approximates; (j =1,..., N) that, for some measurable gewith P(B) < e,

1sksN K <=

k
1
sup Z ZlE(wm/y) >p forall y ¢B.
j=1

Thus, increasing the measure Bfby an amount(¢) will yield this inequality
everywhere. Since is arbitrary, this means thaf(«», o, ) < N. But N could
have been the valuB(as, p, T). O

If N(a, p, t) were right continuous i or if N(a, p, T) were left continuous

in «, then the preceding remarks and Lemma 2.8 would showNli@t p, ) =

N(a, p, T) all of the time. But neither of these continuity statements are clear, so
the best we can do is the following corollary.

COROLLARY 2.9. If a1 < ap andN(«q, p, T) = N(wz, p, T), then for anyx €
[a1, 2] we haveN(a, p, T) = N(a, p, T).

REMARK 2.10. Since the sweeping-out rates are Devil's staircases, this corollary
shows that most of the time there is equality as above; only at the points of simple
discontinuity is there a question of whether the equality still holds.
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In the same fashion, one can relate the sweeping-out rates for different trans-
formations.

LemMma 2.11. Let o by any invertible measure-preserving transformation of
(X, B, P), and lett be an ergodic transformation of the same probability space.
Leta; < ap. ThenN(ag, p, T) < N(ay, p, 0).

Proof. Let E € 8 with P(E) = a3, and suppose:y, ..., my € Z such that

k

sup = ZlE(a’”fx) >p forall xeX.
1<k<N

Givene > 0, because is ergodlc we can choose an invertible measure-preserving
transformatiorny such thavtv—is so close t@ in the weak topology that, except
for x in a measurable sé (with P(B) < ¢ and lettingu = vrv™1),

su 1p(u™ix) = p.

SR Z ‘

With ¢ sufficiently small, this shows (asin Lemma 2.8) thdtry, p, 1) < N. But
by its definition,N (a2, p, ) = N(a2, p, vv ™) = N(az, p, T), Which gives the
inequality in this lemma. O

The same problems with continuity already mentioned make it difficult to improve
this result. But at least we can have the following somewhat useful corollary.

CoroLLARY 2.12. Suppose ando are ergodic transformations ofX, 8, P).
If 1 < a2 and N(ay, p, T) = N(ag, p, T), then for anya € [ay, a2] we have
N(a, p,T) = N(a, p, T).

These results on sweeping-out rates give some control on an upper estimate for
the size of these quantities asand 1— p tend to 0. But it is also worthwhile to
derive, if possible, a lower estimate for these quantities. It turns out that a fairly
good lower estimate can be given evenfqr, o). We would like to thank Zoltan
Furedi for giving us this proof.

LemMA 2.13. Let S be a finite set witly elements, and leky, ..., E, be finite
subsets of with each having cardinality. Assume that

sup — ZlEk(x) >p forall xeS.

1<k<n

Thenn > p(£ )“/‘” -

Proof. Let S = {1, 2,...,s}. Fort € §, letk, be suchthatcafg : 1 < j <k,
andr € E;} > pk,. We may assume thatd ky <k, <--- <k, =n. Letko =
0. Summing these valuds overt =1, ..., m gives
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m

plhky+ko+ - +ky) <Y cardj:1< j <k ands € E;)
=1

m t
> cardij ko1 < j <k, andi € E;)

=1 r=1
m ky
= Z cardt 1 r <t <m andt € E;}
r=1 j=kr_1+1
m ky,
=> ) cardENir,....m}
r=1 j=k,_1+1
m—a+1 m
< > atke—keD+ D (m—r+Dk —k_p
r=1 r=m—a+2

ka—a+1+ +km

LetK,, = Y i,k forallm =1, ...,s. Then we have seen that, for any,
K, — Knu_a > pK,, or (equivalently)k,, > Lime_a. But K, > a and so, by

induction,K;, > a(i)"*l for all i. Hence, for anyn we have

1-p
kmzc—t( > k;)

t=m—a+1

v

1
_me
a

1 1 lm/a]—1
seles)

The result follows by lettingz = s. O

\Y

This discrete version of the lower estimate can be transferred to the measure-
theoretic context as follows.

ProrosiTioN 2.14. Let(X, B, P) be a nonatomic probability space. Assume that
a,p€(0,1), and letEy, ..., E, be measurable sets with(E;) = « forall j =
1 ..., n. Assume that

k
1
sup ZZlEf(x) >p forall xeX.
j=1

1<k<n

)1/a—2 )1/0[—2

Thenn > p(ﬁ : thatis, N(a, p) > p(ﬁ

Proof. We can construct an ergodic transformatiaaf this probability space. Fix
xeXand, foreach=1,...,N, let F;, = {j < M : t/x € E;}. We then have
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k k

1 1 .

z E 1]:,(]):z E 1E,(‘L'J)C) for J:l,,M
=1 =1

Therefore,
k

sup - » 1p(j)=p forall j=1,..
1<k<n k Z :

By Lemma 2.13, this inequality yields an underestimate for the valde tifdeed,
leta = sup ;. y card(F;). Sincer is ergodic it follows that, for any, if M is suf-
ficiently large andc is almost any pointthem e [(« — e)M, (¢ + €)M]. Because

it is easier to cover with sets all of the same sizehe discrete underestimate

gives
- 1 [M/a]-1 - 1 Mja—2
n>p 1, >p 1, .

But % € [ais = E] so lettinge tend to O gives the estimate in the measure-

preserving case.
O

REMARKks 2.15. (&) It might be worthwhile to have a direct argument for this un-
derestimate of the sweeping-out rate in a nonatomic measure space. It is not clear
if this estimate is really the best possible one. However, Proposition 2.14 and
Proposition 2.7 show at least that, for each (0, 1), there exist constants;, C,
such that expCi/a) < N(a, p) < exp(Cz/a).

(b) One can |mprove Lemma 2.13 to give the underestimate that, fopany
n> (& W4l Thisis not as good as Lemma 2.13 wheis near 1, butitis bet-
ter for small values ob. It gives a corresponding improvement of Proposition 2.14
that, for all values op, N(a, p) > 4(1_p)1/“ ' However, this does not seem to
give any better result for the rate at which the sequé&inge must grow.

Since this underestimate is so general, it gives other underestimates as well. In-
deed,N(a, p, T) > N(a, p) and so this underestimate applies in the preceding
context, where overestimates were being given. By comparing the underestimate
in Proposition 2.14 with the overestimate in Proposition 2.7, we see that these re-
sults have at least occasionally given a clear asymptotic value for the sweeping-out
rate. The underestimate here also shows that the use of sweeping-out rates to pro-
duce rapidly growing sums as in Proposition 2.3 cannot be improved to get better
rate results.

3. Rates via Large Deviations

The object now is to return to the question of how bad sums can be. We seek to
improve the results obtained in Proposition 2.3. It probably is appropriate to first
point out the following general fact.
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ProrosiTioN 3.1. SupposdL,) is a nondecreasing sequence of positive real
numberswitty_~ >~ ;(1/L,) < co. Fix a probability spacéX, 8, P) and ameasure-
preserving transformatiom of this probability space. Then, for any functigre
L1(X) and any sequendgrn;) in Z,

1 n
H mig —
nl|_r)noo . ;71 f(z™x)=0 for a.e.x.

Proof. The argument is simple. Integrating shows that

o]

If(f’”k )| 1
—F—dP(x) < —||f||1
< OQ.

Hence, the seri€s. ;- (| f(t"*x)|/L) converges a.e. Sin¢é,) is anondecreas-
ing sequence, we have

'iXN:f(rmkx)
Ly i3

Thus, the maximal function is finite a.e.

However, by Abel’s lemma and singd.,,) is nondecreasing, we also have
lim,—(n/L,) = 0. Thus, forf € L., we clearly havethatl/L,) > }_; f(t™x)
converges to 0 a.e. But then the same holds fof &L, by the finiteness a.e. of
the maximal function. O

SZM<ooa.e.

L
k=1 k

REMARK 3.2. The same type of argument shows why, if we thke= nlogn,
only functions inL,(X) are of interest. I¥ > 1then, for any functiory € L, (X)
and any sequende;) in 7,

Zf(r'"kx) 0 for a.ex.

n—)oo n |Og

Indeed, it suffices to show this by droppingitalong the subsequence= 2/. But
then (up to a constant) the expression we are consideriihgia/) Z,f’zl f(T™kx).

Let f; = (1/2/) Z,f;l f(z™x). Then one can use the fact that, for any sequence
of functions( f;) with || f; ||, bounded, lim_, 1fj(x) = Ofora.ex € X, because

f2<f,(x>> dP(x) < Z—SUPIIfmII’ < oo,

The generality of this argument shows also that, for any sequentef invert-
ible, measure-preserving transformations, for gny L, (X) we have

lim
n—-oo n |0g

Zf(okx) =0 for a.ex.
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Actually, more is true. We have the following proposition.

ProrosiTION 3.3. Fix p, 1 < p < oco. Assume thaL, is nondecreasing and
that, for some constant

Lo 2 [ 2k N
2 . and Z(—)
L =1 L2k

2"
ThenR, f(x) = (1/L,) Z;’zl f(z™ix) converges t® a.e. forall f e L,.

Proof. Since anL ,-norm dense class for which the result holds is clear (just use
L (X)), we need only establish a maximal inequality. Note that, as usual, it will
be enough to prove that the maximal function is bounded when we consider only
averages of dyadic length. To see this, note that fer © < 2" and f > 0 we

have

245

Z f(x"ix)

on+l

_ Lo Z ™)

L2”+Y L2n+l —

R2"+s ()C)

+s5

< cRon1f(x).

Therefore, supR; f(x) < csup, Rz f(x). Yetin addition, forf > 0 we have

SUPE Z f(Tm’x)
n n j:

1 2 1p
W
00 1/,
|(S(E ) )|
n=1
/Z( Zf(r'"fx) dP(x)
n p
Liﬂ) f ( > Z f(rmfx)> dP(x)

00 on \P 1 2" . P p\r
2 (20) (LG5 remo) areo))

p

p
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on " ) 1/p\ P
( LG) (2,1 ( [ 17 dP(x)) )

< i( ) (zn annp)

IA
L[]e

o on \7P
< ||f||gZ(L2n)

n=1

<l fII%.

This gives the maximal inequality that we needed. O

REMARK 3.4. The sequenck, = k(logk)Yr+¢ satisfies Proposition 3.3. This
shows that the negative results given in Proposition 2.3 cannot be improved upon
substantially. A similar and related estimate would be thdtif= k(logk)Y?

then, forr > pandallf € L,(X), R, f(x) convergesto O a.e.

It turns out that a seemingly weaker requirementby) is the same as the one in
Proposition 2.1, and the requirement can be given completely as being determined
by rotations of the circle. Moreover, the convergence result and the appropriate
weak inequalities are equivalent.

ProrosiTION 3.5. Suppos€L,) is a sequence of positive real numbers. pix
1 < p < 0. Then the following are equivalent.

(1) For all transformationse, for any sequencén;) in Z we have
lim iXn:f(r”‘kx)=0ae forall feL,(X)
noo L, = o P

(2) For all transformationse, for any sequencén;) in Z we have

1
lim — E f(r™x) exists a.e. forallf e L,(X).
n—oo
k=1

(3) For all transformationse, for any strictly increasing sequence:;) in Z we
have

1
lim — 2 f(x™x) existsa.e. forallf € L,(X).
n— o0
k=1

(4) For some ergodic transformationsfor any strictly increasing sequence: )
in Z we have
1 n
lim — Zf(r”’kx) exists a.e. forallf € L,(X).
n—00 l‘l =1
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(5) There is a constant, such that, for all sequencég,) in T and allA > 0,

{ n<l L

(6) For all sequencesyy) in T, for anyf € L,(T) we have

4
>A}_XHUH

lim —Zf(yky) 0 for a.e.y eT.
Ly k=1

(7) For somg(any) ergodic transformation, there is a constant,, such that, for
all sequencesm;) in Z and all A > 0,

{ n>l

(8) For some(any) ergodic transformatlort, for all sequences¢m,) in Z and all
feL,(X)we have

mkx)

p b4
>A}_AHMH

n

D FE™y)

k=1

In the event that any afl)—(8) fail, then there exists a sequenee;) such that,
for any ergodic transformatiom, there exists a functioyf € L, (X) such that

}:fumu>

k=1

< o0 a.e.

SUl
S L

Sup—
n>1 Ln

oo a.e.

Proof. Clearly, (1) implies (2), (2) implies (3), and (3) implies (4).
Suppose (4) holds. Then, as in Proposition 2.1, there is a cort3fauich that,
for any increasing sequen(:mk) in Z and anyA > 0,

1
n>l L

By the Conze principle, this same mequallty holds for any dynamical system, and
in particular it holds for any ergodic rotation @f Fix a sequencéy;) in T and

an ergodic rotation given byt (y) = ny for somen € T. For any f € L,(T),

by norm continuity of rotations itL, we can choose an increasing sequence of
whole numbergm;) such that the ,-norms|| f o y, — f o n™*||,, are as small as

we like. Since the constadt, does not depend ofwy), it follows that, for all
sequencesy;) in T and allx > 0,

{ n>1 L

Thus, (4) implies (5).
To see that (5) implies (6), we need only prove that (5) implieglim (n/L,) =
0. Indeed, then (6) holds for bounded functions and the weak inequality in (5) gives

"”‘x)

P P
>x}_kﬂvn

P P
>A}_AHUH
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(6) forall f € L,(T). Suppose instead that there exist a constamd a sequence
(n;) of distinct terms such that < n;/L,, for all i. Then choose a sequenge,)
and a positive functiorf € L,(T) such that

sulp Zf(yky) o for a.e.y.
izl i T

This can be done as follows. Fix some elemertT that gives an ergodic rota-
tion. By Akcoglu et al. [1], we can choosgee L,(T) such that

1 n
sup= Zf(nzky) =00 for a.e.y.
nzl oy

Now, by having the sequende,) repeat terms in blocks, we can construct the
sequence to guarantee that

sup-— Zf(m) sup Zf(n y) forally

l> l k=1 l’[>

The lower bound shows that

sup
i>1 L

Z Fflyey) =00 for a.e.y.

Mg=1

This contradicts the weak inequality in (5), because the inequality implies that
sup,.1(1/Ly) Y i_4 f(yky) is finite a.e.

Now (6) implies (7) in a manner similar to arguments already given. Indeed,
(6) gives the appropriate weak inequality with a constant not dependent on the se-
guence. Take the instance of this inequality where the sequenteonsists of
powers of one element of infinite order. Then the Conze principle gives (7), which
is the same inequality for the general dynamical system with arbitrary powers.

If (7) holds then it is obvious that (8) holds, too. But if (8) holds then, by the
Stein—Sawyer theorem (see [2]), actually (7) holds. To finish the proof, then, we
need only show that (7) implies (1). But if (7) holds then we know that the same
weak inequality holds for the general transformation. Thus, (1) will hold if we
knew (1) for all bounded functions. The argument then proceeds like the one used
to show that (5) implies (6).

Finally, if any of the conditions fail then (8) fails, and then there exists a se-
guence(my) such that for some (and hence any) ergodic transformatithvere
exists a positive functiof € L,(X) such that sup.(1/L,) > ;_; f(x™x) = o0
on a set of positive measure. A standard application of Sawyer’s lemma (see [2])
then gives a positive function for which the same holds a.e. O

CoroLLARY 3.6. Suppose that one dfl)—(8) holds in Proposition 3.5. Then
lim n—>oo(n/Ln) =0.

So to control sums in a nontrivial fashion, we are looking €fr,) such that
Zzo:l(l/L,,) diverges and lim_, .. (n/L,) = 0. With a very modest assumption
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on the sequencd., ), the weak inequality in Proposition 2.1 can be seen to imply
the following consequence of such a controlling rate. For convenience, dgfine
by L, =nw,.

ProrosiTiON 3.7. Let(L,) be anondecreasing sequence. Assume that, for some
p (1 < p < o0) and for some ergodic transformatianone has for any sequence
(my) in Z that

1
lim —Zf(tm"x) 0 foraexeX
k=1

forall f € L,(X). Then there is a constanit, such that forf € L,(X) and any
sequenceA,) of finite subsets of. with card(A,) < 2"~ for all n,

ad 1 S
ZP{X e card(An) Df(r x| > A} < I3,

n=1

REMARK 3.8. By series compressionf - (1/L,) = cothen) 2 (L/won) =
00, too.

Proof of Proposition 3.7By the argument of Proposition 2.1 and the Rokhlin
lemma, it is clear that we have the discrete version of the result in Proposition 2.1.
That s, there is a consta@y, such that, for any € £,(Z) and any sequende:;)

inZ,

card{t A supL— Z|¢(m, +1)] > A} < 217 -

n>1

Certainly, then, the same is true along a subsequence of the sums. Hence, for any
¢ €£,(Z) and any sequend@y) in Z,

. 1 2”
cardizeZ:sup— > |¢p(m;+1)|>Arp < <2 ||¢”€p<Z>

L n
n>1 L2 jmon-1i1

This is the same as saying there exists a congtgsuch that, for any € ¢,(Z)
and any sequende;) in 7,

on

) 1 1
car teZ.sup—Zn—_1 Z lp(m; +1)] > A _)»P”(P”Z”(Z)

won
nzl T2 j=2n-141

Now choose some arbitrary translatgs+ B, of the blocksB, = (m; : j =
2141, ...,2"); these can be taken as a sequefigg) with the elements of
t, + B, listed before those af, 1+ B,.1. Assume thap has finite support. Then,
since the translationg,) are arbitrary, the terms can be chosen so that, by dis-
jointness of supports,
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anrd{tez 1 o= 12:|<;5(k+t)|>)t}

ke B,

1
_anrd{tez e 2n = > Itk +1) >x}

ketp+ B,
1
=carcht € Z : sup Z [k +1)| > A
nz1 War 2n kety+B,
<2 ||¢>||@ @

See the proof of Theorem 3.1in Rosenblatt and Wierdl [3] for a similar argument.
Since this holds with a fixed constaij, for all ¢ of finite support, it also holds

for all ¢ € £,(Z). The Calder6n transfer principle now gives the corresponding
result that

> 1
ZP{x- Zn = > If (') >x} < M’j 112,

n=1 ke B,

By repeating terms in the finite sequendgs one can then obtain the same
result when the number of terms By, is no larger than 2%, at the expense of
doubling the constartf,. Indeed, if4,, is a finite sequence with cafd,,) < 2",
then there exists a finite sequergwith card(B,) = 2"~*such that, for any pos-
itive function f € L,(X),

Card( we Z [t < 2n LY . m

ke B,

RemARks 3.9. (@) The large deviation condition of Proposition 3.7 is actually
equivalent to having lim., (1/L,) Y ;_; f(t™x) = 0 a.e., for allf € L,(X)

and all transformations, if L,.+1/Lo» is bounded (i.e., ifvn1/won is bounded)
and lim,_, (n/L,) =0

(b) The resulting form above has a more or less arbitrary divergent series
> n1(1/won) for the coefficients of the averagég 2”1 >~ _, f(z*x). Indeed,
if (v,) is a nondecreasing sequence, then there is another nondecreasing sequence
(L,) with termsL, = nw, such thatw,» = v, for all n.

(c) That the blocks be of length no more thar2is not a necessary restric-
tion. The same technique works if one uses any sequehpeof finite sets where
cardA,) = O(a") for some whole number (a > 2).

(d) The blockqg'A,,) can be taken to finite sequences, too (i.e., they can include
repetitions of terms).

If the original sequencé, = nlogn, a situation not handled by the negative re-
sult of Proposition 2.3, then the valuew$- is n. It turns out that a construction
in [3] gives just the counterexample needed here—at least for the c&s€X0f.



280 M. AkcoGgLu, R. L. JOoNEs, & J. M. ROSENBLATT
ProrosiTioN 3.10. There exists a sequen¢e,) in Z such that, for any ergodic
transformatione, there is somef € L1(X) with

1
nlogn

sup
n>1

D IfE"n)| =00
k=1
fora.e.x e X.

Proof. We need only prove this for one ergodic transformation in order to estab-
lish it for all ergodic transformations. By Proposition 3.5 and Proposition 3.7, it
suffices to show the existence of sdtswith each having 2 elements such that
there is no weak inequality i of the form

Srlrex:Ia Yiowtni=af < Sim

n=1 keA,

But an inspection of the proof of [3, Thm. 5.6] shows that there is an increasing
sequencém,) of whole numbers and afie L1(X) such that

00 on

ZP{xeX : %Z|f(rmkx)| > n} = 0.
k=1

n=1
This shows that the foregoing weak inequality cannot exist. O

It would be good to have a more general construction that can be used to show
that other sequencés ) also cannot control the rate of the growth of sums uni-
versally. We give here two arguments of this type that have a similar range of
application. These constructions both give better results only.f6X ), so the
L,(X) case remains even more of a mystery at this time.

First, it turns out that, under certain restrictions(@r) ), the technique of proof
of [3, Thm. 3.5] gives such a construction. We need to establish some notation.
Let (L,) be a nondecreasing sequence anavlet= L, /nforalln =1,2,3,....
Fix a whole numbes > 1, and letv,, = w,» foralln =1,2,3 ....

ProrosiTion 3.11. Let(L,) be nondecreasing such thakb,,) is also nondecreas-
ing. Assume there is an increasing subsequé&ngg of the whole numbers and
a fixed whole number such thatsup,_; "7+ (1/v,) = 0o butv,,,,/v,, <
a" forallm =1, 2,3, .... Then there exists a sequen@e) in Z such that, for
any ergodic transformatiom, there is somegf € L1(X) with

1 n
sup— Y | f(z™x)| =oo for a.exeX.

n>1 Ln k=1

REMARk 3.12. The preceding condition is a technical one that is not satisfied for
the general sequenc¢é,) with > (1/L,) = co. However, it applies in many
situations, which include giving the result in Proposition 3.10. Here is another ex-
ample of the use of this criterion. Suppose that= nlogn log(logn). Thenuv,

n

is essentially: logn. Taken,, = 22" for all m. Then the sun} "t (1/v,) ison
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the order ofz and the ratio condition on the,, holds witha = 2. Indeed, one can
iterate the logarithmic form and still prove a negative result using this technique.

Proof of Proposition 3.11Let (v,) be defined relative to the whole numbkemn

the assumptions of the proposition. By the large deviation principle developed
earlier, we only need to show that there is no cons@such that, for all €

£1(Z) andx > 0,

1 C
anrd{tez o card(A ) Z|¢(k+t)| > A} T”(’J)”“@)’

keA,

with the only condition on the sequen¢#,) being that, for some fixed constant
K,wehavecardd,) < Ka"foralln =123, ....

Take the sequencén,,) in the statement of the proposition. Léf =
2|Vy,,,1/vn] forall n, n, < n < ny,41. This means that, for these values of
n, by < 2v,,,,/vs, < 2a" < 2a" because the sequen@g ) is nondecreasing.
Let A, be the integer interval [, — 1) for n,, < n < n,.1. Also, takeA, =
{0} forl < n < n;— 1 Hence cardA,) = b, forn > ny; and for alln we have
card(A,) < 2a". Thus,(A,) satisfies the necessary growth condition.

For eachm, let ¢,, = 4v,,,,80. Then|¢,llez) = Bvs,,,,. We claim that, for
Ny, <n< N1,

(=b,,0] C {IEZ Z¢m(t+k)>vn}

” keA,

If so, then we can underestimate as follows:

icard{tez Z¢m(t+k)>vn}

n=1 bn keA,

v

nm+1—1
Z card{teZ Z¢m(t+k)>vn}

b,
n=n,, keA,

npy1—1

>,

n=ny

np1—1
2 E \‘ vnm+1J

n=nmy

v

nm+1—1

> § nm+l

n=n;y

nm+1—1

:_”¢m”£1(Z) Z o
n

n=n;
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SlnceZ”’”“_ (1/v,) is unbounded as: varies, this denies the existence of the
constantC.
Finally, then, letn,, < n < n,1 and letr € (—b,, 0]. Thus, O¢c [t,t + b,)
and so
z+h,,—1

= Z Pt + k) = Z P (1)

n keA,
1
bll

4.v"m+l

Ay, .
2 |_Unm+1/vnj

2vnm+1
Unypia/ Un

> v,.

This shows that, for,, < n < n,1, we indeed have

(=b,,0] C {IEZ Z¢m(t+k)>vn} O

” keA,

In the next proposition we give a different type of criterion to prove that some
sequencesL,) are not adequate for controlling the worst sums. Here it is con-
venient to think of 1L, = G(n), whereG(x) is a function defined for positive
values ofx.

ProrosiTiON 3.13. LetG(x), x > 0, be a nonincreasing function. Assume also
that xG(x) is nonincreasing. Assume that there is a constant 0 such that
CG(2x) > G(x) for all x > 0. Assume also that, for any constavtt > 0, we
can choose andR > r such thatG(r) = A, RG(R) = 2, and er G(x)dx >

M. Then, withL(n) = 1/G(n), there exists a sequen¢a:;) in Z such that, for
any ergodic transformatiom, there is somef € L1(X) with

SUIO—X:IJ'(r’"kx)I =oo for a.exeX.
" k=1

Proof. By Proposition 3.5, one need only deny the weak maximal inequality as
transferred appropriately td. Chooser and R as before. The idea is to find
no, i1, ..., i such that (a)n;+1 — n;) G(n;) is aboutr and (b) the sum of such
terms is close tg‘;R G (x) dx. This will allow us to estimate the value éfand
hence the size of the set where the maximal function is large. The details are as
follows.

Take the whole numbery = [r], and chooseg < n; < --- < ny < R such
that, foralll (0 <! <k —1) we have 2; > n;yandi < (njy1 —n))G(ny) <
2. Indeed, choose th@:,) inductively as follows. Assume that we have chosen



The Worst Sums in Ergodic Theory 283

n; for I < m. Then observe that the quantity,, + j — n,,) G(n,,) increases in
increments of at most(r) = A. But also(2n,, — n,,)G(n,) = n,G(n,,) >
RG(R) = 2. Hence, the next term,, 1 can be chosen to satisfy the desired
inequalities—unlessi®,, > R. To do this, one would just take, .1 = n,, + J,
wheren,, + j is thefirstvalue tohaveé:,, +j —n,,) G(n,,) > A. Butthenalsosince
the increments are at mast one gets an upper bound 6f,,.1 — n,,)G(n,) <
2. Moreover, 21, > n,1, completing the inductive step. This procedure then
gives usiy, ..., n; as desired. Further, we have, 2> R.

From this it is clear that we have the overestimate

k-1

R
/ G(x)dx < (ng—r)G(r) + Z(an —n))G(ny) + (R —np)G(ny).
r =0

But(ng—r)G(r) < A,and(R —n;)G(ny) < niG(ng) < RG(%) < CRG(R) =
2CA since 21, > R. Hence,

R
/ G(x)dx < A1+ 2k +2C).

Therefore, for some constafif,, we can derive the lower bound

1 R
Cok > X/ G(x)dx.

Now choose a finite sequence;) by lettingm; = [ if n;_1 < j < n;. Then
we have

n;

G(n) Yy 8ol —mj) = G(n)(ny —ny_q)

j=1

> G(2ni—)(ny —ny—y)
G(n;_

> (Cl D (ng—n;_1)
A

> —,

- C

This holds for all =1, ..., k. Consequently,

card{ . sup ! nZIS( )>)”}>k> 1/RG()d

s . ols —mj) > —=¢ >k > x)dx.
1=k L(ng) = o c Cot Jr

Sinceer G (x) dx can be made as large as we like, this shows that there is no weak

inequality as in (7) from Proposition 3.5 transferred appropriatel. to O

REMarks 3.14. (a) Like the condition of Proposition 3.11, the condition in
Proposition 3.13 does not apply to all nondecreasing sequégessuch that

Yonea(d/Ly) = oo.
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(b) Let G(x) = Té(x) so thatL, = nlog(n). Taker > 1 and letkx = G(r).

Then choos&® > r such thatRG(R) = 2x. That is, choos& such thaqﬁ =
2. We then see that

R R 1
/r G(x)dx:/r 10900 dx

= loglog(R) — log log(r)
—lo L lo !
= 9(5)‘ 9(J>
= log 5)

Hence, we can see thﬁf G(x) dx can be as large as we like. Thus, the conditions
of Proposition 3.13 are met. This gives an alternative proof of Proposition 3.10.

(c) Here is how Proposition 3.13 gives the result that Proposition 3.11 gave in
Remark 3.12. Let

G(x)

1
~ xlog(x) loglog(x)’
Taker > 1andleth = G(r). Then choos® > r suchthatRG(R) = 2A. That s,
chooser such thaqm = 2A. Indeed, suppose here that we were taking

[o]
R = ¢¢" sothat Jne™ = 2i. Then, ifr’ = ", for largen we have that

1
— < —
e'nlog(n) e ne”

so L, =nlog(n)loglog(n).

<i=G®).

G(r') =

SinceG is decreasing, this means> r. Hence we see that

R R 1
/ G(x)dx = [ dx
. +  xlog(x) loglog(x)

ol

Z/ 1 dx

. xlog(x)loglog(x)

= loglog log(e¢") — log log log(e™)
= log(n) — loglog(n).

Itis thus evident thaer G (x) dx can be as large as we like. Hence the conditions
of Proposition 3.13 are met, and 69 = n log(n) log log(n) is not fast enough to
handle the worst sums. This argument can be modified to handle similar expres-
sions in which the logarithmic form is expanded.

What is missing in both Proposition 3.11 and Proposition 3.13 is a simple reason
for why there cannot be a sequen(@g,) with >~ ,(1/L,) = oo that dominates

the growth of all sum3_7_, f(z™*x) for f € L1(X). Step-by-step improvements

(as represented by the previous result) are less than satisfying. However, even if
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such an argument can be found, there are variations on this question that are worth-
while to address yet may not be as easy to solve. For example, one can look for
an optimal controlling sequencé ;) as before such that

. 1< ok
nlgnoo L_n ;.f(r x)=0a.e. forall f e Li(X).

Itis not at all clear if this type of optimdlL,,) is the same as the general case. In
the same vein, it is not clear whether the conditior{ b) from Proposition 3.5 is
sufficient to guarantee the same results if the sequence of powenpds replaced
by an arbitrary sequende;) of invertible, measure-preserving transformations.
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