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1. Introduction

Let (X, β, P ) be a nonatomic probability space and letτ be an invertible measure-
preserving transformation of(X, β, P ). Fix a sequence(mk : k = 1,2,3, . . . )
in Z and letf ∈ Lp(X), 1 ≤ p ≤ ∞. Depending on what the powers are, the
averages1

n

∑n
k=1f(τ

mkx) may or may not converge a.e., and they may or may
not stay bounded a.e. We then have the natural question: when this does not con-
verge a.e., what extra weight is needed to control the sum since1

n
will not control

it? Fix some nondecreasing sequence(Ln) and consider the ratiosRnf(x) =
(1/Ln)

∑n
k=1f(τ

mkx). As long as limn→∞(n/Ln) = 0, Rnf(x) will converge
to 0 a.e. for all functionsf ∈ L∞(X). In this case, the question is: what else is
needed so thatRnf(x) will converge a.e. to 0 for allf ∈ Lp(X)? For example,
for f ∈ L1(X) it is easy to see (as we will show) that there is no problem here
if
∑∞

n=1(1/Ln) < ∞. We are looking for examples, if any exist, of cases where∑∞
n=1(1/Ln) = ∞ yetRnf(x) converges to 0 a.e. for any integrable functionf.
In Section 2 we consider the related problem of how fast the powers of a trans-

formation can sweep out a space. This will show thatLn = o(n(logn)1/p) is not
adequate forLp(X). In Section 3, we use a method that reduces the problem to a
large deviation question. This shows that a wider class of sequences also will not
work, but the method does not yet apply to all sequences. Hence, it is still open
whether there is a sequenceLn with nonsummable reciprocals that hasRnf(x)
converging to 0 a.e. for all integrable functionsf. We would conjecture that no
such sequence exists.

2. Fastest Sweeping Out

It is not hard to see that there is a connection between the rate of sweeping out and
the rate of growth of sums like

∑n
k=1f(τ

mkx).

Proposition 2.1. Fix p, 1≤ p < ∞. Assume thatτ is ergodic. Let(Ln) be a
fixed sequence of real numbers. Suppose that, for all sequences(mk) in Z and all
f ∈Lp(X),
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lim
n→∞

1

Ln

n∑
k=1

f(τ mkx) = 0 for a.e.x.

Then there is an absolute constantCp such that, for any sequence(mk) in Z and
anyf ∈Lp(X),

P

{
x ∈X : sup

n≥1

∣∣∣∣ 1

Ln

n∑
k=1

f(τ mkx)

∣∣∣∣ ≥ λ} ≤ Cpλp ‖f ‖pp .
Proof. The existence of the constantCp,(mk), perhaps depending on(mk), fol-
lows by applying the Stein–Sawyer theorem in this context; see Garsia [2] for the
argument that we are using. Although in general the smallest weak-type constant
Cp,(mk) could depend on(mk), it is not hard to see that the hypothesis of the the-
orem implies that there is a constantCp such thatCp,(mk) ≤ Cp for all sequences
(mk). To see this, note that if there were no such uniform bound then one could put
together a sequence(mk) in blocks by an inductive construction for which there
would be no finite constant.

Remark 2.2. By the Conze principle, the same inequality must then hold for any
transformationσ in place ofτ becauseτ is ergodic. If limn→∞(n/Ln) = 0, this
means that the same convergence result holds for all dynamical systems once we
know that it holds on one ergodic dynamical system.

Now suppose thatE is a measurable set withP(E) = α. Letm1, . . . , mN be chosen
so that

sup
1≤k≤N

1

k

k∑
j=1

1E(τ
mjx) ≥ 1

2
for all x ∈X.

Assume that(Ln) grows rapidly enough for Proposition 2.1 to hold. Also, sup-
pose for simplicity that(Ln) is nondecreasing and thatLn = nwn, where(wn) is
nondecreasing, too. Applying the weak inequality tof = 1E yields

P

{
x : sup

1≤k≤N
1

kwN

k∑
j=1

1E(τ
mjx) ≥ λ

}
≤ Cp
λp
‖1E‖pp =

Cp

λp
P(E).

If we now takeλ = 1/2wN then it follows from this inequality that 1≤
2pCpP(E)w

p

N . But thenN depends onα, and ifwN does not grow too quickly
then, by lettingα tend to 0, one could haveαwp

N converge to 0, contradicting the
inequality. In fact, it is not hard to see that, for ergodic transformations, there is
a constantK such thatm1, . . . , mN can be chosen so thatN ≤ exp(K/α); see
Proposition 2.7. Denote the natural logarithm by logx. This estimate means there
could not have been a weak inequality as in Proposition 2.1 ifLn = nwn, with
(wn) nondecreasing andwn = o(logn)1/p. From Sawyer’s lemma in [4], the fol-
lowing proposition is an immediate consequence.
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Proposition 2.3. Fix p,1≤ p <∞. For any ergodic transformationτ, if (Ln)
is such thatLn = o(n(logn)1/p) and ifLn/n is nondecreasing, then there exists a
sequence(mk) in Z and a positive functionf ∈Lp(X) such that

sup
n≥1

1

Ln

n∑
k=1

f(τ mkx) = ∞ a.e.

Remark 2.4. Forp = 1, this restriction on(Ln)will be relaxed using other tech-
niques in the next section.

The argument given here could be improved if there were fast ways to sweep out
the probability space(X, β, P ). But it turns out that the rate just quoted is essen-
tially the best one possible. To facilitate a discussion of the idea of the rate of
sweeping out, here is a definition.

Definitions 2.5. Fix a transformationτ and numbersα andρ,withα, ρ ∈ (0,1).
LetN(α, ρ, τ ) be the smallest whole numberN such that there exists (a) a mea-
surable setE with P(E) = α and (b)m1, . . . , mN ∈Z such that

sup
1≤k≤N

1

k

k∑
j=1

1E(τ
mjx) ≥ ρ for all x ∈X.

Let N(α, ρ,T) be the smallest whole numberN such that there exists (a) a
Lebesgue measurable setE in the circleT with P(E) = α and (b)γ1, . . . , γN ∈T
such that

sup
1≤k≤N

1

k

k∑
j=1

1E(γjγ ) ≥ ρ for all γ ∈T.

LetN(α, ρ) be the smallest whole numberN such that there exist measurable sets
E1, . . . , EN with P(Ek) = α for all k = 1, . . . , N such that

sup
1≤k≤N

1

k

k∑
j=1

1Ej (x) ≥ ρ for all x ∈X.

Remarks 2.6. (a) We refer to these functions generally assweeping-out rates.
They are increasing by jumps, as the variableα decreases and/or the variableρ in-
creases. The graphs of these functions typically are Devil’s staircase graphs—that
is, graphs with rectangular regions where they are constant, only simple disconti-
nuities, and heights of the constant rectangular regions increasing to infinity asα

and 1− ρ decrease to zero.
(b) The valueN(α, ρ) is obtained if one allows arbitrary measure-preserving

transformations instead of just powers of one transformationτ. It turns out that
N(α, ρ, τ ) andN(α, ρ,T) are closely related whenτ is ergodic. In any case,
N(α, ρ) ≤ N(α, ρ, τ ) andN(α, ρ) ≤ N(α, ρ,T).
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(c) There is another class of sweeping-out rates that could also be considered:
those that occur when the sequence of powers is a fixed, strongly sweeping-out se-
quence. For example, consider the sweeping-out rateN(α, ρ,2N), which is taken
to be defined as the smallest valueN such that there exists a measurable setE with
P(E) = α such that

sup
1≤k≤N

1

k

k∑
j=1

1E(τ
2jx) ≥ ρ for all x ∈X.

What is not clear is whether thisN(α, ρ,2N) is really larger than the formally
smaller valueN(α, ρ, τ ). The same question applies to other universally bad se-
quences that are strongly sweeping out, like the powers of 2.

Our first observation concerns how to overestimate the sweeping-out rate. This is
easiest to do in the case of the circleT.

Proposition 2.7. Suppose1
α

and ρ

1−ρ are whole numbers. Then there is an over-

estimateN(α, ρ,T) ≤ ( 1
1−ρ

)1/α−1
.

Proof. LetM = 1
α

andr = ρ

1−ρ . We takeT as [0,1) with addition modulo 1. We
take the setE to be [0, α) and construct the translations(xj ) in successive blocks
B1, . . . , BM. The first blockB1 consists just ofx1 = 0. Then each blockBm+1

consists of a numbertm+1 of repetitions ofmα, which are chosen subject to the
inequality

tm+1∑m+1
j=1 tj

≥ ρ.

This gives a totalN =∑M
j=1 tj of translationsx1, . . . , xN and guarantees that

sup
1≤k≤N

1

k

k∑
j=1

1E(xj + x) ≥ ρ for all x ∈ [0,1).

Because1
α

andr are whole numbers here, the inequality needed for thetm can
be taken as an equality definingtm+1 inductively with t1 = 1. It gives tm+1 =
r
∑m

j=1 tj and so
∑m+1

j=1 tj = (r+1)
∑m

j=1 tj for allm = 1, . . . ,M−1. It also gives

N = ( 1
1−ρ
)M−1

.

Using this argument to obtain an overestimate forN(α, ρ,T) generally requires
solving an integer programming problem. We letM = ⌈ 1

α

⌉
. Follow the construc-

tion just described starting withx0 = 0, but shift all the otherxi down by the
amountMα − 1. This is the amount needed for the rest of the terms from the
blocksB2, . . . , BM to cover the remaining interval [α,1) as efficiently as possible.
Now, in order to chooseN as small as possible requires choosing whole numbers
t1, . . . , tM that minimizeN =∑M

j=1 tj, subject to the constraints
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tm+1∑m+1
j=1 tj

≥ ρ

form = 1, . . . ,M −1. The most obvious estimate that this gives forN(α, ρ,T) is
thatN(α, ρ,T) ≤ (⌈ ρ

1−ρ
⌉+1

)d1/αe
. Because our main interest lies in the behav-

ior of this estimate as both 1− ρ andα tend to 0, this does not seem to be a very
good estimate. This is particularly the case when considering the lower estimate
in Proposition 2.14, which suggests that

(
1

1−ρ
)1/α−1

is perhaps asymptotically the
correct value.

It is helpful to see how the different sweeping-out rates may relate to one another.
First notice that ifα1 ≤ α2 andρ2 ≤ ρ1 thenN(α1, ρ1, τ ) ≥ N(α2, ρ2, τ ). The in-
equality inα uses the fact that the underlying measure space is nonatomic, but the
inequality inρ is immediate from the definition. The same inequalities hold for
the other sweeping-out rates. Generally, the sweeping-out rates are finite-valued
and tend to infinity as bothα and 1− ρ decrease to 0. Moreover, ifτ is a rotation
of the circle with Lebesgue measure, then by the definition we haveN(α, ρ,T) ≤
N(α, ρ, τ ).

Lemma 2.8. Let τ be an ergodic rotation ofT with Lebesgue measure, and let
α1 < α2 with αi ∈ (0,1) for i = 1,2. ThenN(α2, ρ, τ ) ≤ N(α1, ρ,T).

Proof. Fix a measurable setE with P(E) = α1 and some rotationsγ1, . . . , γN
such that

sup
1≤k≤N

1

k

k∑
j=1

1E(γjγ ) ≥ ρ for all γ ∈T.

The transformationτ is given byτ(γ ) = ωγ for someω of infinite order. There-
fore, for anyε > 0, there exist whole numbersm1, . . . , mN such thatωmj so well
approximatesγj (j = 1, . . . , N ) that, for some measurable setB with P(B) < ε,

sup
1≤k≤N

1

k

k∑
j=1

1E(ω
mjγ ) ≥ ρ for all γ /∈B.

Thus, increasing the measure ofE by an amountO(ε) will yield this inequality
everywhere. Sinceε is arbitrary, this means thatN(α2, ρ, τ ) ≤ N. But N could
have been the valueN(α1, ρ,T).

If N(α, ρ, τ ) were right continuous inα or if N(α, ρ,T) were left continuous
in α, then the preceding remarks and Lemma 2.8 would show thatN(α, ρ, τ ) =
N(α, ρ,T) all of the time. But neither of these continuity statements are clear, so
the best we can do is the following corollary.

Corollary 2.9. If α1 < α2 andN(α1, ρ,T) = N(α2, ρ,T), then for anyα ∈
[α1, α2] we haveN(α, ρ, τ ) = N(α, ρ,T).
Remark 2.10. Since the sweeping-out rates are Devil’s staircases, this corollary
shows that most of the time there is equality as above; only at the points of simple
discontinuity is there a question of whether the equality still holds.
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In the same fashion, one can relate the sweeping-out rates for different trans-
formations.

Lemma 2.11. Let σ by any invertible measure-preserving transformation of
(X, β, P ), and letτ be an ergodic transformation of the same probability space.
Let α1 < α2. ThenN(α2, ρ, τ ) ≤ N(α1, ρ, σ).

Proof. LetE ∈ β with P(E) = α1, and supposem1, . . . , mN ∈Z such that

sup
1≤k≤N

1

k

k∑
j=1

1E(σ
mjx) ≥ ρ for all x ∈X.

Givenε > 0, becauseτ is ergodic we can choose an invertible measure-preserving
transformationν such thatντν−1 is so close toσ in the weak topology that, except
for x in a measurable setB (with P(B) < ε and lettingµ = ντν−1),

sup
1≤k≤N

1

k

k∑
j=1

1E(µ
mjx) ≥ ρ.

With ε sufficiently small, this shows (as in Lemma 2.8) thatN(α2, ρ, µ) ≤ N. But
by its definition,N(α2, ρ, µ) = N(α2, ρ, ντν

−1) = N(α2, ρ, τ ), which gives the
inequality in this lemma.

The same problems with continuity already mentioned make it difficult to improve
this result. But at least we can have the following somewhat useful corollary.

Corollary 2.12. Supposeτ and σ are ergodic transformations of(X, β, P ).
If α1 < α2 andN(α1, ρ, τ ) = N(α2, ρ, τ ), then for anyα ∈ [α1, α2] we have
N(α, ρ, τ ) = N(α, ρ,T).
These results on sweeping-out rates give some control on an upper estimate for
the size of these quantities asα and 1− ρ tend to 0. But it is also worthwhile to
derive, if possible, a lower estimate for these quantities. It turns out that a fairly
good lower estimate can be given even forN(α, ρ). We would like to thank Zoltan
Furedi for giving us this proof.

Lemma 2.13. Let S be a finite set withs elements, and letE1, . . . , En be finite
subsets ofS with each having cardinalitya. Assume that

sup
1≤k≤n

1

k

k∑
j=1

1Ek (x) ≥ ρ for all x ∈ S.

Thenn ≥ ρ( 1
1−ρ

)bs/ac−1
.

Proof. Let S = {1,2, . . . , s}. For t ∈ S, let kt be such that card{j : 1 ≤ j ≤ kt
andt ∈Ej } ≥ ρkt . We may assume that 1≤ k1 ≤ k2 ≤ · · · ≤ ks = n. Let k0 =
0. Summing these valueskt overt = 1, . . . , m gives
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ρ(k1+ k2 + · · · + km) ≤
m∑
t=1

card{j : 1≤ j ≤ kt and t ∈Ej }

=
m∑
t=1

t∑
r=1

card{j : kr−1 < j ≤ kr and t ∈Ej }

=
m∑
r=1

kr∑
j=kr−1+1

card{t : r ≤ t ≤ m and t ∈Ej }

=
m∑
r=1

kr∑
j=kr−1+1

card(Ej ∩ {r, . . . , m})

≤
m−a+1∑
r=1

a(kr − kr−1)+
m∑

r=m−a+2

(m− r +1)(kr − kr−1)

= km−a+1+ · · · + km.
Let Km = ∑m

t=1 kt for all m = 1, . . . , s. Then we have seen that, for anym,
Km − Km−a ≥ ρKm or (equivalently)Km ≥ 1

1−ρKm−a. But Ka ≥ a and so, by

induction,Kia ≥ a
(

1
1−ρ
)i−1

for all i. Hence, for anym we have

km ≥ 1

a

( m∑
t=m−a+1

kt

)

≥ 1

a
ρKm

≥ 1

a
ρa

(
1

1− ρ
)bm/ac−1

.

The result follows by lettingm = s.
This discrete version of the lower estimate can be transferred to the measure-
theoretic context as follows.

Proposition 2.14. Let (X, β, P ) be a nonatomic probability space. Assume that
α, ρ ∈ (0,1), and letE1, . . . , En be measurable sets withP(Ej ) = α for all j =
1, . . . , n. Assume that

sup
1≤k≤n

1

k

k∑
j=1

1Ej (x) ≥ ρ for all x ∈X.

Thenn ≥ ρ( 1
1−ρ

)1/α−2; that is,N(α, ρ) ≥ ρ( 1
1−ρ

)1/α−2
.

Proof. We can construct an ergodic transformationτ of this probability space. Fix
x ∈X and, for eachl = 1, . . . , N, let Fl = {j ≤ M : τ jx ∈El}. We then have
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1

k

k∑
l=1

1Fl (j) =
1

k

k∑
l=1

1El (τ
jx) for j = 1, . . . ,M.

Therefore,

sup
1≤k≤N

1

k

k∑
l=1

1Fl (j) ≥ ρ for all j = 1, . . . ,M.

By Lemma 2.13, this inequality yields an underestimate for the value ofN. Indeed,
leta = sup1≤l≤N card(Fl). Sinceτ is ergodic it follows that, for anyε, if M is suf-
ficiently large andx is almost any point thena ∈ [(α− ε)M, (α+ ε)M ]. Because
it is easier to cover with sets all of the same sizea, the discrete underestimate
gives

n ≥ ρ
(

1

1− ρ
)bM/ac−1

≥ ρ
(

1

1− ρ
)M/a−2

.

But M
a
∈ [ 1

α+ε ,
1
α−ε

]
, so lettingε tend to 0 gives the estimate in the measure-

preserving case.

Remarks 2.15. (a) It might be worthwhile to have a direct argument for this un-
derestimate of the sweeping-out rate in a nonatomic measure space. It is not clear
if this estimate is really the best possible one. However, Proposition 2.14 and
Proposition 2.7 show at least that, for eachρ ∈ (0,1), there exist constantsC1, C2

such that exp(C1/α) ≤ N(α, ρ) ≤ exp(C2/α).

(b) One can improve Lemma 2.13 to give the underestimate that, for anyρ,

n ≥ 1
4

(
1

1−ρ
)bs/ac−1

. This is not as good as Lemma 2.13 whenρ is near1, but it is bet-
ter for small values ofρ. It gives a corresponding improvement of Proposition 2.14
that, for all values ofρ, N(α, ρ) ≥ 1

4

(
1

1−ρ
)1/α−1

. However, this does not seem to
give any better result for the rate at which the sequence(Ln) must grow.

Since this underestimate is so general, it gives other underestimates as well. In-
deed,N(α, ρ,T) ≥ N(α, ρ) and so this underestimate applies in the preceding
context, where overestimates were being given. By comparing the underestimate
in Proposition 2.14 with the overestimate in Proposition 2.7, we see that these re-
sults have at least occasionally given a clear asymptotic value for the sweeping-out
rate. The underestimate here also shows that the use of sweeping-out rates to pro-
duce rapidly growing sums as in Proposition 2.3 cannot be improved to get better
rate results.

3. Rates via Large Deviations

The object now is to return to the question of how bad sums can be. We seek to
improve the results obtained in Proposition 2.3. It probably is appropriate to first
point out the following general fact.
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Proposition 3.1. Suppose(Ln) is a nondecreasing sequence of positive real
numbers with

∑∞
n=1(1/Ln)<∞. Fix a probability space(X, β, P )and a measure-

preserving transformationτ of this probability space. Then, for any functionf ∈
L1(X) and any sequence(mk) in Z,

lim
n→∞

1

Ln

n∑
k=1

f(τ mkx) = 0 for a.e.x.

Proof. The argument is simple. Integrating shows that∫
X

∞∑
k=1

|f(τ mkx)|
Lk

dP(x) ≤
∞∑
k=1

1

Lk
‖f ‖1

<∞.
Hence, the series

∑∞
k=1(|f(τ mkx)|/Lk) converges a.e. Since(Ln) is a nondecreas-

ing sequence, we have∣∣∣∣ 1

LN

N∑
k=1

f(τ mkx)

∣∣∣∣ ≤ ∞∑
k=1

|f(τ mkx)|
Lk

<∞ a.e.

Thus, the maximal function is finite a.e.
However, by Abel’s lemma and since(Ln) is nondecreasing, we also have

lim n→∞(n/Ln) = 0. Thus, forf ∈L∞we clearly have that(1/Ln)
∑n

k=1f(τ
mkx)

converges to 0 a.e. But then the same holds for allf ∈L1 by the finiteness a.e. of
the maximal function.

Remark 3.2. The same type of argument shows why, if we takeLn = n logn,
only functions inL1(X) are of interest. Ifr > 1 then, for any functionf ∈Lr(X)
and any sequence(mk) in Z,

lim
n→∞

1

n logn

n∑
k=1

f(τ mkx) = 0 for a.e.x.

Indeed, it suffices to show this by dropping ton along the subsequencen = 2j . But

then (up to a constant) the expression we are considering is(1/j2j )
∑2j

k=1f(τ
mkx).

Let fj = (1/2j )
∑2j

k=1f(τ
mkx). Then one can use the fact that, for any sequence

of functions(fj )with ‖fj‖r bounded, limj→∞ 1
j
fj(x) = 0 for a.e.x ∈X, because∫

X

∞∑
j=1

(
fj(x)

j

)r
dP(x) ≤

∞∑
j=1

1

j r
sup
m≥1
‖fm‖rr <∞.

The generality of this argument shows also that, for any sequence(σk) of invert-
ible, measure-preserving transformations, for anyf ∈Lr(X) we have

lim
n→∞

1

n logn

n∑
k=1

f(σkx) = 0 for a.e.x.
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Actually, more is true. We have the following proposition.

Proposition 3.3. Fix p, 1 ≤ p < ∞. Assume thatLn is nondecreasing and
that, for some constantc,

L2n+1

L2n
≤ c and

∞∑
k=1

(
2k

L2k

)p
< c.

ThenRnf(x) = (1/Ln)∑n
j=1f(τ

mjx) converges to0 a.e. for allf ∈Lp.

Proof. Since anLp-norm dense class for which the result holds is clear ( just use
L∞(X)), we need only establish a maximal inequality. Note that, as usual, it will
be enough to prove that the maximal function is bounded when we consider only
averages of dyadic length. To see this, note that for 0< s < 2n andf ≥ 0 we
have

R2n+sf(x) = 1

L2n+s

2n+s∑
j=1

f(τ mjx)

≤ L2n+1

L2n+s
1

L2n+1

2n+1∑
j=1

f(τ mjx)

≤ cR2n+1f(x).

Therefore, supk Rkf(x) ≤ c supn R2nf(x). Yet in addition, forf ≥ 0 we have∥∥∥∥sup
n

1

L2n

2n∑
j=1

f(τ mjx)

∥∥∥∥p
p

≤
∥∥∥∥(sup

n

(
1

L2n

2n∑
j=1

f(τ mjx)

)p)1/p∥∥∥∥p
p

≤
∥∥∥∥( ∞∑

n=1

(
1

L2n

2n∑
j=1

f(τ mjx)

)p)1/p∥∥∥∥p
p

≤
∫
X

∞∑
n=1

(
1

L2n

2n∑
j=1

f(τ mjx)

)p
dP(x)

≤
∞∑
n=1

(
2n

L2n

)p ∫
X

(
1

2n

2n∑
j=1

f(τ mjx)

)p
dP(x)

≤
∞∑
n=1

(
2n

L2n

)p((∫
X

(
1

2n

2n∑
j=1

f(τ mjx)

)p
dP(x)

)1/p)p
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≤
∞∑
n=1

(
2n

L2n

)p( 1

2n

2n∑
j=1

(∫
X

|f(τ mjx)|p dP(x)
)1/p)p

≤
∞∑
n=1

(
2n

L2n

)p( 1

2n

2n∑
j=1

‖f ‖p
)p

≤ ‖f ‖pp
∞∑
n=1

(
2n

L2n

)p
≤ c‖f ‖pp .

This gives the maximal inequality that we needed.

Remark 3.4. The sequenceLk = k(logk)1/p+ε satisfies Proposition 3.3. This
shows that the negative results given in Proposition 2.3 cannot be improved upon
substantially. A similar and related estimate would be that ifLk = k(logk)1/p

then, forr > p and allf ∈Lr(X), Rnf(x) converges to 0 a.e.

It turns out that a seemingly weaker requirement on(Ln) is the same as the one in
Proposition 2.1, and the requirement can be given completely as being determined
by rotations of the circle. Moreover, the convergence result and the appropriate
weak inequalities are equivalent.

Proposition 3.5. Suppose(Ln) is a sequence of positive real numbers. Fixp,
1≤ p <∞. Then the following are equivalent.

(1) For all transformationsτ, for any sequence(mk) in Z we have

lim
n→∞

1

Ln

n∑
k=1

f(τ mkx) = 0 a.e. for all f ∈Lp(X).

(2) For all transformationsτ, for any sequence(mk) in Z we have

lim
n→∞

1

Ln

n∑
k=1

f(τ mkx) exists a.e. for allf ∈Lp(X).

(3) For all transformationsτ, for any strictly increasing sequence(mk) in Z we
have

lim
n→∞

1

Ln

n∑
k=1

f(τ mkx) exists a.e. for allf ∈Lp(X).

(4) For some ergodic transformationsτ, for any strictly increasing sequence(mk)

in Z we have

lim
n→∞

1

Ln

n∑
k=1

f(τ mkx) exists a.e. for allf ∈Lp(X).
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(5) There is a constantCp such that, for all sequences(γk) in T and all λ > 0,

m

{
γ : sup

n≤1

1

Ln

∣∣∣∣ n∑
k=1

f(γkγ )

∣∣∣∣ ≥ λ} ≤ Cpλp ‖f ‖pp .
(6) For all sequences(γk) in T, for anyf ∈Lp(T) we have

lim
n→∞

1

Ln

n∑
k=1

f(γkγ ) = 0 for a.e.γ ∈T.

(7) For some(any) ergodic transformationτ, there is a constantCp such that, for
all sequences(mk) in Z and all λ > 0,

m

{
x : sup

n≥1

1

Ln

∣∣∣∣ n∑
k=1

f(τ mkx)

∣∣∣∣ ≥ λ} ≤ Cpλp ‖f ‖pp .
(8) For some(any) ergodic transformationτ, for all sequences(mk) in Z and all

f ∈Lp(X) we have

sup
n≥1

1

Ln

∣∣∣∣ n∑
k=1

f(τ mkx)

∣∣∣∣ <∞ a.e.

In the event that any of(1)–(8) fail, then there exists a sequence(mk) such that,
for any ergodic transformationτ, there exists a functionf ∈Lp(X) such that

sup
n≥1

1

Ln

∣∣∣∣ n∑
k=1

f(τ mkx)

∣∣∣∣ = ∞ a.e.

Proof. Clearly, (1) implies (2), (2) implies (3), and (3) implies (4).
Suppose (4) holds. Then, as in Proposition 2.1, there is a constantCp such that,

for any increasing sequence(mk) in Z and anyλ > 0,

m

{
x : sup

n≥1

1

Ln

∣∣∣∣ n∑
k=1

f(τ mkx)

∣∣∣∣ ≥ λ} ≤ Cpλp ‖f ‖pp .
By the Conze principle, this same inequality holds for any dynamical system, and
in particular it holds for any ergodic rotation ofT. Fix a sequence(γk) in T and
an ergodic rotationτ given byτ(γ ) = ηγ for someη ∈ T. For anyf ∈ Lp(T),
by norm continuity of rotations inLp we can choose an increasing sequence of
whole numbers(mk) such that theLp-norms‖f B γk − f B ηmk‖p are as small as
we like. Since the constantCp does not depend on(mk), it follows that, for all
sequences(γk) in T and allλ > 0,

m

{
γ : sup

n≥1

1

Ln

∣∣∣∣ n∑
k=1

f(γkγ )

∣∣∣∣ ≥ λ} ≤ Cpλp ‖f ‖pp .
Thus, (4) implies (5).

To see that (5) implies (6), we need only prove that (5) implies limn→∞(n/Ln) =
0. Indeed, then (6) holds for bounded functions and the weak inequality in (5) gives
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(6) for allf ∈Lp(T). Suppose instead that there exist a constantδ and a sequence
(ni) of distinct terms such thatδ ≤ ni/Lni for all i. Then choose a sequence(γk)
and a positive functionf ∈Lp(T) such that

sup
i≥1

1

ni

ni∑
k=1

f(γkγ ) = ∞ for a.e.γ.

This can be done as follows. Fix some elementη ∈ T that gives an ergodic rota-
tion. By Akcoglu et al. [1], we can choosef ∈Lp(T) such that

sup
n≥1

1

n

n∑
k=1

f(η2kγ ) = ∞ for a.e.γ.

Now, by having the sequence(γk) repeat terms in blocks, we can construct the
sequence to guarantee that

sup
i≥1

1

ni

ni∑
k=1

f(γkγ ) ≥ 1

2
sup
n≥1

1

n

n∑
k=1

f(η2kγ ) for all γ.

The lower boundδ shows that

sup
i≥1

1

Lni

ni∑
k=1

f(γkγ ) = ∞ for a.e.γ.

This contradicts the weak inequality in (5), because the inequality implies that
supn≥1(1/Ln)

∑n
k=1f(γkγ ) is finite a.e.

Now (6) implies (7) in a manner similar to arguments already given. Indeed,
(6) gives the appropriate weak inequality with a constant not dependent on the se-
quence. Take the instance of this inequality where the sequence(γk) consists of
powers of one element of infinite order. Then the Conze principle gives (7), which
is the same inequality for the general dynamical system with arbitrary powers.

If (7) holds then it is obvious that (8) holds, too. But if (8) holds then, by the
Stein–Sawyer theorem (see [2]), actually (7) holds. To finish the proof, then, we
need only show that (7) implies (1). But if (7) holds then we know that the same
weak inequality holds for the general transformation. Thus, (1) will hold if we
knew (1) for all bounded functions. The argument then proceeds like the one used
to show that (5) implies (6).

Finally, if any of the conditions fail then (8) fails, and then there exists a se-
quence(mk) such that for some (and hence any) ergodic transformationτ there
exists a positive functionf ∈Lp(X) such that supn≥1(1/Ln)

∑n
k=1f(τ

mkx) = ∞
on a set of positive measure. A standard application of Sawyer’s lemma (see [2])
then gives a positive function for which the same holds a.e.

Corollary 3.6. Suppose that one of(1)–(8) holds in Proposition 3.5. Then
lim n→∞(n/Ln) = 0.

So to control sums in a nontrivial fashion, we are looking for(Ln) such that∑∞
n=1(1/Ln) diverges and limn→∞(n/Ln) = 0. With a very modest assumption
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on the sequence(Ln), the weak inequality in Proposition 2.1 can be seen to imply
the following consequence of such a controlling rate. For convenience, definewn
byLn = nwn.

Proposition 3.7. Let (Ln) be a nondecreasing sequence. Assume that, for some
p (1≤ p <∞) and for some ergodic transformationτ, one has for any sequence
(mk) in Z that

lim
n→∞

1

Ln

n∑
k=1

f(τ mkx) = 0 for a.e.x ∈X

for all f ∈Lp(X). Then there is a constantCp such that forf ∈Lp(X) and any
sequence(An) of finite subsets ofZ with card(An) ≤ 2n−1 for all n,

∞∑
n=1

P

{
x :

1

w2n

1

card(An)

∑
k∈An
|f(τ kx)| > λ

}
≤ Cp
λp
‖f ‖pp .

Remark 3.8. By series compression, if
∑∞

n=1(1/Ln) = ∞ then
∑∞

n=1(1/w2n) =
∞, too.

Proof of Proposition 3.7.By the argument of Proposition 2.1 and the Rokhlin
lemma, it is clear that we have the discrete version of the result in Proposition 2.1.
That is, there is a constantCp such that, for anyφ ∈ `p(Z) and any sequence(mk)

in Z,

card

{
t ∈Z : sup

n≥1

1

Ln

n∑
j=1

|φ(mj + t)| > λ

}
≤ Cp
λp
‖φ‖p`p(Z).

Certainly, then, the same is true along a subsequence of the sums. Hence, for any
φ ∈ `p(Z) and any sequence(mk) in Z,

card

{
t ∈Z : sup

n≥1

1

L2n

2n∑
j=2n−1+1

|φ(mj + t)| > λ

}
≤ Cp
λp
‖φ‖p`p(Z).

This is the same as saying there exists a constantCp such that, for anyφ ∈ `p(Z)
and any sequence(mk) in Z,

card

{
t ∈Z : sup

n≥1

1

w2n

1

2n−1

2n∑
j=2n−1+1

|φ(mj + t)| > λ

}
≤ Cp
λp
‖φ‖p`p(Z).

Now choose some arbitrary translatestn + Bn of the blocksBn = (mj : j =
2n−1 + 1, . . . ,2n); these can be taken as a sequence(mk) with the elements of
tn+Bn listed before those oftn+1+Bn+1. Assume thatφ has finite support. Then,
since the translations(tn) are arbitrary, the terms can be chosen so that, by dis-
jointness of supports,
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∞∑
n=1

card

{
t ∈Z :

1

w2n

1

2n−1

∑
k∈Bn
|φ(k + t)| > λ

}

=
∞∑
n=1

card

{
t ∈Z :

1

w2n

1

2n−1

∑
k∈tn+Bn

|φ(k + t)| > λ

}

= card

{
t ∈Z : sup

n≥1

1

w2n

1

2n−1

∑
k∈tn+Bn

|φ(k + t)| > λ

}

≤ Cp
λp
‖φ‖p`p(Z).

See the proof of Theorem 3.1 in Rosenblatt and Wierdl [3] for a similar argument.
Since this holds with a fixed constantCp for all φ of finite support, it also holds
for all φ ∈ `p(Z). The Calderón transfer principle now gives the corresponding
result that

∞∑
n=1

P

{
x :

1

w2n

1

2n−1

∑
k∈Bn
|f(τ kx)| > λ

}
≤ Cp
λp
‖f ‖pp .

By repeating terms in the finite sequencesBn, one can then obtain the same
result when the number of terms inBn is no larger than 2n−1, at the expense of
doubling the constantCp. Indeed, ifAn is a finite sequence with card(An) ≤ 2n−1,

then there exists a finite sequenceBn with card(Bn) = 2n−1 such that, for any pos-
itive functionf ∈Lp(X),

1

card(An)

∑
k∈An

f(τ kx) ≤ 2

2n−1

∑
k∈Bn

f(τ kx).

Remarks 3.9. (a) The large deviation condition of Proposition 3.7 is actually
equivalent to having limn→∞(1/Ln)

∑n
k=1f(τ

mkx) = 0 a.e., for allf ∈ Lp(X)
and all transformationsτ, if L2n+1/L2n is bounded (i.e., ifw2n+1/w2n is bounded)
and limn→∞(n/Ln) = 0.

(b) The resulting form above has a more or less arbitrary divergent series∑∞
n=1(1/w2n) for the coefficients of the averages(1/2n−1)

∑
k∈Bn f(τ

kx). Indeed,
if (vn) is a nondecreasing sequence, then there is another nondecreasing sequence
(Ln) with termsLn = nwn such thatw2n = vn for all n.

(c) That the blocks be of length no more than 2n−1 is not a necessary restric-
tion. The same technique works if one uses any sequence(An) of finite sets where
card(An) = O(an) for some whole numbera (a ≥ 2).

(d) The blocks(An) can be taken to finite sequences, too (i.e., they can include
repetitions of terms).

If the original sequenceLn = n logn, a situation not handled by the negative re-
sult of Proposition 2.3, then the value ofw2n is n. It turns out that a construction
in [3] gives just the counterexample needed here—at least for the case ofL1(X).
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Proposition 3.10. There exists a sequence(mk) in Z such that, for any ergodic
transformationτ, there is somef ∈L1(X) with

sup
n≥1

1

n logn

n∑
k=1

|f(τ mkx)| = ∞

for a.e.x ∈X.
Proof. We need only prove this for one ergodic transformation in order to estab-
lish it for all ergodic transformations. By Proposition 3.5 and Proposition 3.7, it
suffices to show the existence of setsAn with each having 2n elements such that
there is no weak inequality inZ of the form

∞∑
n=1

P

{
x ∈X :

1

n

1

2n
∑
k∈An
|φ(τ kx)| > λ

}
≤ C
λ
‖f ‖1.

But an inspection of the proof of [3, Thm. 5.6] shows that there is an increasing
sequence(mk) of whole numbers and anf ∈L1(X) such that

∞∑
n=1

P

{
x ∈X :

1

2n

2n∑
k=1

|f(τ mkx)| > n

}
= ∞.

This shows that the foregoing weak inequality cannot exist.

It would be good to have a more general construction that can be used to show
that other sequences(Ln) also cannot control the rate of the growth of sums uni-
versally. We give here two arguments of this type that have a similar range of
application. These constructions both give better results only forL1(X), so the
Lp(X) case remains even more of a mystery at this time.

First, it turns out that, under certain restrictions on(Ln), the technique of proof
of [3, Thm. 3.5] gives such a construction. We need to establish some notation.
Let (Ln) be a nondecreasing sequence and letwn = Ln/n for all n = 1,2,3, . . . .
Fix a whole numbera > 1, and letvn = wan for all n = 1,2,3, . . . .

Proposition 3.11. Let (Ln) be nondecreasing such that(wn) is also nondecreas-
ing. Assume there is an increasing subsequence(nm) of the whole numbers and
a fixed whole numbera such thatsupm≥1

∑nm+1−1
n=nm (1/vn) = ∞ but vnm+1/vnm ≤

anm for all m = 1,2,3, . . . . Then there exists a sequence(mk) in Z such that, for
any ergodic transformationτ, there is somef ∈L1(X) with

sup
n≥1

1

Ln

n∑
k=1

|f(τ mkx)| = ∞ for a.e.x ∈X.

Remark 3.12. The preceding condition is a technical one that is not satisfied for
the general sequence(Ln) with

∑∞
n=1(1/Ln) = ∞. However, it applies in many

situations, which include giving the result in Proposition 3.10. Here is another ex-
ample of the use of this criterion. Suppose thatLn = n logn log(logn). Thenvn

is essentiallyn logn. Takenm = 22m
2

for allm. Then the sum
∑nm+1

n=nm(1/vn) is on



The Worst Sums in Ergodic Theory 281

the order ofm and the ratio condition on thevnm holds witha = 2. Indeed, one can
iterate the logarithmic form and still prove a negative result using this technique.

Proof of Proposition 3.11.Let (vn) be defined relative to the whole numbera in
the assumptions of the proposition. By the large deviation principle developed
earlier, we only need to show that there is no constantC such that, for allφ ∈
`1(Z) andλ > 0,

∞∑
n=1

card

{
t ∈Z :

1

vn

1

card(An)

∑
k∈An
|φ(k + t)| > λ

}
≤ C
λ
‖φ‖`1(Z),

with the only condition on the sequence(An) being that, for some fixed constant
K, we have card(An) ≤ Kan for all n = 1,2,3, . . . .

Take the sequence(nm) in the statement of the proposition. Letbn =
2bvnm+1/vnc for all n, nm ≤ n < nm+1. This means that, for these values of
n, bn ≤ 2vnm+1/vnm ≤ 2anm ≤ 2an because the sequence(vn) is nondecreasing.
Let An be the integer interval [0, bn − 1) for nm ≤ n < nm+1. Also, takeAn =
{0} for 1≤ n ≤ n1− 1. Hence card(An) = bn for n ≥ n1; and for alln we have
card(An) ≤ 2an. Thus,(An) satisfies the necessary growth condition.

For eachm, let φm = 4vnm+1δ0. Then‖φm‖`1(Z) = 4vnm+1. We claim that, for
nm ≤ n < nm+1,

(−bn,0] ⊂
{
t ∈Z :

1

bn

∑
k∈An

φm(t + k) > vn

}
.

If so, then we can underestimate as follows:

∞∑
n=1

card

{
t ∈Z :

1

bn

∑
k∈An

φm(t + k) > vn

}

≥
nm+1−1∑
n=nm

card

{
t ∈Z :

1

bn

∑
k∈An

φm(t + k) > vn

}

≥
nm+1−1∑
n=nm

bn

= 2
nm+1−1∑
n=nm

⌊
vnm+1

vn

⌋

≥
nm+1−1∑
n=nm

vnm+1

vn

= 1

4
‖φm‖`1(Z)

nm+1−1∑
n=nm

1

vn
.
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Since
∑nm+1−1

n=nm (1/vn) is unbounded asm varies, this denies the existence of the
constantC.

Finally, then, letnm ≤ n < nm+1 and lett ∈ (−bn,0]. Thus, 0∈ [t, t + bn)
and so

1

bn

∑
k∈An

φm(t + k) = 1

bn

t+bn−1∑
u=t

φm(u)

= 1

bn
4vnm+1

= 4vnm+1

2bvnm+1/vnc

≥ 2vnm+1

vnm+1/vn

> vn.

This shows that, fornm ≤ n < nm+1, we indeed have

(−bn,0] ⊂
{
t ∈Z :

1

bn

∑
k∈An

φm(t + k) > vn

}
.

In the next proposition we give a different type of criterion to prove that some
sequences(Ln) are not adequate for controlling the worst sums. Here it is con-
venient to think of 1/Ln = G(n), whereG(x) is a function defined for positive
values ofx.

Proposition 3.13. LetG(x), x ≥ 0, be a nonincreasing function. Assume also
that xG(x) is nonincreasing. Assume that there is a constantC > 0 such that
CG(2x) ≥ G(x) for all x ≥ 0. Assume also that, for any constantM ≥ 0, we
can chooser andR > r such thatG(r) = λ, RG(R) = 2λ, and

∫ R
r
G(x) dx ≥

M. Then, withL(n) = 1/G(n), there exists a sequence(mk) in Z such that, for
any ergodic transformationτ, there is somef ∈L1(X) with

sup
n≥1

1

Ln

n∑
k=1

|f(τ mkx)| = ∞ for a.e.x ∈X.

Proof. By Proposition 3.5, one need only deny the weak maximal inequality as
transferred appropriately toZ. Chooser andR as before. The idea is to find
n0, n1, . . . , nk such that (a)(nj+1− nj )G(nj ) is aboutλ and (b) the sum of such

terms is close to
∫ R
r
G(x) dx. This will allow us to estimate the value ofk and

hence the size of the set where the maximal function is large. The details are as
follows.

Take the whole numbern0 = dre, and choosen0 < n1 < · · · < nk ≤ R such
that, for alll (0 ≤ l ≤ k − 1) we have 2nl ≥ nl+1 andλ ≤ (nl+1− nl)G(nl) ≤
2λ. Indeed, choose the(nk) inductively as follows. Assume that we have chosen
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nl for l ≤ m. Then observe that the quantity(nm + j − nm)G(nm) increases in
increments of at mostG(r) = λ. But also(2nm − nm)G(nm) = nmG(nm) ≥
RG(R) = 2λ. Hence, the next termnm+1 can be chosen to satisfy the desired
inequalities—unless 2nm ≥ R. To do this, one would just takenm+1 = nm + j,
wherenm+j is the first value to have(nm+j−nm)G(nm) ≥ λ. But then also since
the increments are at mostλ, one gets an upper bound of(nm+1− nm)G(nm) ≤
2λ. Moreover, 2nm ≥ nm+1, completing the inductive step. This procedure then
gives usn1, . . . , nk as desired. Further, we have 2nk ≥ R.

From this it is clear that we have the overestimate∫ R

r

G(x) dx ≤ (n0 − r)G(r)+
k−1∑
l=0

(nl+1− nl)G(nl)+ (R − nk)G(nk).

But (n0− r)G(r) ≤ λ, and(R−nk)G(nk) ≤ nkG(nk) ≤ RG
(
R
2

) ≤ CRG(R) =
2Cλ since 2nk ≥ R. Hence,∫ R

r

G(x) dx ≤ λ(1+ 2k + 2C).

Therefore, for some constantCo, we can derive the lower bound

Cok ≥ 1

λ

∫ R

r

G(x) dx.

Now choose a finite sequence(mj ) by lettingmj = l if nl−1 < j ≤ nl. Then
we have

G(nl)

nl∑
j=1

δ0(l −mj) ≥ G(nl)(nl − nl−1)

≥ G(2nl−1)(nl − nl−1)

≥ G(nl−1)

C
(nl − nl−1)

≥ λ

C
.

This holds for alll = 1, . . . , k. Consequently,

card

{
s : sup

1≤l≤k
1

L(nl)

nl∑
j=1

δ0(s −mj) ≥ λ

C

}
≥ k ≥ 1

Coλ

∫ R

r

G(x) dx.

Since
∫ R
r
G(x) dx can be made as large as we like, this shows that there is no weak

inequality as in (7) from Proposition 3.5 transferred appropriately toZ.

Remarks 3.14. (a) Like the condition of Proposition 3.11, the condition in
Proposition 3.13 does not apply to all nondecreasing sequences(Ln) such that∑∞

n=1(1/Ln) = ∞.
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(b) LetG(x) = 1
x log(x) so thatLn = n log(n). Taker ≥ 1 and letλ = G(r).

Then chooseR > r such thatRG(R) = 2λ. That is, chooseR such that 1
log(R) =

2λ. We then see that∫ R

r

G(x) dx =
∫ R

r

1

x log(x)
dx

= log log(R)− log log(r)

= log

(
1

2λ

)
− log

(
1

rλ

)
= log

(
r

2

)
.

Hence, we can see that
∫ R
r
G(x) dx can be as large as we like. Thus, the conditions

of Proposition 3.13 are met. This gives an alternative proof of Proposition 3.10.
(c) Here is how Proposition 3.13 gives the result that Proposition 3.11 gave in

Remark 3.12. Let

G(x) = 1

x log(x) log log(x)
, so Ln = n log(n) log log(n).

Taker ≥ 1 and letλ = G(r). Then chooseR > r such thatRG(R) = 2λ. That is,
chooseR such that 1

log(R) log log(R) = 2λ. Indeed, suppose here that we were taking

R = een so that 1/nen = 2λ. Then, ifr ′ = en, for largen we have that

G(r ′) = 1

enn log(n)
<

1

e

1

nen
≤ λ = G(r).

SinceG is decreasing, this meansr ′ ≥ r. Hence we see that∫ R

r

G(x) dx =
∫ R

r

1

x log(x) log log(x)
dx

≥
∫ ee

n

en

1

x log(x) log log(x)
dx

= log log log(ee
n

)− log log log(en)

= log(n)− log log(n).

It is thus evident that
∫ R
r
G(x) dx can be as large as we like. Hence the conditions

of Proposition 3.13 are met, and soLn = n log(n) log log(n) is not fast enough to
handle the worst sums. This argument can be modified to handle similar expres-
sions in which the logarithmic form is expanded.

What is missing in both Proposition 3.11 and Proposition 3.13 is a simple reason
for why there cannot be a sequence(Ln) with

∑∞
n=1(1/Ln) = ∞ that dominates

the growth of all sums
∑n

k=1f(τ
mkx) for f ∈L1(X). Step-by-step improvements

(as represented by the previous result) are less than satisfying. However, even if
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such an argument can be found, there are variations on this question that are worth-
while to address yet may not be as easy to solve. For example, one can look for
an optimal controlling sequence(Ln) as before such that

lim
n→∞

1

Ln

n∑
k=1

f(τ 2kx) = 0 a.e. for all f ∈L1(X).

It is not at all clear if this type of optimal(Ln) is the same as the general case. In
the same vein, it is not clear whether the condition on(Ln) from Proposition 3.5 is
sufficient to guarantee the same results if the sequence of powers(τ mk ) is replaced
by an arbitrary sequence(σk) of invertible, measure-preserving transformations.
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