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Geometric Hardy and Bergman Spaces

Wolfgang Bertram & Joachim Hilgert

0. Introduction

The theory of Hardy spaces of holomorphic functions was initiated in1915 by
G. H. Hardy, who considered functions on the unit disc. One possible generaliza-
tion to several variables is the following. Given a bounded domainD ⊂ Cn that
is star-shaped around zero and a measureµ on the Shilov boundary6 of D, one
defines aHardy spaceof holomorphic functions onD by

H 2(D,µ) :=
{
f ∈O(D) ∣∣ ‖f ‖2 := sup

0<r<1

∫
6

|f(rx)|2 dµ(x) <∞
}
. (0.1)

Whereas this definition has been considered because it is natural for certain classes
of examples, a general theory of Hardy spaces of holomorphic functions on
bounded complex domains has been developed only for domains with topolog-
icalC2-boundary (cf. e.g. [Kr]).

In 1937, S. Bochner for the first time considered analogous spaces fortube do-
mainssuch as the upper half-plane. More precisely, if� is an open convex cone
in a real vector spaceV, then one defines a Hardy space of holomorphic functions
on the tube domainT� := V + i� ⊂ VC by

H 2(T�) :=
{
f ∈O(T�)

∣∣ ‖f ‖2 := sup
y∈�

∫
V

|f(x + iy)|2 dx <∞
}
, (0.2)

wheredx is a fixed Lebesgue measure onV (cf. [SW, Chap.III]). Generalizations
of these spaces have been studied in particular by Stein and Koranyi and eventu-
ally led to the “real variable approach” to Hardy spaces (cf. [St]). Thus there was
not so much interaction between the settings (0.1) and (0.2). Only much more re-
cently, when people started to consider Hardy spaces of “curved” tube domains
for reasons of representation theory, did the necessity (cf. Fact 4) arise to compare,
among others, the bounded and the tubelike case.

Such a comparison was known for a long time in the simplest case: theCayley
transformC(z) = i(1+ z)(1− z)−1 carries the unit disc onto the upper half-plane,
which is just the tube domainR+ iR+. Then one can determine which functions
in the Hardy space onD are transformed into functions in the Hardy space on
R + iR+ (cf. [Ho, p. 128] and Fact 2). There is an important class of bounded
domains, calledbounded symmetric domains of tube type,for which there exists
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via a generalized Cayley transform an unbounded realization as a tube domainT�
over asymmetric cone� (cf. [FK2, Chap. X]). It should be noted here that these
domains do not haveC2-boundaries. Nevertheless, in this case there exist a num-
ber of classical and also more recent results on the Hardy spaces just defined that,
however, have so far not been explained in a satisfactory way. In particular, we
are interested in four facts for which new and geometric proofs are desired.

Fact 1: The unitary action of a “big” group.If D is the unit disc andµ the ro-
tation invariant probability measure on the circle, then the groupG = SU(1,1)
operates unitarily onH 2(D,µ) via

(g · f )(z) = (Det dg−1(z))1/2f(g−1z) (0.3)

(the square root can be defined in a consistent way since SU(1,1) is a double cover
of the group Aut(D) = PSU(1,1)). By the same formula, the group Sl(2,R)
acts on the Hardy spaceH 2(T�) and, more generally, a double cover of the auto-
morphism group of a tube-type domain acts unitarily on the corresponding Hardy
space. However, this action is not obvious from the geometric data because the
measureµ (resp.,dx) on the boundary is far from being invariant under SU(1,1)
(resp., under Sl(2,R)).

Fact 2: The isomorphism of classical Hardy spaces.The Cayley transformC
induces an isomorphism of Hardy spaces

H 2(D)→ H 2(T�), f 7→ (z 7→ (Det dC−1(z))1/2f(C−1z)). (0.4)

This is not at all obvious from the definitions. First, the spacesV + iy over which
one integrates in the definition ofH 2(T�) are transformed viaC into horocycles
of D, which are not the same as the “concentric circles”r6 used in the definition
of H 2(D); second, the measures used on the Shilov boundary (resp., on its open
dense partC(V )) are not the same. In fact, no geometric reason for this isomor-
phism is given in the literature; it is only deduced from the explicit knowledge of
the reproducing kernels. Recall here that if� does not contain affine lines then
the Hardy spaceH 2(T�) is a nontrivial Hilbert space such that the point evalu-
ationsf 7→ f(z) are continuous. Thus there exists a vectorKz ∈ H 2(T�) such
thatf(z) = 〈f,Kz〉 for all f ∈H 2(T�); the functionK(z,w) = Kw(z) is called
thereproducing kernelof H 2(T�) (cf. e.g. [FK2, Sec. IX.4]). Similar statements
hold for the Hardy spaceH 2(D).

Fact 3: Hardy spaces are “square roots” of Bergman spaces.The reproducing
kernel ofH 2(D), called theCauchy kerneland denoted byS(z,w), turns out to
be a square root of theBergman kernelB(z,w) of D: there is a constantc 6= 0
such that

cS(z,w)2 = B(z,w). (0.5)

The Bergman kernel is by definition the reproducing kernel of theBergman space

B2(D) =
{
f ∈O(D) ∣∣ ∫

D

|f(z)|2 dz <∞
}
, (0.6)

wheredz is Lebesgue measure onVC, restricted toD.
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Similarly, the reproducing kernel ofH 2(T�) is the square root of the Bergman
kernel ofT� (this information allows us to prove that (0.4) is an isomorphism).
Put in another way, the Hardy space turns out to belong to a parameter in theana-
lytic continuation of a family of weighted Bergman spaces(cf. [FK2, Chap. XIII]).
Once more this seems to be rather an accident, and no geometric interpretation of
this fact is given.

Fact 4: Embedding of classical Hardy spaces into nonclassical Hardy spaces.
Motivated by the so-called Gelfand–Gindikin program, the problem of embedding
“classical” or “commutative” Hardy spaces into “nonclassical” or “noncommuta-
tive” Hardy spaces has attracted much interest during the last years (see [BH2; BÓ;
C; KØ1; KØ2; ÓØ]). One wants to understand a class of Hardy spaces which live
on open domains in curved complex symmetric spaces and which are of interest
in the theory of unitary representations. Their reproducing kernels are very com-
plicated, but—comparing them with the more classical and better-known Hardy
spaces on bounded symmetric domains of tube type—in some cases it was possible
to actually calculate the kernels (cf. [BH2]). When working on this problem, we
realized that Facts 1–3 are usually taken for granted, though they remain mysteri-
ous in the normal framework of Hardy spaces. Once this observation was made, it
became clear that a geometric explanation of Facts1–3 is precisely the groundwork
needed to understand what is really going on in the problem of embedding one
class of Hardy spaces into another and in this way to extend the results of [BH2].

Geometric Hardy and Bergman Spaces. The definition of “geometric Berg-
man spaces” is well known: the Bergman space of a complex manifoldM is the
space of holomorphicn-formsω onM such that the real(2n)-form

in
2
ω ⊗ ω̄

is integrable overM. From this definition it is immediately clear that the group
Aut(M) of holomorphic automorphisms ofM acts unitarily on the geometric
Bergman space. If we trivialize the geometric Bergman space with respect to a
nowhere vanishing holomorphicn-form, we obtain a function space in which the
group Aut(M) acts via a multiplier representation similar to (0.3). This should be
compared to Fact 1.

Fact 3 indicates what kind of bundle we must take in order to realize the Hardy
space as a space of sections: the bundle must be a “square root” of the bundle defin-
ing Bergman spaces, that is, a holomorphic line bundleL such thatL ⊗ L is iso-
morphic to the canonical bundleKM = 3n(T ∗M) of M. Such bundles are called
(holomorphic)half-form bundles(cf. [GS]). For the definition of Hardy spaces
of sections, one needs much more structure than for the definition of Bergman
spaces. To see what this structure might be, we observe that—in both types of
Hardy spaces described here—the integration is carried out over a region of the
boundary of a complex domain after translating the function by elements of a cer-
tain semigroup of (strict)compressionsof the domain (i.e., a semigroup of diffeo-
morphisms carrying the closure of the domain into its interior). Thus, besides a
half-form bundle over a domain we need a certain “boundary” of this domain and
a semigroup over which the supremum in the definition of the Hardy norm will be
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taken. This geometric information will be called “Hardy-space data” (Definition
1.3.3). Just as the definition of geometric Bergman spaces does not require a mea-
sure, the definition of geometric Hardy spaces will not require a measure on the
boundary. This allows a “big group” to operate unitarily on the geometric Hardy
space, explaining Fact 1. Also Fact 3 is explained in a natural way: whenever the
“big group” acts transitively on the domain (as is the case for bounded symmet-
ric domains), both the reproducing kernels of the geometric Bergman and Hardy
space define invariant sections ofK (resp., ofL); sinceL ⊗L ∼= K , there must be
a constantcwith cS⊗S = K. However, the main problem is now to show thatc 6=
0: it is more difficult to prove that a geometric Hardy space is not reduced to zero
than to prove this for Hardy spaces of functions. In the case of a bounded sym-
metric domainD we prove thatc 6= 0 (Theorem 2.2.3) using a result of Clerc [Cl]
stating that elements of thecompression semigroupS(D) are alsocontractionsof
the Bergman metric ofD. Once we know that the geometric Hardy space ofD is
not reduced to zero, we can explain Fact 2: the Hardy spacesH 2(D) andH 2(T�)

are essentially defined by taking suprema over certainsubsemigroupsof S(D);
this supremum is smaller than the one overS(D) used in the definition of the geo-
metric Hardy space, and therefore the geometric Hardy space can be realized as a
subspace ofH 2(D) andH 2(T�). But this subspace contains enough elements in
order to prove that we have, in fact, equality (Theorem 2.3.1 and Theorem 2.3.3).

Our setup applies to much more general Hardy spaces than the classical ones on
tube domains. In particular, it includes the highly nontrivial examples described
in [BH2; BÓ; C; HN; KØ2; ÓØ], which can be viewed either as living on curved
complex symmetric spaces or else on complements of hypersurfaces in bounded
domains (Section 3). These are our motivating examples, and they are all related
to Fact 4.

The necessity of building a geometric theory of Hardy spaces in order to really
understand these examples is explained in [BH2, Sec. 4]. Our theory will allow
us to compare these spaces with the classical ones in an intrinsic way. We do not
expand on these examples here in order to cleanly separate the difficulties of build-
ing a general geometric theory of Hardy spaces from the technicalities arising in
the description of the curved examples. The details will be given elsewhere; here,
we restrict ourselves to some remarks on which kinds of subtle problems must be
dealt with in extending the known results about the embedding problem. Namely,
before comparing Hardy spaces, one needs to compare holomorphic half-form
bundles together with “equivariant” group or semigroup actions. Examples show
that half-form bundles that are equivalent as vector bundles may very well carry
several essentially different actions of a given group. This observation naturally
leads to the problem of describing and classifying such objects.

1. Definition of Geometric Bergman and Hardy Spaces

1.1. Bergman Spaces of Holomorphic Sections

Before defining geometric Hardy spaces, it is useful to recall quickly the defini-
tion and basic properties of geometric Bergman spaces (cf. [KN, p. 163]). For
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any complex manifoldM of dimensionn, we denote byKM the canonical bundle∧n
T ∗M whose holomorphic sections are the holomorphicn-forms. The exterior

product of a holomorphicn-form ω1 with an antiholomorphicn-form ω̄2 gives,
up to a factorin

2
, a real 2n-form. BecauseM (when viewed as a real manifold)

is automatically orientable, this form can be integrated overM and the resulting
number, if finite, is the inner product(ω1 | ω2). TheBergman spaceis then the
space

B2(M) :=
{
ω ∈O(M,KM)

∣∣ in2
∫
M

ω ∧ ω̄ <∞
}

(1.1.1)

of holomorphicn-formsω for which the inner product(ω | ω) is finite. It is known
that this is a Hilbert space admitting a reproducing kernel that is a holomorphic
(2n)-form onM × M̄ (cf. Section 2). From the definition of the Bergman space
it is immediately clear that the group Aut(M) of holomorphic diffeomorphisms
acts unitarily onB2(M) by (g, ω) 7→ (g−1)∗ω, whereg∗ is the usual pull-back of
forms.

Remark 1.1.1 (Trivialization of Line Bundles). A line bundleV over a complex
manifoldN is isomorphic to the trivial line bundle if and only if it admits a holo-
morphic nowhere vanishing sectionν. In fact, the constant function 1 is a nowhere
vanishing section of the trivial bundle, and conversely, given such a sectionν, we
define a bundle map

N × C→ V, (p, z) 7→ zνp

whose inverse is given byVp 3 v 7→ (p, z) with z defined byv = zνz. The corre-
sponding isomorphism

O(N,V )→ O(N )
whose inverse is given byf 7→ fν will be called thetrivialization map associ-
ated toν. Clearly, we can make similar remarks for real line bundles over real
manifolds.

Applying this to the Bergman space, given a nowhere vanishing holomorphic
n-form ν, we obtain an isomorphism of Hilbert spaces

B2(M)→ B2(M, ν) :=
{
f ∈O(M) ∣∣ ∫

M

|f(z)|2in2
(ν ∧ ν̄)(z) <∞

}
(1.1.2)

with inverse given byf 7→ fν. The function spaceB2(M, ν) is called atrivial-
izationof B2(M).

Note that the unitary action of Aut(M) in the trivialized picture is no longer
canonical but depends onν: for everyg ∈Aut(M) there exists a functionj(g) =
jν(g) such that

g∗ν = j(g) · ν.
Thusg∗(fν) = g∗f · g∗ν = g∗f · j(g) · ν, implying that the action ofg is trans-
ferred to

(g · f )(z) = j(g−1, z)f(g−1 · z),
wherej(g, ·) := j(g).
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Remark 1.1.2 (Bundle-Valued Bergman Spaces). IfM is a complexn-dimen-
sional manifold andH a holomorphic vector bundle overM, then by definition a
holomorphicn-form with values inH is a holomorphic section of the bundle

KM ⊗ H = Hom
(∧n

TM,H
); (1.1.3)

the space of such forms is denoted by�n(M,H ). In order to define Bergman
spaces of holomorphicn-forms with values inH, we need the additional assump-
tion thatH is aHermitianvector bundle. Then tov, v ′ ∈H z andα, α ′ ∈∧n

T ∗z M
we associate a scalar-valued(n, n)-form

〈α ⊗ v, α ′ ⊗ v ′ 〉 := in2
(v | v ′)H z

(α ∧ α ′). (1.1.4)

In this way we obtain a sesquilinear map

〈·, ·〉 : �n(M,H )×�n(M,H )→ E (n,n)(MR), (1.1.5)

whereE (n,n)(MR) denotes the differential forms of type(n, n) onM considered
as an almost complex real manifoldMR. With these definitions,

B2(M,H ) :=
{
ω ∈�n(M,H )

∣∣ ∫
MR

〈ω,ω〉 <∞
}

(1.1.6)

is called theBergman spaceof square integrable sections(cf. [K, p. 639]). It turns
out thatB2(M,H ) is a Hilbert space with respect to the inner product

(ω | ω ′)B :=
∫
MR

〈ω,ω ′ 〉. (1.1.7)

If H is a trivial vector bundle with typical fiberH o, then the Hermitian metric is
of the form(v | v ′)H z

= (v | P(z)v ′)H o
with a Hermitian positive definite oper-

atorP(z). If we assume, moreover, thatν is a nowhere vanishingn-form onM,
then the mapf 7→ ν ⊗ f defines an isomorphism of

B2(M,H o, P )

:=
{
f ∈O(M,H o)

∣∣ in2
∫
MR

‖P(z)f(z)‖2(ν ∧ ν̄)(z) <∞
}

(1.1.8)

ontoB2(M,H ). If H is a line bundle, thenz 7→ P(z) is a scalar function with pos-
itive values and(1.1.8)coincides with the usual definition ofweighted Bergman
spaceswith weight functionP.

If g is a holomorphic diffeomorphism of the complex manifoldM and ifω is a
holomorphicn-form, then∫

M

(g∗ω)⊗ (g∗ω) =
∫
g(M)

ω ⊗ ω̄,

which means thatg acts unitarily on the classical Bergman space. The state-
ment is immediately generalized to the case of general bundle-valued Bergman
spaces if we assume thatg acts isometrically on the Hermitian bundle used in the
construction.



Geometric Hardy and Bergman Spaces 241

A situation that will become relevant arises as follows. We assume thatU is a
domain in a complex manifoldM, H is a Hermitian vector bundle overM, and
0 is a semigroup of biholomorphic maps onM that preservesU and acts on the
bundleH with isometric fiber maps.

Proposition 1.1.3. The Bergman spaceB2(U ) is stable under the natural pull-
backω 7→ s∗ω for s ∈0, and this action is contractive.

Proof. In the scalar case, we have∫
U
(s∗ω)⊗ (s∗ω) =

∫
s(U )

ω ⊗ ω̄ ≤
∫
U
ω ⊗ ω̄,

sinces is a compression ofU . The argument carries over to the bundle-valued
case with the obvious changes.

1.2. Spaces of Square Integrable Half-Forms

Definition 1.2.1. Ahalf-form bundleon a realn-dimensional manifoldN is a
complex line bundleL overN such that the squareL2 = L ⊗ L is isomorphic to
the complexified line bundle

(∧n
T ∗N

)
C. In other words, the transition functions

hαβ : U ′α ∩ U ′β → C× of L satisfy

h2
αβ(z) = DetR

(
d(ψβ B ψ−1

α )(ψα(z))
)

(1.2.1)

if (U ′α, ψα)α∈A is an atlas forN. A section of a half-form bundle is called ahalf-
form.

Example 1.2.2. Assume thatN is orientable; thus there is a nowhere vanishing
n-form ν on N and (w.r.t. an oriented atlas) the bundle

(∧n
T ∗N

)
C is isomor-

phic to the trivial line bundle, which we denote by1 (cf. Remark1.1.1). Since
1⊗ 1∼= 1, it follows that1 is also a half-form bundle onN. We cannot conclude,
however, that in this situation all half-form bundles are trivial. For example, ifN

is the circle then the complexification of the Möbius band (considered as a real
nontrivial line bundle) is a nontrivial half-form bundle.

Remark 1.2.3. Not every manifold admits half-form bundles, and if they exist
they are not always uniquely determined.

To make this precise, recall that the isomorphism classes of line bundles form
an abelian group, called the Picard group, under tensoring (the trivial bundle be-
ing the identity). This group is isomorphic toH 1(M,A×), whereA is the sheaf
of invertible differentiable maps(C∞ or holomorphic, depending on whetherM
is real or complex). ThusM admits a half-form bundle if and only if the isomor-
phism class ofKM is a square in the Picard group. Consider the exact sequence

{1} −→ {±1} −→ A× z 7→z2−−−→ A× −→ {1}
of sheaves of abelian groups. According to [Go, p. 174], we obtain a long exact
sequence of group homomorphisms in cohomology



242 Wolfgang Bertram & Joachim Hilgert

· · · → H 1(M, {±1}) ι−→ H 1(M,A×) z 7→z2−−−→ H 1(M,A×)
δ−→ H 2(M, {±1}) −→ · · · .

Thus the canonical bundle is a square if and only ifδ(KM) is the identity in
H 2(M, {±1}). Moreover, ifKM is a square, then the set of square roots is param-
eterized by the image ofι in H 1(M, {±1}).

In particular, we find that ifHj(M, {±1}) is trivial for j = 1,2 thenM admits
a unique half-form bundle.

For two half-formsω(1) andω(2), the tensor productω(1) ⊗ ω(2) is adensity; that
is, the product is a section of thedensity bundle

∣∣∧n
∣∣T ∗N, which is the complex

line bundle defined by the transition functionsgαβ : Uα ∩ Uβ → C× given as

gαβ(z) =
∣∣DetR

(
d(ϕβ B ϕ−1

α )(ϕα(z))
)∣∣,

where(Uα, ϕα)α∈A is an atlas forN. The fiber of
∣∣∧n

∣∣T ∗N atx ∈N can be viewed
as the set of mapsρ : (TxN )n→ C such that

ρ(Aη1, . . . , Aηn) = |Det(A)|ρ(η1, . . . , ηn)

for all A ∈ EndR(TxN ) (cf. [GS, p. 53]). We call a densityν real if ν(x):
(TxN )

n → C takes only real values; we callν positive if ν(x) : (TxN )n→ C
takes only nonnegative values for allx ∈N.

Thus, ifHFN is a half-form bundle onN, then

(ω(1), ω(2)) 7→ (ω(1) | ω(2))HFN :=
∫
N

ω(1) ⊗ ω(2)

defines an inner product on the space of continuous sections ofHFN with compact
support, whose completion we denote byL2(N,HFN).

Example 1.2.4 (Trivialization). Assume thatHFN has a nowhere vanishing sec-
tionωo. Thenν := ωo⊗ωo is a nowhere vanishing positive density onN defining
a measuredn onN, and

L2(N, dn)→ L2(N,HFN), f 7→ fωo

is an isomorphism of Hilbert spaces (cf. Remark 1.2.1). Densities can be pulled
back under smooth maps via

ϕ∗ν(x)(η1, . . . , ηn) = ν(ϕ(x))(dϕ(x)η1, . . . ,dϕ(x)ηn).

Thus, for any diffeomorphismg ofN there is a strictly positive functionj(g) such
that

g∗ν = j(g) · ν.
Then

(g · f )(x) = j(g−1)1/2 · (f B g−1)

defines a unitary action of the groupG of diffeomorphisms ofN in L2(N,HFN).
It corresponds to an actionω 7→ g∗ω of G on the space of sections ofHFN such
thatg∗ω ⊗ g∗ω = g∗(ω ⊗ ω̄).
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In the special case whereN = V is a vector space, the bundle
∧n

T ∗V clearly
is trivial and thus the trivial bundle is isomorphic to a half-form bundle. The forms
ωo andν can both be chosen to be translation-invariant; we will use also the nota-
tion (dx)1/2 for ν. Then

L2(V, dx)→ L2(V,HFV ), f 7→ f(dx)1/2

is the trivialization map. We havej(g)(x) = |Det(dg(x))|, and thus the action of
G is given in the trivialized picture by

(g · f )(x) = |dg−1(x)|−1/2f(g−1 · x).
In this case, the unitarity of the action can be seen as a direct consequence of the
transformation formula for integrals.

Remark 1.2.5. In general, given a half-form bundleHF, there is no natural pull-
back action of the group of all diffeomorphisms onHF that is compatible with the
natural action on the bundle

∧n
T ∗N in the sense thatg∗(ω ⊗ ρ) = g∗ω ⊗ g∗ρ.

However, one is not very far from this situation. One can prove the following.

(1) A single diffeomorphism ofM can always be lifted to a diffeomorphism of the
half-form bundle that is compatible with the pull-back of holomorphic forms.

(2) The lifting can be done simultaneously for all elements of a connected topo-
logical semigroup in such a way that one obtains a representation of a double
cover of the semigroup.

1.3. Hardy Spaces of Holomorphic Half-Forms

Definition 1.3.1. LetM be a complex manifold. A holomorphic line bundle
L → M is called aholomorphic half-form bundleif L ⊗ L is isomorphic to the
canonical line bundleKM =∧n

T ∗M. A holomorphic half-formis a holomorphic
section of a holomorphic half-form bundle.

In order to define Hardy spaces, we must integrate holomorphic half-forms over
real forms ofM. For this we need the following proposition.

Proposition 1.3.2. LetM be a complex manifold andHF a holomorphic half-
form bundle onM. If N ⊆ M is a real form(i.e., a totally real real-analytic
submanifold withdimRN = dimCM), thenHF

∣∣
N

is a half-form bundle on the

real manifoldN and (HF ⊗ HF )
∣∣
N

is a density bundle on the real manifoldN.

Proof. We can find an atlas(Uα, ϕα) for M such thatϕα(N ∩ Uα) ⊆ Rn for each
of the coordinate functionsϕα : Uα → Cn. In fact, such charts are obtained by
parameterizing a piece ofN by a real-analytic mapf : U → N, whereU is a
neighborhood of 0 inRn, and then complexifyingf to get a holomorphic map
from a neighborhood of 0 inCn onto a piece ofM. (In a local chart onM, all we
do is writef as a power series in real variables(x1, . . . , xn) and then makex com-
plex; the power series will converge in some neighborhood of the origin.) Total
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reality ofN ensures that the extendedf is locally biholomorphic, and its inverse
is then a local chart onM that is compatible withN.

With respect to this atlas,(Uα ∩ N, ϕα,N)α∈A with ϕα,N : N ∩ Uα → Rn is an
atlas forN and

ϕα B ϕ−1
β : ϕβ(Uα) ∩ Rn→ ϕα(Uα) ∩ Rn.

In particular, forx ∈N ∩ Uα ∩ Uβ we find that

DetR
(
d(ϕα,N B ϕ−1

β,N )(ϕβ(x))
) = DetC

(
d(ϕα B ϕ−1

β )(ϕβ(x))
) = hβα(x)2

for x ∈N ∩ Uα ∩ Uβ. This also implies

hαβ(x)hαβ(x) =
∣∣DetR

(
d(ϕα,N B ϕ−1

β,N )(ϕβ(x))
)∣∣

and hence the claim.

Note that, ifω is a holomorphic half-form andN is as in the proposition, the
restrictionω

∣∣
N

is a half-form on the real manifoldN and thus we can integrate
ωN ⊗ ω̄N overN. Hardy spaces are defined by a finiteness condition on such in-
tegrals. However, in order to obtain Hilbert spaces, one needs the more specific
geometric situation whereN plays the role of a boundary of the domain on which
the holomorphic half-forms live.

Definition 1.3.3. A quadruple(U, N,HF, 0) is calledHardy-space dataif

(1) U is a domain in a complex manifoldM,
(2) HF is a holomorphic half-form bundle overM,
(3) N is a real form ofM such thatN is contained in the boundary∂U of U, and
(4) 0 is a semigroup of compressions ofU acting by local automorphisms ofHF.

More precisely,s ∈0 acts by a local holomorphic diffeomorphism

s : Ds 7→ s(Ds),
whereDs ⊂ M is a domain containingU . The assumption thats is a compres-
sion ofU means thats(U ) ⊂ U . Moreover, we assume that, to eachs, a bundle
isomorphism

s∗ : HF
∣∣
s(Ds )→ HF

∣∣
Ds

is given (thus we assume thatp B s∗ = s B p, wherep is the projection onto the
base space ofHF ) such thats∗2 B s∗1 = (s1s2)

∗ and

s∗(vy ⊗ wy) = s∗vy ⊗ s∗wy
for all vy, wy ∈HFy.

It is clear that the manifoldM and the domainsDs can be replaced by smaller
neighborhoods ofU; thus we omitM in our notation and are, in fact, interested
in equivalence classes only when considering two elementss, s ′ as equivalent if
they coincide onU .
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We denote by0o the semigroup ideal

0o = {s ∈0 | s(Ū ) ⊂ U o}.
Then, under the previous assumptions,s ·N is a real form ofU for all s ∈0o. We
are thus in the situation of Proposition 1.3.2, implying that for any holomorphic
sectionω of HF we have a densityω ⊗ ω̄ on s ·N.
Definition 1.3.4. Given Hardy-space data(U, N,HF, 0), for any holomorphic
sectionω of HF we set

‖ω‖2H := sup
s∈0o

∫
s·N
ω
∣∣
s·N ⊗ ω

∣∣
s·N

and define aHardy space

H2(U ) := H2(U, N,HF, 0) := {ω ∈O(U,HF ) | ‖ω‖2H <∞}.
Of course, this definition is void unless0o is non-empty. To see that there are
plenty of nontrivial examples, just note that for any homogeneous complex mani-
foldM = G/H and any open subsemigroupS inG, theS-orbits inM are all open
and can play the role ofU . For a detailed description of a number of examples
satisfying also Assumption 1.4.1 (so that0o even contains approximate identities)
see [HN, Chap. 8], which deals specifically with compression semigroups. To
construct actions of compression semigroups on a half-form bundle, one can use
standard methods involving double coverings. That coverings cannot be avoided
in general can be seen from the examples treated in [BH2] and [KØ2].

One can also define general bundle-valued Hardy spaces in the same spirit as we
passed from the Bergman space of scalar-valued forms to bundle-valued forms.
However, in order to keep the notation manageable, we stick to the case of scalar-
valued half-forms. At the moment, we do not even know whether the Hardy space
is a vector space.

Proposition 1.3.5.

(i) The Hardy spaceH2(U ), together with‖ · ‖2H, is a normed complex vector
space.

(ii) The semigroup0 acts naturally by contractions on the Hardy space.
(iii) If 0 is a monoid(i.e., a multiplicative semigroup with a neutral element1)

and if the element1 acts as the identity onU and HF, then the groupG =
0 ∩ 0−1 of units acts naturally by isometries on the Hardy space and hence
also on its norm completion.

Proof. (i) Using property (4) of the Hardy-space data, we calculate that∫
s·N
ω
∣∣
s·N ⊗ ω̄

∣∣
s·N =

∫
s·N
(ω ⊗ ω̄)∣∣

s·N =
∫
N

s∗ω ⊗ s∗ω̄ = ‖(s∗ω∣∣
N
)‖2
L2(N,HFN )

;
thus,

‖ω‖2H = sup
s∈0o
‖(s∗ω)∣∣

N
‖L2(N,HFN ).
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Using the triangle inequality inL2(N,HFN), it follows that if ‖ω‖H < ∞ and
‖ν‖H <∞ then also‖ω + ν‖H <∞. The claim follows.

(ii) Using the calculation from part (i), we have

‖s∗ω‖2H = sup
g∈0o
‖(g∗s∗ω)∣∣

N
‖L2(N,HFN ) = sup

g∈s0o
‖(g∗ω)∣∣

N
‖L2(N,HFN )

≤ sup
g∈0o
‖(g∗ω)∣∣

N
‖L2(N,HFN )

≤ ‖ω‖2H.
(iii) This is immediate with (ii).

Note that it is by no means clear at this point that the Hardy spaceH2(U ) is an
inner product space. In other words, we do not have the means to show that the
norm‖ · ‖2H satisfies the parallelogram identity

2‖ω‖2H + 2‖ω ′‖2H = ‖ω + ω ′‖2H + ‖ω − ω ′‖2H.

1.4. The Boundary Value Map

From the theory of Hardy spaces of functions, one expects an isometric boundary
value mapb : H2(U, N,HF, 0)→ L2(N,HFN). We formulate an assumption on
the geometry ofU, N, and0 under which this is indeed the case, as follows.

Assumption 1.4.1 (Polar Decomposition). In addition to the data given by Defi-
nition 1.3.3, assume thatG preservesN and that0 is a locally compact semigroup
for which the groupG = 0 ∩ 0−1 is a Lie group such that0 admits apolar
decomposition

0 = Gexp(iC)

with an Ad(G)-invariant regular (i.e., convex, open, and pointed) coneC in the
Lie algebrag ofG. This means that each elements ∈0 can be uniquely written as
s = gp, whereg belongs toG andp belongs to a 1-parameter subsemigroupt 7→
γ (t) of 0 for which the vector fieldX(x) := i d

dt

∣∣
t=0γ (t)x is of the formx 7→

d
dt

∣∣
t=0 exp(tY ) · x for Y in C. Here multiplication byi on the tangent space ofM

is given by the almost complex structure ofM.

Theorem 1.4.2. Let (U, N,HF, 0) be Hardy-space data satisfying Assumption
1.4.1. Then there is an isometric boundary value map given by

b : H2(U, N,HF, 0)→ L2(N,HFN), ω 7→ lim
t→0

(
(exp(itX)∗ω)

∣∣
N

)
that is independent of the elementX ∈ intC.

Proof. This can be proved in the same way as the corresponding statement for
Hardy spaces of functions on Ol’shanski˘ı semigroups (cf. e.g. [HN, pp. 277–279].
Let us briefly recall the main points. We write0 = Gexp(iC) and letX ∈ int(iC).
For a fixedω ∈H2(U, N,HF, 0), we consider the map

F : {z∈C | Rez > 0} → L2(N,HFN), z 7→ (exp(zX)∗ω)
∣∣
N
.
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In this situation, a lemma of Paley–Wiener type due to Ol’shanski˘ı (cf. [HN,
Lemma 9.11]) implies thatbX(ω) := limz→0F(z) exists inL2(N,HFN). Now it
is proved by standard arguments thatbX is an isometry that does not depend onX
(cf. [HN, pp. 278–279]).

We note the following consequences of Theorem 1.4.2 for later use.

Corollary 1.4.3. Let (U, N,HF, 0) be Hardy-space data satisfying Assump-
tion 1.4.1. Then:

(i) the Hardy spaceH2(U, N,HF, 0) is an inner product space; and
(ii) the space of sections ofHF that are holomorphic in some neighborhood of
U is dense inH2(U, N,HF, 0).

Recall the basic concepts of the holomorphic representation theory for involutive
semigroups from [N2]. Aninvolutive semigroupis a pair(0, ]),where0 is a semi-
group and] : 0→ 0 is an involutive anti-automorphism. AHermitian semigroup
representationof a semigroup0 with involution ] on a pre-Hilbert spaceH0 is
a semigroup homomorphismπ : 0 → B0(H0) preserving the involutions (i.e.,
π(s]) = π(s)∗). HereB0(H0) is the vector space of linear operatorsA : H0 →
H0 for which a formal adjoint exists. This is an involutive semigroup, so the fore-
going definition makes sense. We callπ boundedif π(s) is a bounded operator
for all s ∈ 0. If 0 is a topological semigroup with a continuous involution, then
a bounded representationπ on a Hilbert spaceH is calledcontinuousif π : 0→
B(H) is continuous with respect to the weak operator topology on the algebra
B(H) of bounded operators onH.

If, in addition,0 is a complex manifold and] is anti-holomorphic, then(0, ])
is called acomplex involutive semigroupand a bounded representationπ : 0 →
B(H) is calledholomorphicif it is holomorphic as a map whenB(H) is endowed
with its natural Banach space structure.

Remark 1.4.4. Note that the existence of a polar decomposition for0 automat-
ically shows that we have an involutive self-maps 7→ s] of 0 via (g expX)] =
(expX)g−1. In fact, we calculate

(s])] = exp(Ad(g)X)g = g(expX)g−1g = g expX.

But the equality(s1s2)
] = s]2s]1 cannot automatically be deduced from this defini-

tion unless0 is abelian. We shall soon encounter various examples of semigroups
with polar decomposition such that the associated involutive self-map is actually
an involution defined as follows: there is a “complex conjugation”τ of M with
respect to the real formN, and then the equations] = τ B s−1 B τ holds on some
neighborhood ofU .
Theorem 1.4.5. Suppose that Assumption 1.4.1 holds. In addition, we assume
that (0, ]) is a complex involutive semigroup such that

(g expX)] = (expX)g−1 = g−1 exp(Ad(g)X).
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Then the representation of0 from Proposition1.3.5 on the completion ofH2(U, N,
HF, 0) is a holomorphic Hermitian representation.

Proof. We setπ(s)ω = s∗ω for ω ∈H2(U, N,HF, 0) and use Proposition 1.3.5
to extendπ(s) to a contraction on the completionH ofH2(U, N,HF, 0). In this
way we obtain, again by Proposition 1.3.5, a bounded representationπ : 0 →
B(H). Once more from Proposition 1.3.5 we see that the restriction ofπ toG =
0 ∩ 0−1 is a unitary representation.

Using charts and a suitable partition of unity, we can view the integrals that give
the norms of the half-forms involved as ordinary integrals of functions. Since0

acts by contractions, we can use Lebesgue’s theorem of dominated convergence
to see thatπ is holomorphic (cf. [HN, Lemma 9.7]).

It remains to demonstrate thatπ(s]) = π(s)∗. The unitarity ofπ
∣∣
G

implies
that it suffices to show thatπ(expX) is self-adjoint forX ∈ iC. Consider the
derived representationdπ of g onH. SinceiX ∈ g, we know thatdπ(X) is a
self-adjoint operator onH, which is the infinitesimal generator of the unitary 1-
parameter groupπ(exp(itX)). Let P be the spectral measure ofdπ(X) and set
A = P(]−∞,0]) dπ(X).

Now, forω ∈H2(U, N,HF, 0), consider the function

z 7→ Fω(z) = π(exp(zX))ω = (expzX)∗ω

defined onC+ = {z ∈ C | Rez ≥ 0}. ThenFω(z + it) = π(expitX)Fω(z), and
Ol’shanski˘ı’s Paley–Wiener lemma [HN, Lemma 9.11] shows that there exists a
ξ ∈ H such thatFω(z) = exp(zA)ξ for z ∈ C+. SinceFω(0) = ω we see that
ξ = ω, which implies

π(exp(zX))ω = exp(zA)ω.

By continuity, we now findπ(exp(zX)) = exp(zA). SinceA is self-adjoint, the
claim follows from the casez = 1.

Remark1.4.6. There is an analog of Theorem1.4.5 for Bergman spaces: suppose
that (0, ]) satisfies the assumptions of Theorem 1.4.5; then the representation of
0 onB2(U ) from Proposition1.1.3 is aholomorphic Hermitian representation. In
fact, we can obtain this result by copying the proof of Theorem 1.4.5 withB2(U )
instead ofH2(U, N,HF, 0). It even gets a little simpler, sinceB2(U ) already is
complete.

1.5. Completeness of Hardy Spaces

In general, the normed vector space from Definition 1.3.4 will not be complete.
We introduce a sufficient condition on the Hardy-space data that will allow us to
prove completeness in various cases.

Definition 1.5.1. Hardy-space data(U, N,HF, 0) are calledcompleteif As-
sumption 1.4.1 is satisfied and the inclusion map

H2(U, N,HF, 0) ↪→ O(U,HF )
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is continuous, whereH2(U, N,HF, 0) carries the norm topology andO(U,HF )
the topology of compact open convergence.

In the following proposition we use the concept of a reproducing kernel for a
Hilbert space of sections as explained in the appendix.

Proposition 1.5.2. Let (U, N,HF, 0) be complete Hardy-space data. Then
H2(U, N,HF, 0) is a Hilbert space that admits a reproducing kernel.

Proof. In view of Theorem 1.4.2, this can be proved just as the corresponding
result in [HN, Thm. 9.31, especially p. 280].

In general, it is not easy to check the completeness of Hardy-space data. In fact,
we don’t have a general criterion that covers all the known cases of complete data.

Proposition 1.5.3. Consider the Hardy-space data(U, N,HF, 0) and assume
that:

(a) they satisfy Assumption 1.4.1(polar decomposition); and
(b) the map0o ×N → U, (s, n) 7→ s · n is a submersion.

Then(U, N,HF, 0) is a set of complete Hardy-space data.

Proof. Since the question is of local nature, we may assume that the bundleHF
admits a trivialization on some neighborhood ofU . So let us assume thatν is a
global nowhere vanishing section ofHF on some neighborhood ofU . Identifying
holomorphic sectionsω of HF with holomorphic functionsf via ω = fν, the
semigroup0 acts by

(s∗f )(z) = j(s, z)f(s · z)
with j(s, z) defined bys∗ν = j(s, ·)ν (cf. Remark1.1.1). Letdµ be the measure
defined by the densityν⊗ ν̄ onN. Then the trivialized picture of the Hardy space
H2 is

H 2 =
{
f ∈O(U ) ∣∣ sup

s∈0o

∫
N

|f(s · u)|2|j(s, u)|2 dµ(u) <∞
}
.

Now we follow the proof for the case of Hardy spaces on Ol’shanski˘ı semi-
groups (cf. [HN, pp. 279–280] or [Ne1, Lemma 1.3]). The main point is to prove
that, for any compact subsetK ⊂ U, we can find a constantcK depending only
onK such that

sup
z∈K
|f(z)| ≤ cK‖f ‖H 2

for all f ∈H 2. For the proof of this estimate, assumption (b) is essential, since it
permits us to introduce local coordinates adapted to the problem and thus to show
thatf satisfies a local Bergman-type condition. The absolute value of the cocycle
factorj(s, z) can locally be estimated from above and from below and does not
affect this way of reasoning.

We note here that assumption (b) of Proposition 1.5.3 is not necessary. In fact, it
is not satisfied for the data leading to the classical Hardy spacesH 2(D) with D
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a bounded symmetric domain of complex dimensionn greater than 1 (cf. Section
2.3). In that case,0 is 1-dimensional; therefore,0N is (n + 1)-dimensional and
hence not open in the real(2n)-dimensionalD.

Remark 1.5.4. If one strengthens the assumptions on0 by saying that0 is a
complex Ol’shanski˘ı semigroup (cf. [Ne1]), then the proof of [Ne1, Prop. 2.4] can
be adapted to yield the following result: If the Hardy-space data(U, N,HF, 0) are
complete, then the subspaceb(H2(U, N,HF, 0)) ⊂ L2(N,HFN) is the largest
subspaceF ⊂ L2(N,HFN) such that all the self-adjoint operatorsiX, X ∈C, are
negative onF.

2. Bergman and Hardy Spaces on Tube-Type Domains

2.1. Bergman Spaces on Bounded Symmetric Domains

In the following we assume thatD = G/K is a Hermitian symmetric space. Then
D has a canonical realization as a circled bounded symmetric domain in a complex
vector spaceVC = Cn (cf. [L] or [Sa]). The vector spaceVC is, in turn, realized as
an open dense subset in the compact dual(VC)

c ofD. The embeddingD ⊂ VC ⊂
(VC)

c is called theBorel embedding.The space(VC)c is a complex manifold and
can be written as the quotient(VC)c = GC/Q of complex Lie groups. ThenQ is
a maximal parabolic subgroup ofGC containing the translation grouptVC .

There exist unbounded realizations of the Hermitian symmetric spaceG/K as
Siegel domains of the second kind.In caseG/K is of tube type,this expression re-
duces to a Siegel domain of the first kind, which is (by definition) a tube domain
T� = V + i� over a homogeneous self-dual cone� in a Euclidean vector space
V. This space carries the structure of a Euclidean Jordan algebra with unit element
e, and the Cayley transformC relating these two realizations viaC(D) = T� can
be written in terms of this algebra asC(z) = i(e+ z)(e− z)−1 (cf. [FK2, p. 190]).

One defines a Bergman space of holomorphic functions on the bounded sym-
metric domainD by

B2(D) :=
{
f ∈O(D) ∣∣ ∫

D

|f(z)|2 dz <∞
}
.

If we denote bydz also the translation-invariant holomorphic top-degree form on
VC, restricted toD, then

B2(D)→ B2(D), f 7→ f(dz) (2.1.1)

is an isomorphism of Hilbert spaces. One deduces thatB2(D) is nontrivial be-
causeB2(D) contains all holomorphic polynomials. It follows that the Bergman
kernelK is nonzero. The following explicit formula for the Bergman kernel is
well known. In order to show that it can be proved bygeometricmethods, we
sketch a short proof. One defines a polynomial onVC by

B(x, y) := idVC − 2x�y + P(x)P(y),
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where(x�y)z = T(x, y, z) andP(x)z = T(x, z, x) are defined via the Jordan
triple productT(x, y, z) associated to the bounded symmetric domainD (cf. [L]
or [Sa], where the notation{xyz} for T(x, y, z) is used).

Theorem 2.1.1. The reproducing kernel ofB2(D) is (up to a nonzero constant
factor) given by

k(z,w) = DetB(z, w̄)−1,

and the reproducing kernel ofB2(D) is given byK(z,w) = k(z,w)dz� dw.
Proof. The group Aut(D) acts unitarily on the geometric Bergman space. There-
fore, its reproducing kernel isG-invariant (Theorem A.2.1). SinceG acts transi-
tively onD, the kernelK(z, z) is uniquely determined by its value at a base point,
and by holomorphyK(z,w) is then also determined. In other words, the reproduc-
ing kernel is determined up to a factor by its invariance property. In the trivialized
picture, the invariance translates into the covariance property

k(g · z, g · z) = Det(dg(z))−2k(z, z).

It can be proved by geometric methods that the functionz 7→ DetB(z, z̄)−1 has
precisely this covariance property (cf. [L]; in [B, Sec. 1.4], a more direct proof is
given that does not need the trivialization). Since the Bergman kernel is not zero,
we conclude that there is a scalarλ 6= 0 with k(z,w) = λDet(B(z, w̄))−1.

Moreover, since the groupG acts transitively onD by holomorphic diffeomor-
phisms, a theorem of Kobayashi (cf. [K] or [BH1, Thm. 2.5]) implies thatB2(D) is
an irreducible unitaryG-module. Next one defines a family ofweighted Bergman
spacesof holomorphic functions by

B2
m(D) :=

{
f ∈O(D) ∣∣ ∫

D

|f(z)|2 DetB(z, z̄)m−1dz <∞
}

(cf. [FK2, Chap. XIII]). This is the trivialized picture of the bundle-valued Berg-
man spaceB2(D,K m−1

D ) with values in the line bundleK m−1
D , with the Hermitian

metric given by the(m − 1)th power of the Bergman kernel function. Since this
metric isG-invariant, we have again a unitary and irreducibleG-representation
on this space.

2.2. The Geometric Hardy Space of a Tube-Type Domain

We shall define Hardy-space data associated to a bounded symmetric domainD

of tube type. OnM = VC we choose the natural trivial half-form bundleHF and
denote its translation-invariant section by(dz)1/2. (Let n be the real dimension
and letr be the rank ofV. If V is simple andn/2r is an integer, then one can de-
fine the half-form bundleHF on all of (VC)c via an induced representation; if it is
a half-integer, this is no longer possible.) The spaceN will be given by theShilov
boundary,which is described in terms of the complex Jordan algebraVC by

6 = {z∈VC | z−1= z̄};
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this shows that6 is indeed a real form ofVC (if D is not of tube type, then the
Shilov boundary is not a real form ofVC). As semigroup0 we take the double
coveringS̃2(D) of thecompression semigroup

S(D) = {s ∈GC | s(D) ⊂ D}.
(For the definition of this double cover and the double coverG̃2 of G, see [BH2,
Rem. 2.2.3] or [KØ2].)

Lemma 2.2.1. The data(D,6,HF, S̃2(D)) define Hardy-space data onD.

Proof. Using the trivializationf 7→ f(dz)1/2, the groupG̃2 acts on the space of
holomorphic sections ofHF

∣∣
D

via

(g · f )(z) = ((Det dg−1)(z))1/2f(g−1 · z). (2.2.1)

The definition of the group̃G2 assures us that this is indeed a representation. The
mapz 7→ (Det dg−1(z))−1 is a holomorphic polynomial onVC that vanishes pre-
cisely at the pointsz ∈ VC with g−1(z) /∈ VC (cf. [B] or [L]). In particular, it
does not vanish on the open neighborhoodU1 = g−1(VC) ∩ VC of D. Choose a
connected simply connected open neighborhoodU ofD insideU1. Then the holo-
morphic functionz 7→ (Det dg−1(z))1/2 has a unique extension to a holomorphic
function onU, and therefore (2.2.1) defines an action ofg by a local automor-
phism ofHF in the sense of Definition 1.3.3(4). All arguments go through forG̃2

replaced by the semigroup̃S2(D). Thus, assumption (4) of the Hardy-space data
(Definition 1.3.3) is verified.

Definition 2.2.2. The geometric Hardy space given by the Hardy-space data
from Lemma 2.2.1 is denoted byH2(D, S̃2(D)) or just byH2(D).

Theorem 2.2.3.

(i) The Hardy spaceH2(D) is complete, has a reproducing kernelS, and admits
a boundary value map.

(ii) There is a constantλ∈C (λ 6= 0) such that

S ⊗ S = λK,
whereK is the Bergman kernel ofD. In particular,H2(D) is not reduced to
zero.

Proof. (i) We verify the assumptions of Theorem 1.4.2 and Proposition 1.5.3. It is
well known thatG(D) preserves6, and (according to a result of G. Ol’shanski˘ı)
the semigroupS(D) admits a polar decompositionS(D) = Gexp(iC), where
C = Cmax is in fact a maximal invariant regular Ad(G)-invariant cone ing. Thus,
Assumption 1.4.1 is verified. In order to prove completeness of the Hardy-space
data, it remains to show that0o × 6 → D is a submersion. But since any ele-
ment of0o maps6 intoD and sinceG (which is contained in0) acts transitively
onD, this is clear.
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(ii) We use the same arguments as in the proof of Theorem 2.1.1. ThegroupG̃2

acts unitarily both onH2 and onB2; thus, according to Theorem 2.2.1, the ker-
nelsS andK areG̃2-invariant. The invariance ofS implies that alsoS ⊗ S is an
invariant kernel; it is a section of(HF ⊗ HF )� (HF ⊗ HF ) = K D � KD and is
uniquely determined by its restriction to the diagonal. This restriction is an invari-
ant section ofKD. SinceG̃2 acts transitively onD, there is (up to a factorλ∈C)
only one invariant section of the line bundleKD: S ⊗ S = λK.

It remains to prove thatλ 6= 0, that is, thatH2(D) is not reduced to zero. Here
we must use some specific information on the geometric situation. We proceed in
seven steps as follows.

1. We trivializeH2(D) via (dz)1/2. If f is a holomorphic function onD,we let

‖f ‖2 := ‖f ‖2
H 2(D)

:= sup
s∈S̃2(D)o

∫
6

|f(s · u)|2|Det ds(u)| dσ(u),

wheredσ is the (normalized)K-invariant measure on6. Then we define a Hardy
space of holomorphic functions

H 2(D, S̃2(D)) := {f ∈O(D) | ‖f ‖2 <∞}. (2.2.2)

We claim that

H 2(D, S̃2(D))→ H2(D), f 7→ f(dz)1/2

is a Hilbert space isomorphism. In fact, the groupK is a subgroup of the unitary
group ofVC. Therefore the density|dz| = (dz)1/2 ⊗ (dz)1/2 isK-invariant, and
so is the restriction of this density to6. It thus defines aK-invariant measure on
6. Because such a measure is unique up to a constant factor, it must be propor-
tional todσ. Now formula (2.2.1) shows that the definitions of both Hardy spaces
correspond to each other under the trivialization.

2. Let f be a function that is holomorphic on some neighborhood ofD. We
will prove that then

‖f ‖H 2(D) ≤
∫
6

|f(u)|2 dσ(u) = ‖f ‖L2(6) (2.2.3)

(actually, we will have equality). Sincef is continuous on the compact space
6, this integral is finite, and it follows thatf ∈H 2(D, S̃2(D)). This proves that
H 2(D, S̃2(D)) contains, for example, all holomorphic polyomials and thus is not
reduced to zero.

SinceS(D) = Gexp(iC) andG preserves the Hardy-space norm, it is enough
to take the supremum in the definition of the Hardy space over exp(iC). But then,
letting

Ft := ‖(exp(tX)∗)(ω)‖2L2(6,HF ) =
∫
6

|f(u)|2|Det d(exp(tX))(u)| dσ(u)

for anyX ∈ iC (whereω = f(dz)1/2), it is enough to prove thatFt is bounded
from above by‖f ‖L2(6) for all t ∈R+.
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3. The functiont 7→ Ft , as a composition of a holomorphic map and a norm
function, is subharmonic on a half-plane. It is constant in imaginary direction, and
therefore its restriction toR+ is convex. We will prove that

lim
t→∞Ft = 0. (2.2.4)

Together with the convexity this implies thatt 7→ Ft is decreasing onR+. Then its
supremum is obtained by taking the limit fort → 0, proving that this supremum
is ‖f ‖L2(6).

4. Since exp(X) is a strict compression ofD (i.e., exp(X) · D̄ ⊂ D), by com-
pactness there exists a real numberr < 1 with exp(X) · D̄ ⊂ rD. Let d(x, y) be
the distance ofx andy with respect to the Bergman metric onD. Then, onrD̄, the
Bergman metric and the Euclidean metric ofVC are equivalent in the sense that
there exist constantsc0 < 1 andc1 > 1 such that, for allx, y ∈ rD̄, the inequality

c0d(x, y) < |x − y| < c1d(x, y) (2.2.5)

holds. This follows from the fact that the Bergman metric is given by

hz(u, v) = 〈B(z, z̄)−1u, v〉,
where〈u, v〉 is the Euclidean scalar product onVC (cf. [L, Thm. 2.10]).

5. By a result of Clerc ([Cl]; note that its proof requires only standard facts on
the geometry ofD), the map exp(X) is a strict contraction of the Bergman dis-
tance onD; that is, there exists a constantk < 1 with d(exp(X) ·x,exp(X) ·y) ≤
kd(x, y) for all x, y ∈D. Taking powers of exp(X), we can finds > 0 anda < 1
such that

d(exp(sX) · x,exp(sX) · y) ≤ a c0

c1
d(x, y) (2.2.6)

for all x, y ∈D.
6. Forg = exp(sX) we use (2.2.5) and (2.2.6) to estimate that, for allx, y ∈

rD̄,

|g · x − g · y| < c1d(g · x, g · y) < ac0d(x, y) < a|x − y|.
That is,g is a strict contraction for the Euclidean metric onrD̄. (Using Banach’s
fixed point theorem, we can now conclude thatg has a fixed point inrD̄, but we
don’t need this just yet.) It follows that, for allz∈ rD̄ andN ∈N,

|Det dgN(z)| ≤ anN,
wheren := dimV.

7. Using the chain rule, for allN ∈N andu∈6 we have

d(exp(NsX)exp(X))(u) = (d exp(NsX))(exp(X) · u) B d(exp(X))(u).

Now we take determinants and putM := supu∈6|Det(d exp(X))(u)|. Note that
exp(X) · u∈ rD. We get

|Det(d(exp(NsX)exp(X))(u)| < ManN.

From this we obtain
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FNs+1=
∫
6

|f(u)|2|Det d(exp(Ns +1)X)(u)| dσ(u) ≤ ManN
∫
6

|f(u)|2 dσ(u).

Since‖f ‖L2(6) <∞ by boundedness off on D̄, this tends to zero asN tends to
infinity. Together with the convexity oft 7→ Ft , this implies that limt→∞ Ft = 0;
as explained in steps 2 and 3, the claim follows.

Remark 2.2.4. (i) The proof of Theorem 2.2.3 shows that the dynamical system
exp(R+X) behaves very much like the dynamical systemR+ idVC : it has precisely
one fixed point inD that is an attractor for all points in some neighborhood ofD.

This makes the proof work. The behavior of 1-parameter semigroups of compres-
sions that are not strict is, in general, much more complicated.

(ii) The proof works for anyf ∈ O(D) such thatf has almost everywhere a
pointwise limit on6 defining a square integrable function there. It would be in-
teresting to know whether this condition already describes the Hardy space (i.e.,
is the boundary value map pointwise defined almost everywhere?).

2.3. Classical versus Geometric Hardy Spaces

Theorem 2.2.3 gives a satisfactory explanation of Facts 1 and 3 (Section 0) for the
geometricHardy space. Next we will discuss the relation of the geometric Hardy
space with the classical Hardy spaces (Fact 2). Toward this end, we define a semi-
group

C< = {z 7→ tz | t ∈C∗, |t | < 1} ⊂ S(D).
It is clear that(D,6,HF,C<) are Hardy-space data onD. The corresponding
Hardy space of half-forms is denoted byH2(D,C<).

Theorem 2.3.1. We have an equality of normed vector spaces,

H2(D, S̃2(D)) = H2(D,C<).

In particular, H2(D,C<) is a complete Hilbert space admitting a reproducing
kernel.

Proof. The inclusion “⊆” follows from the fact that the supremum in the defi-
nition of H2(D,C<) is taken over a subsemigroup ofS̃2(D) (strictly speaking,
we should use the pre-image ofC< under the covering̃S2(D)→ S(D), but this
doesn’t change the Hardy norm). Moreover, this inclusion is isometric. First we
check thatH2(D,C<) satisfies Assumption 1.4.1 and thus admits an isometric
boundary value map (Theorem 1.4.2). Since the boundary value map is indepen-
dent ofX ∈ int(C), we choose−X to be the Euler vector field (i.e.,X(p) = −p)
and have, for allω ∈H2(D,C<),

‖ω‖H2(D,C<) = lim
t→0
‖(exptX)∗ω)‖L2(6) = ‖ω‖H2(D,S̃2(D))

.

For the proof of the inclusion “⊇” we use the proof of Theorem 2.2.3. There
we saw that the subspaceHo of sections ofHF that are holomorphic on some
neighborhood ofD is contained inH2(D, S̃2(D)). On the other hand, according
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to Corollary 1.4.3,Ho is dense inH2(D,C<). ThusH2(D, S̃2(D)) is dense in
H2(D,C<), and since this subspace is complete, we actually have equality.

Note that the preceding theorem together with Theorem 2.2.3 shows thatH 2(D)

is a reproducing kernel space and so yields a proof for the formula of the repro-
ducing kernel that is independent of other known proofs. Thus, Facts 1 and 3 are
explained forH 2(D).

For the Hardy spaceH 2(T�) of the tubeT�, the situation is slightly more dif-
ficult. It is easily verified that Hardy-space data are given by(T�, V,HF, tV+i�),
where

tV+i� := {z 7→ z+ v + iu | v ∈V, u∈�}
is a semigroup of strict compressions of the domainT� ⊂ VC andHF is the triv-
ial half-form bundle induced fromVC. Moreover, it is clear thatH 2(T�) is the
trivialized picture of the geometric Hardy space associated to these data.

The reason for the problems is that the semigrouptV+i� is not a semigroup of
strict compressions of the bounded domainD = C(T�) equivalent toT�. In fact,
the points of the Shilov boundary lying “at infinity” (i.e., in6 \ C(V )) are not
mapped into the interior ofD underCtV+i�C−1. In other words,CtV+i�C−1 is a
semigroup belonging to the boundary ofS(D).

Proposition 2.3.2. The contractive semigroup representation

S̃2(D)
o → B(H2(D))

has a unique continuous extension to a contractive semigroup representation

S̃2(D)→ B(H2(D)).

The extension agrees with the representation ofS̃2(D) on the holomorphic sec-
tions of HF

∣∣
D

given by the formula(2.2.1).

Proof. We know from Theorem 1.4.5 that the representation ofS̃2(D)
o onH2(D)

is a holomorphic Hermitian representation by contractions. SinceS̃2(D)
o contains

an approximate identity, we can use [N2, Thm. IV.1.27] to show that a continuous
extension tõS2(D) exists. This extension is unique and automatically contractive.

To show also the last claim, we recall that convergence with respect to the Hardy
norm implies convergence with respect to the compact open topology, so that the
density ofS̃2(D)

o in S̃2(D) and the continuity of the representation (2.2.1) imply
the claim.

Forω ∈H2(D)we write‖ω∣∣
6
‖L2(6) for the norm of the boundary valuebω. Then

the fact that the extended semigroup representation from the preceding proposi-
tion is contractive implies that

sup
s∈S̃2(D)

‖s∗ω∣∣
6
‖L2(6) ≤ ‖ω‖H2(D);

on the other hand, by definition of the Hardy space we have the converse inequal-
ity, and thus equality holds. In other words, the Hardy spaceH2(D) can also be
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defined by taking the supremum over the whole contraction semigroup and not
only over its interior.

Theorem 2.3.3. We have an equality of Hilbert spaces,

H2(D, S̃2(D)) = H2(D,C(V ),HF, CtV+i�C−1).

Proof. “⊆”: Note thatC(V ) is open dense in6. Therefore,

sup
s∈tV+i�

‖s∗ω‖L2(C(V )) = sup
s∈tV+i�

‖s∗ω‖L2(6) ≤ sup
s∈S̃2(D)

‖s∗ω‖L2(6).

As we remarked before stating the theorem, the last term defines the Hardy-space
norm ofH2(D, S̃2(D)), and the desired inclusion follows.

“⊇”: This follows by the same arguments as in the proof of Theorem 2.3.1.

Remark 2.3.4 (Other Hardy Spaces). One may ask which of the preceding re-
sults carry over to the non–tube-type case of bounded symmetric domains. In this
case, the Shilov boundary is not a totally real submanifold ofM (it contains sub-
spaces of the formCk with k > 0). One can nevertheless define Hardy spaces in
this case also, and analogs of Facts 1–3 hold: the Bergman kernel is not a square,
but it is still a power of the Cauchy kernel (cf. [FK1; Ko; KoS]). This suggests that
our approach may be generalized by considering more general types of boundaries
and higher roots of the canonical bundle. (We thank Adam Korányi for pointing
this out to us.)

Another generalization of Hardy spaces are the spacesH 2
m(T�) defined in [FK2,

p. 270], which carry a unitaryG-action. In these cases, the Shilov boundary is
replaced by otherG-orbitsN in ∂T�. However, ifN 6= 6 thenN contains holo-
morphic arc components; that is, it is no longer a totally real submanifold. Thus
one could try to interpret these spaces as “Hardy spaces with values in Bergman
spaces”.

3. Bergman and Hardy Spaces on Generalized Tube Domains

3.1. Bergman Spaces

Let4 be an open domain in a complex homogeneous spaceMC = GC/HC,where
GC is a complex Lie group andHC a complex closed subgroup. Then the geomet-
ric Bergman spaceB2(4) is canonically defined. On the other hand, in harmonic
analysis one considers Bergman spaces of functions defined under the assumption
that there exists aGC-invariant measureµ onMC. The Bergman space associated
to such a measure is

B2(4,µ) :=
{
f ∈O(4) ∣∣ ∫

4

|f(z)|2 dµ(z) <∞
}

(cf. e.g. [HK; Krö; P]). The point one must observe here is that the measureµ is
in general not defined by a volume form, and thereforeB2(4,µ) is in general not
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just the trivialized picture ofB2(4). However, there is an important class of ex-
amples for which one comes close to that situation (cf. [W, Apx.]). SupposeGC
is reductive, so that its modular function|Det BAd|−1 is the constant function 1.
Then the existence of the invariant measure implies that the image of the complex
representation

δ : HC→ C∗, h 7→ Det(doh)

(determinant of the differential at the base pointo = eH ) is contained in the unit
circle. It is therefore constant on each connected component ofHC and, in particu-
lar, is trivial on the identity component. IfHC has only finitely many components,
thenδ(HC) is a finite subgroup of the unit circle and hence the kernelH1 of δ is a
normal subgroup of finite indexm in HC. Thus, the map

p : M̃C := GC/H1→ MC, gH 7→ gH1

is anm-fold covering.
Suppose thatMC is actually a complexification of areal homogeneous space

M; that is, suppose there are closed real formsG andH of GC andHC such that
M = G/H. Then the restriction ofδ toH is real-valued. This means that the only
possible values forδ(h) are±1. If now each component ofHC intersectsH, we
conclude thatM̃C is at most a double cover ofMC.

The spaceM̃C clearly admits a nontrivial holomorphicGC-invariantn-form ν

that defines aGC-invariant measurẽµ on M̃C. Let 4̃ := p−1(4). NowB2(4̃, µ̃)

is the usual trivialization ofB2(4̃) with respect toν. Up to a constant factor, the
pull-backs

p∗ : B2(4)→ B2(4̃) and p∗ : B2(4,µ)→ B2(4̃, µ̃)

are isometric embeddings whose images are the respective spaces of “even”
elements—that is, those that are invariant under the group of deck transformations.

Form > 1 the formν is “odd” (i.e.,not preserved under deck transformations),
so the trivialization mapf 7→ fµ̃ does not respect the spaces of “even” elements.

3.2. Hardy Spaces

The foregoing remarks still apply, but dealing with half-form bundles leads to ad-
ditional and more subtle complications. First, as usual for Hardy spaces, we need
a more specific geometric setup. Here the framework ofcompactly causal sym-
metric spacesis natural (cf. [HÓ; HÓØ; O]). To such a spaceM = G/H one
associates a domain4 = Gexp(iW ) · o in its complexificationMC = GC/HC.
HereW is a certain open convex Ad(G)-invariant cone in the Lie algebrag of G.
Then0W := Gexp(iW ) ⊂ GC is a complex semigroup. Now one defines aHardy
space of holomorphic functionsby

H 2(4) :=
{
f ∈O(4) ∣∣ sup

s∈0W

∫
M

|f(sx)|2 dρ(x) <∞
}
,

whereρ is aG-invariant measure onM (cf. [HÓØ]). When trying to relate this
space to a geometric Hardy space, we are faced with two problems as follows.
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(i) Existence: We do not know whether holomorphic half-form bundles exist
on4. This can be remedied using the double coverM̃C introduced in the preced-
ing section. The canonical bundleK M̃C

is trivial and admits a nontrivial invariant
section, and thus there is a holomorphic half-form bundleHF0 with the same prop-
erties. It is then easy to see that(4̃, M̃,HF0, 0W) defines (complete) Hardy-space
data on4 and that the trivialization map

H 2(4̃)→ H2(4̃, M̃,HF0, 0W)

is an isometric bijection. As for Bergman spaces, the pull-backp∗ : H 2(4) →
H 2(4̃) is (up to a factor) an isometric embedding.

(ii) Uniqueness: We do not know how many essentially different Hardy-space
data on4 exist. This is a subtle question: already in the case where the trivial
bundle over4 is a holomorphic half-form bundle, it may very well be that two
inequivalent actions of the same semigroup0 exist. Once again this can be reme-
died by introducing a double covering of4 (as is done by Koufany and Ørsted
[KØ] for the group caseM = Sp(n,R) for n even and more generally by Betten
and Ólafsson [BÓ] for the cases which, in the language of [BH2], correspond to
the case “14 non-admissible, but12 admissible”). The nature of this covering is very
different from the covering needed for problem (i). In fact, in the worst case it
may be necessary to combine both coverings, leading to a covering of order 4 (as
already introduced in [BÓ]; this corresponds to the case “1

4 and1
2 non-admissible”

from [BH2]). The questions related to this problem are fairly involved and will
be taken up elsewhere.

3.3. Further Problems

Besides the geometric and group-theoretic problem just mentioned, the major
problem in the theory of geometric Hardy spaces is to explain the analogs of Facts
1–3 (Section 0) for Hardy spaces on4. More precisely, is there an analog of
our Theorem 2.2.3 for Hardy spaces on4? In some important cases the answer is
“yes”—this is just the invariant formulation of the main result from [BH2, Thm. 4].
However, as mentioned in [BH2, Sec. 4], the proof of this result is not yet geomet-
ric, and the general problem of the relation between Bergman and Hardy spaces
remains open.

Appendix. Reproducing Kernels and Semigroup Actions

A.1. Reproducing Kernels on Vector Bundles

We have seen that geometric Bergman spaces and some geometric Hardy spaces
have the property that point evaluations are continuous. This means that they have
areproducing kernel,which (in the geometric setting we use) is a section of a vec-
tor bundle. Therefore, we quickly recall how the standard theory of reproducing
kernels can be adapted to a vector bundle setting (see [BH2] for details).

LetM be a topological space and p:V → M a complex vector bundle. We as-
sume that the fibersVz overz∈M are finite-dimensional and denote the complex
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antilinear dual bundle by q:V∗ → M. This means that the fiberV∗z of V∗ con-
sists of the complex antilinear functionals onVz. The corresponding evaluation
map will be denoted by〈·, ·〉z : V∗z × Vz → C. We will use the canonical identi-
ficationVz ↔ (V∗z )∗, v 7→ v̂, given byv̂(ξ) = ξ(v), and its global analogV ∼=
V∗∗ without further remark. If we reverse the complex structure on the fibers of
V, we writeV̄ instead ofV; thenV̄ is still a complex vector bundle. IfV is given
by a collection of transition functionsgαβ : Uα ∩ Uβ → Gl(Ck), thenV̄ is given
by the transition functionsgαβ.

We writeC(M,V ) for the continuous sections ofV. There is a naturalcomplex
conjugation mapC(M,V ) → C(M, V̄ ), f 7→ f̄ . It is defined by the ordinary
complex conjugation in the local trivializations. With this complex conjugation,
the identificationVz ⊗ V̄w ∼= HomC(V∗w,Vz) can be written as

(f1(z)⊗ f̄2(w))(η) = 〈η, f2(w)〉wf1(z) for η ∈V∗w. (A.1.1)

The point evaluationsf 7→ f(z) will be denoted evz : C(M,V )→ Vz.
If M is a manifold andV a smooth vector bundle, we writeC∞(M,V ) for the

smooth sections. Moreover, ifM is a complex manifold andV is a holomorphic
vector bundle, then we denote the holomorphic sections ofV byO(M,V ). In this
case we denote the manifoldM, when equipped with the opposite complex struc-
ture, byM̄. Givenf ∈O(M,V ), one finds thatf̄ is an antiholomorphic section
of V̄ or, in other words, an element ofO(M̄, V̄ ).
Definition A.1.1. (i) A complex vector subspaceH ⊆ C(M,V ) is called a
Hilbert space of sectionsif it carries a Hilbert space structure for which the point
evaluations evz : H→ Vz, f 7→ f(z) are continuous.

(ii) A sectionK ∈C(M ×M, V � V̄ ) is called apositive definite kernelif, for
every finite sequenceξ1, . . . , ξn ∈V∗, the expression

n∑
j,k=1

〈ξk,K(q(ξk),q(ξj ))ξj〉q(ξk)

is real and nonnegative.

The basic result is now as follows.

Theorem A.1.2. LetM be a topological space andp: V → M a complex vec-
tor bundle. Suppose thatK ∈C(M ×M, V � V̄ ). Then the following statements
are equivalent:
(1) K is a positive definite kernel forV;
(2) there exists a Hilbert spaceHK ⊆ C(M,V ) such thatevz

∣∣
HK

: HK → Vz is
continuous andK(z,w) = evz B ev∗w ∈HomC(V∗w,Vz) for all z,w ∈M.

Thereproducing propertyof the kernelK in this context is

(Kξ | f )HK
= 〈ξ, f B q(ξ)〉q(ξ), (A.1.2)

whereKξ = ev∗z (ξ) ∈HK ⊆ C(M,V ) for ξ ∈V∗z . The Hilbert spaceHK is called
thereproducing kernel Hilbert spaceassociated to the kernelK, andK is called the
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reproducing kernelof HK. Theorem A.1.2 shows that any positive definite kernel
can be viewed as the reproducing kernel of a Hilbert space of sections. Hence we
shall call such a kernel simply a reproducing kernel. The argument given in [N2,
Lemma I.5] shows that, for any reproducing kernel Hilbert spaceH ⊆ C(M,V )
with reproducing kernelK(z,w) = evz B ev∗w, we haveH = HK.

Suppose thatM is a complex manifold andV → M a holomorphic vector bun-
dle. If a reproducing kernelK : M × M → V � V̄ is holomorphic in the first
variable, then the spaceHK consists of holomorphic sections ofV andK is holo-
morphic when viewed as a mapK : M × M̄ → V � V̄. Thus, a Hilbert space of
holomorphic sections is given by a positive definite kernel inO(M × M̄,V � V̄ ).

A.2. Semigroup Actions and Invariance Properties

In addition to the notation and assumptions introduced so far, we suppose thatS is
a semigroup acting from the left onV∗ by vector bundle morphisms.This means
thatS also acts onM from the left by continuous maps, and we have:

(i) q(s · ξ) = s · q(ξ) for all ξ ∈V∗ ands ∈ S;
(ii) sz : V∗z → V∗s·z, ξ 7→ s · ξ isC-linear.

Then the dual mapss∗z : Vs·z → Vz, defined by〈sz(ξ), v〉s·z = 〈ξ, s∗z (v)〉z, yield a
right S-action onC(M,V ) via

(f · s)(z) := (sz)∗ B f(s · z) (A.2.1)

for z∈M, f ∈C(M,V ), ands ∈ S.
Theorem A.2.1. LetM be a topological space andp: V → M a complex vec-
tor bundle. Suppose thatHK ⊆ C(M,V ) is a reproducing kernel space, and let
(S, ∗) be an involutive semigroup acting from the left onV∗ by vector bundle mor-
phisms. Then the following statements are equivalent:

(1) (sz)∗ BK(s · z,w) = K(z, s] · w) B (s])w for all z,w ∈M ands ∈ S;
(2) H0

K is invariant under the right actionf 7→ f · s of S onC(M,V ), and this
action defines a Hermitian representation ofS onH0

K.

Proof. See [BH2, Thm. 2.1], which is the adaptation to the vector bundle case of
well-known results in the function case (cf. e.g. [N2]).

If, under the hypotheses of Theorem A.2.1, the positive definite kernelK satisfies
the equivalent conditions (1) and (2), then we callK anS-invariant kerneland
denote the representation ofS on H0

K by πK. Note that if, in the situation of the
theorem, the semigroup is a group and the involution is the group inversion, then
πK is a unitary representation ofS; then condition (1) takes the form

K(g · z, g · w) = ((gz)∗)−1 BK(z,w) B (gw)−1

for g ∈G. This means thatK is aG-invariant section of the bundleV � V̄ over
M ×M in the usual sense.
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