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1. Introduction

Several articles have been written containing formulas expressing the spectral
flow of a path of self-adjoint Dirac operators on a closed split manifoldM (M =
X∪6 Y ) in terms of quantities determined by each piece in the decomposition and
“interaction” terms (see e.g. [4; 7; 8; 15; 18]). The article of Nicolaescu [15] is per-
haps the most elegant and conceptually appealing. Additionally, a large number
of articles consider the closely related but more delicate problem of splitting theo-
rems for the Atiyah–Patodi–Singer invariant. The bibliography of Bunke’s article
[4] contains a long list of citations. Most of these articles, with the exception of
Nicolaescu’s, use delicate analytical methods and estimates such as heat kernel
methods, and the results apply only after one has stretched the collar neighbor-
hood of the separating hypersurface. Nicolaescu instead treats the problem largely
from the point of view of linear algebra in a symplectic Hilbert space, and his main
result is appealing in the simplicity of its statement: the spectral flow of the path
equals the Maslov indexµ(3X,3Y ). Here3X and3Y denote the paths of Cauchy
data spaces consisting of the restrictions of nullspace elements of the operators on
X andY to their common boundary6. Unfortunately, Nicolaescu’s formulation
does not lend itself easily to computation. What is needed is a splitting formula
that isolates the contribution from each of the two pieces of the decomposition to
the spectral flow. This is especially important when studying spectral flow in the
context of cut-and-paste constructions.

In this article we prove a general splitting theorem and show how it can be used
to derive most of the various splitting theorems in the literature. The proof of our
result is quite simple; it uses only elementary properties of the Maslov index in
addition to three results of Nicolaescu: the theorem described in the preceding
paragraph, a version from his subsequent article [16] for manifolds with boundary,
and the calculation of the adiabatic limit of the Cauchy data space from [15].

Our main result, Theorem 5.1, is as follows.

Theorem. LetD(t) be a continuous path of self-adjoint Dirac operators on a
smooth, closed, oriented, odd-dimensional, Riemannian manifoldM. Suppose
thatM can be split along a hypersurface6 (M = X ∪6 Y ) and that eachD(t) is
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cylindrical and neck-compatible with respect to this splitting. LetBX(t) andBY (t)
be paths of self-adjoint elliptic boundary conditions for the restriction ofD(t) to
X andY, respectively.

Then

SF(D) = SF(D|X, BX)+ SF(D|Y , BY )
+ µ(BY (1− t), BX(1− t))+

∑
i=1,2,4,5,7,8,10,11

µ(Li,Mi).

The terms appearing in the sum are certain Maslov indices of explicitly defined
paths of Lagrangians.

Notice that this formula, in contrast to the theorems cited previously, holds with
neither any preliminary stretching assumptions nor any prescription on what the
boundary conditions should be.

Perhaps the method itself is more important than the actual formula, in the sense
that in any given application it is probably easier to adapt the method we introduce
here to the specific situation than to make the problem fit our formula. (This is the
case in [2] on theSU(3) Casson invariant.) For that reason we include a lengthy
“user’s guide” (Section 6), which indicates how various additional hypotheses can
be used to force some of theµ(Li,Mi) terms to vanish. We also show how to de-
rive with ease many of the different versions of the splitting theorems cited here.
In particular, we derive the splitting theorem of Bunke, give a generalization of
this theorem and the splitting theorem of Yoshida and Nicolaescu, and indicate
the relation between our formula and the formula of [7].

Our results are stated and proven for Dirac operators on odd-dimensional man-
ifolds, since these include most of the geometrically important classes of self-
adjoint elliptic operators—for example, the odd-signature operator and the spin
Dirac operator.

We finish this introduction with a brief example of the method for those read-
ers who are familiar with this subject. Other readers can return to the following
paragraphs after finishing Section 4.

Suppose thatD(t) : 0(E) → 0(E), t ∈ [0,1] is a path of self-adjoint Dirac
operators on a manifoldM decomposed along a hypersurfaceM = X ∪6 Y.
Let 3X(t) and3Y (t) be the Cauchy data spaces associated to the restrictions of
D(t) to X andY, respectively. These are Lagrangian subspaces of the symplec-
tic Hilbert spaceL2(E|6). Assume further that eachD(t) is cylindrical (D(t) =
J(∂/∂s + S(t)) on a collar neighborhood of6) and neck-compatible (for eacht,
S(t) is self-adjoint). Furthermore, suppose that the kernels of the tangential opera-
torsS(t) are trivial for allt and denote byP ±(t) the positive/negative eigenspace
of S(t).

Finally, suppose that3X(0) = P−(0), 3X(1) = P−(1), 3Y (0) = P +(0), and
3Y (1) = P +(1). These four equalities rarely hold except in artificial examples,
but Nicolaescu’s adiabatic limit theorem says these conditions are asymptotically
true; compensating for this leads to the extra terms in our formula.
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The path3X(t) is clearly homotopic rel endpoints to the composite of the three
pathsP−(t), P−(1− t), and3X(t). Similarly, the path3Y (t) is homotopic rel
endpoints to the composite of the three paths3Y (t), P

+(1−t),andP +(t). Because
the Maslov index is invariant under rel endpoint homotopies and additive with re-
spect to compositions of paths, we conclude that

SF(D,M) = µ(3X,3Y ) (Nicolaescu’s splitting theorem)

= µ(P−,3Y )+ µ(P−(1− t), P +(1− t))+ µ(3X;P +)
= SF(D|Y ;P−)+ SF(D|X;P +)

The last step follows from the version of Nicolaescu’s theorem for manifolds with
boundary and the fact thatP + andP− are transverse. The proof of our main re-
sult is no more difficult than this. The extra terms come about by moving to the
adiabatic limits at the endpoints and from allowing general boundary conditions.

The authors thank H. Boden, D. Hoff, and K. P. Wojciechowski for helpful
discussions—and especially L. Nicolaescu, who first gave us a proof of Lemma 3.2.
The authors thank K. P. Wojciechowski for letting us use his proof of this lemma
in the Appendix.

2. Dirac Operators

There are many different definitions ofDirac operator in the literature. For our
purposes, we adopt that of [15]. Briefly, a Dirac operator is determined by a Clif-
ford module over a manifold along with a compatible connection. More precisely,
suppose we are given the following.
(1) An oriented Riemannian manifold(M, g).
(2) A self-adjoint Clifford moduleE → M. HenceE is a vector bundle over

M with an actionc : C(M) → End(E). HereC(M) is the bundle of Clif-
ford algebras overM generated by the cotangent bundle using the metric. The
adjective “self-adjoint” means thatc carries each element ofT ∗M to askew-
adjoint endomorphism. Together with the Clifford relations, this implies that
each element ofT ∗M acts orthogonally. For convenience we assume that the
vector bundleE is a complex vector bundle.

(3) A Clifford compatible covariant derivative∇E onE. Thus,

∇E : 0(E)→ 0(E ⊗ T ∗M)
is a differential operator that (a) satisfies the Leibniz rule

∇E(fs) = df ⊗ s + f∇Es
for anyf ∈ C∞(M) ands ∈ 0(E), and (b) is compatible with the Clifford
action in the sense that

[∇E, c(a)] = c(∇a),
wherea ∈0(C(M)) and∇ is the Levi–Civita connection (naturally extended
from TM toC(M)).
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These data determine a Dirac operator as the composition

0(E)
∇E−−→ 0(E ⊗ T ∗M) CC−−→ 0(E),

whereCC denotes contraction with respect to the Clifford action (denoted byc

previously). Incidentally, this definition agrees with that of aDirac operator on a
Dirac bundleas defined in [14]. In this article, we consider only self-adjoint Dirac
operators over odd-dimensional manifolds.

We are particularly interested in Dirac operators over split manifolds. A mani-
fold M is split along a hypersurface6 if it can be expressed as the union of two
manifolds(X andY ) with boundary such that∂X = −∂Y = 6 = X ∩ Y. In this
case we also require the existence of a neighborhoodU of6 inM that is isometric
to6 × (−1,1). Over this neighborhood, all relevant structures (e.g., the Clifford
bundleE) should decompose similarly.

Thus we are led to consider Dirac operators on manifolds with boundary, and in
this context we impose two further restrictions.First, such a Dirac operator must
becylindrical. This means that, in a neighborhood of the boundary (of the form
6 × (−1,0] or6 × [0,1) as just described),D can be written as

D = c(du)(∂/∂u+ S), (2.1)

whereu is the second factor in6×(−1,0] (or6×[0,−1)), chosen so that‖du‖ =
1, andS is a Dirac operator onE|∂M, referred to as thetangential operator.(Note
thatS is assumed to be constant in that it does not depend on the coordinateu.)

Second,we require thatD beneck-compatible, meaning that the tangential oper-
atorS is self-adjoint.

In what follows we consider only Dirac operators satisfying these conditions.
Although these conditions may appear restrictive, most important geometrically
defined self-adjoint operators are of this type—for example,the spin Dirac and
odd-signature operators.

The Clifford relation(v ⊗ w + w ⊗ v = −2〈v,w〉) implies that the alge-
braic operatorc(du) : 0(E|∂M) → 0(E|∂M) is a fiberwise isometry satisfying
c(du)2 = −Id and so induces a complex structure onL2(E|∂M), which we re-
name (suggestively)

J : L2(E|∂M)→ L2(E|∂M). (2.2)

Thus J 2 = −Id. Moreover,SJ = −JS and so the spectrum of the elliptic
self-adjoint operatorS : L2(E|∂M) → L2(E|∂M) is symmetric, and itsλ and−λ
eigenspaces are interchanged byJ.

Define a hermitian symplectic structure onL2(E|∂M) by

ω(x, y) = 〈x, Jy〉,
where〈 , 〉 denotes theL2 inner product.

Definition 2.1. Two closed subspacesL1, L2 of a Hilbert space form aFredholm
pair if L1∩L2 is finite dimensional andL1+L2 is closed with finite codimension.
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Definition 2.2.

(1) A closed subspaceL ⊂ L2(E|∂M) is calledisotropic if L andJL are orthog-
onal. Thus,ω(l,m) = 0 for all l, m∈L.

(2) A closed subspaceL ⊂ L2(E|∂M) is calledLagrangianif JL is the orthog-
onal complement ofL. Thus,ω(l,m) = 0 for all l, m ∈ L andL + JL =
L2(E|∂M).

SinceSJ = −JS, the Hilbert spaceL2(E|∂M) has an orthogonal decomposition
into the orthogonal direct sum of the negative eigenspace, kernel, and positive
eigenspace ofS:

L2(E|∂M) = P−(S)⊕ kerS ⊕ P +(S). (2.3)

In this decomposition, kerS is finite-dimensional becauseS is elliptic on the closed
manifold∂M. Moreover,J preserves kerS and so kerS is a symplectic subspace.
The spacesP +(S) andP−(S) are interchanged byJ sinceJS = −SJ, soP +(S)
andP−(S) are infinite-dimensional and isotropic.

If L ⊂ kerS is a (finite-dimensional) Lagrangian subspace (defined just as
before but substituting kerS for L2(E|∂M)), then the spacesP−(S) ⊕ L and
L⊕ P +(S) are easily seen to be Lagrangian subspaces ofL2(E|∂M). An impor-
tant case occurs when kerS = 0, in which caseP ±(S) are themselves Lagrangian
subspaces.

It will be convenient to have a slightly more general decomposition ofL2(E|∂M)
than Equation 2.3. Toward this end, letν be any nonnegative real number and define

Hν(S) = spanL2{φ | Sφ = λφ and|λ| ≤ ν }, (2.4)

P−ν (S) = spanL2{φ | Sφ = λφ andλ < −ν }, (2.5)

P +ν (S) = spanL2{φ | Sφ = λφ andλ > ν }. (2.6)

Then, as before, theP ±ν (S) are infinite-dimensional isotropic subspaces andHν

is a finite-dimensional symplectic subspace. Moreover, the decomposition of
Equation 2.3 is a special case(ν = 0) of the decomposition

L2(E|∂M) = P−ν (S)⊕Hν(S)⊕ P +ν (S). (2.7)

It is proven in [13] that ifS is taken to vary continuously over some parame-
ter spaceT—that is, if the mapt 7→ S(t) − S(t0) is a continuous map fromT
into the space of bounded operators (heret0 is some fixed base point inT )—and
if ν(t) is a continuous nonnegative function onT such thatS(t) has a spectral gap
at ν(t) (i.e., ν(t) misses the spectrum ofS(t)), then the decomposition of Equa-
tion 2.7 is continuous inT . Continuity for subspaces will always be taken in the
gap topology [11].

3. Cauchy Data Spaces

For a given Dirac operatorD on a manifoldX with nonempty boundary6,
its Cauchy data space3X(D) is a Lagrangian subspace ofL2(E|∂M) consisting
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roughly of boundary values of its kernel elements. We give a definition suitable
for our purposes, referring to [15] for a careful construction.

In [3] it is shown that in the present context there is a well-defined, bounded,
injective restriction map

R : ker(D : L2
1/2(E)→ L2

−1/2(E)) −→ L2(E|6) (3.1)

(see [15, Prop. 2.2]). HereL2
s (E) means the Sobolev space of sections ofE with

s derivatives inL2, extended in the usual way to reals.
The image ofR is a closed infinite-dimensional Lagrangian subspace of

L2(E|6). It will be denoted by

3X(D) := R( ker(D : L2
1/2(E)→ L2

−1/2(E))
)

(3.2)

and called theCauchy data spaceof the operatorD onX. Sometimes we will
abbreviate3X(D) to3X or even3whenD orX are clear from the context. Thus
the Cauchy data space is space of boundary values of solutions toDσ = 0. In
[15] it is proven that, ifD varies regularly (smooth is sufficient but not necessary)
in the space of Dirac operators with respect to some parameter spaceT, then the
Cauchy data spaces3X(D(t)) vary regularly (at leastC1) in t ∈ T . Regularity for
closed subspaces may be interpreted in terms of the norm topology of the associ-
ated projections. The resulting topology is equivalent to the gap topology [11].

An important property of the Cauchy data space of a Dirac operatorD of the
form J(∂/∂u + S) on the collar6 × [−1,0] of the boundary ofX is that the
pair (3X(D), P +(S)) forms a Fredholm pair of subspaces [15]. SinceP +ν (S) ⊂
P +(S) has finite codimension, it follows that ifB is any closed subspace of
L2(E|6) that containsP +ν (S) for someνwith finite codimension, then(3X(D), B)
form a Fredholm pair.

The proof of our main theorem will requirestretching,which we now describe.
Given a manifoldX with boundary6 and (open) collar6 × (−1,0], define

Xr = X ∪6×(−1,0] 6 × (−1, r] for r ≥ 0. (3.3)

ThusX = X0. Using Equation 2.1 to defineD on6 × (−1, r] gives a natural
extension ofD to Xr. In this way one obtains a 1-parameter family of Cauchy
data spaces3Xr (D). The limit of3Xr (D) asr approaches infinity is identified in
Theorem 4.9 of [15]. We elaborate on this important and interesting result.

For notational convenience we write3rX for3Xr (D) andP +ν for P +ν (S). Since
30
X ∩ P +0 is finite-dimensional, and since

⋂
ν→∞ P

+
ν = 0, there exists a number

ν0 ≥ 0 such that

30
X ∩ P +ν0

= 0. (3.4)

Following Nicolaescu, the set of all nonnegative real numbers that satisfy Equa-
tion 3.4 is a nonempty, closed, unbounded interval called thenonresonance range
ofD. The smallest suchν0 is called thenonresonance level ofD. Fix someν0 in
the nonresonance range ofD.
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The symplectic reduction of30
X toHν0 is the Lagrangian subspace

3̃X(D) = projHν0
(30

X ∩ (Hν0 ⊕ P +ν0
)) = 30

X ∩ (Hν0 ⊕ P +ν0
)

30
X ∩ P +ν0

⊂ Hν0. (3.5)

The decomposition of Equation 2.7 is preserved byS, since this is a decomposi-
tion in terms of eigenspaces ofS. In particular,S preservesHν0 and the restriction
of S to Hν0 is self-adjoint, with all eigenvalues in [−ν0, ν0]. Thus we can form
the 1-parameter family of (finite-dimensional) operators

e−rS : Hν 0 → Hν0. (3.6)

It is not too hard to see that the limit

LX(D) := lim
r→∞ e

−rS3̃X(D) (3.7)

exists and is a Lagrangian subspace ofHν0.

We may now state Nicolaescu’s adiabatic limit theorem [15].

Theorem 3.1. Asr →∞,
3rX(D)→ P−ν0

⊕ LX(D). (3.8)

The limiting subspace is called theadiabatic limitof3rX. Thus the adiabatic limit
is determined, up to a finite-dimensional piece, by the tangential operator.

The identification of the adiabatic limit is an important ingredient in the proof of
our splitting formula, but we require a little bit more. We complement the previ-
ous theorem with a lemma stating that the adiabatic deformation is in fact regular.

Lemma 3.2. Let r(t) = 1/(1− t) for t ∈ [0,1). The path of Lagrangian sub-
spaces

t 7→
{
3r(t), t < 1,

P−ν0
⊕ LX(D), t = 1

is continuous.

The proof of Lemma 3.2 was provided to us by K. P. Wojciechowski and can be
found in the Appendix.

One warning is in order here. It is not true that the adiabatic limits of the Cauchy
data spaces vary continuously whenD is varying continuously over some param-
eter space, even ifν0 is larger than the nonresonance level for every operatorD in
this family. The reason for this is that the dynamics ofe−rS acting on subspaces of
Hν 0 is quite sensitive to the initial subspace. See [2] for an explicit example of an
analytic path of Dirac operatorsD(t) for which the path of adiabatic limits of the
Cauchy data spacesP−(t)⊕LX(D(t)) is not continuous. There are some special
circumstances under which one can conclude that the adiabatic limits vary con-
tinuously, and in those cases a splitting theorem can be proven easily. One such
example is our Theorem 6.8.
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We now letM be a closed manifold split along a hypersurface6 into two pieces
X andY (M = X ∪6 Y ). As before, we identify a closed neighborhood of6 in
M as6 × (−1,1), with 6 = ∂X = −∂Y. In the previous paragraphs we have
stated various facts about Dirac operators from the point of view of “theX side”.
For convenience we state the analogous facts for “theY side”. The main thing to
keep in mind here is that the complex structureJ onL2(E|6) and the cylindri-
cal decomposition (2.1) in the collar both use the outward normal toX, which is
the inward normal toY. This generally has the effect of switching signs. Chasing
down the repercussions, we have the following facts (see [15]).

(1) (P−(S),3Y (D)) is a Fredholm pair.
(2) The limit asr →∞ of 3Y r (D) is LY (D)⊕ P +ν1

(S), whereν1 is in the non-
resonance range ofD acting onY andLY (D) is defined similarly toLX(D)
but by takingr →−∞.

(3) The pair(3X(D),3Y (D)) is a Fredholm pair.
(4) The kernel ofD : 0(E) → 0(E) is taken isomorphically to the intersection

3X(D) ∩3Y (D) by restricting to6.

4. Spectral Flow Equals Maslov Index

The theorems of Nicolaescu presented in this section establish the equality of two
a priori different invariants that can be associated to a path of Dirac operators. Ac-
cordingly, we begin with a description of these two invariants.

The spectrum of a Dirac operatorD on a closed manifoldM consists of discrete
eigenvalues of finite multiplicity. Thespectral flowof a continuous pathD(t) (t ∈
[0,1]) of self-adjoint Dirac operators is (roughly) defined to be the algebraic count
(with multiplicity) of the number of eigenvalues crossing through zero. Although
this definition is somewhat imprecise, it suffices for our purposes—particularly
because we never actually work with the spectral flow directly. Instead, we use
Nicolaescu’s theorems to convert the spectral flow to the Maslov index. In any
case, precise definitions of the spectral flow can be found in [7; 12; 15].

An important technical point is appropriate here. One must set conventions so
that the spectral flow is well defined on pathsD(t) for whichD(0) and/orD(1)
have nontrivial kernel. One must decide whether or not an eigenvalue thatstartsor
endsat 0 counts as crossingthrough0. It is important to be precise here, because
different conventions appear in the literature, and the particular choice affects the
properties of the invariant. Among the several such conventions that can be found,
we use the following. Given a pathD(t) (t ∈ [0,1]) of Dirac operators, letε > 0
be a number small enough so that the operatorsD(0) andD(1) have no eigenval-
ues in the interval [−ε,0). We define the spectral flow of the pathD(t) to be the
spectral flow of the pathD(t)+ ε Id:

SF(D(t)) := SF(D(t)+ ε Id).

Effectively, we count the eigenvalues that cross−ε rather than those that cross 0.
Notice that this avoids the issue of starting or ending at the crossing value because,
by definition, no eigenvalues start or end at−ε.
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Given a continuous path of Fredholm pairs of Lagrangians(31(t),32(t)) in a
symplectic vector space, theMaslov indexµ(31,32) is the integer defined to be
the algebraic count of how many times31(t) passes through32(t) along the path.
The complex structureJ is used to specify the signs in this algebraic count. In
particular, the normalization is chosen so thatµ(etJ31,32), t ∈ [−ε, ε], equals
dim(31,32) when31 and32 are constant paths. See [5; 8; 15] for the precise
definition.

Note: the condition that the Lagrangians be Fredholm is vacuous in the finite-
dimensional case but critical in our context(L2(E|6)). Typically, the Fredholm
property is easily verified—for any pair of paths we consider—by appealing to
facts about Cauchy data spaces and related Lagrangians, as discussed in Section 2.

As with the spectral flow, a convention must be chosen to define the Maslov
index for paths of pairs that are not transverse at the endpoints. Again, it is impor-
tant to be explicit here because there are a number of possibilities. We use a con-
vention defined in terms of the complex structureJ, as explained in [5]. Choose
a small positiveε such that:

(1) (esJL1(t), L2(t)) form a Fredholm pair for eacht and each 0≤ s ≤ ε (this is
possible because Fredholm pairs form an open subspace of the space of closed
pairs [11]); and

(2) esJL1(0) is transverse toL2(0) andesJL1(1) is transverse toL2(1) for all 0<
s ≤ ε (the proof that such anε exists can be found in [5]).

Thus the path of pairs(eJεL1(t), L2(t)) forms a path of Fredholm pairs which are
transverse at the endpoints. One then defines the Maslov index ofL1 andL2 by
taking

µ(L1, L2) := µ(eJεL1, L2). (4.1)

We will use the following two elementary properties of the Maslov index.

(1) Path Additivity.LetL1, L2,K1,K2 be paths of Lagrangians such thatLi(1) =
Ki(0) for i = 1,2, and letMi be the path obtained by concatenatingLi and
Ki (we writeMi = Li ∗Ki). Then

µ(M1,M2) = µ(L1, L2)+ µ(K1,K2).

(2) Homotopy Invariance.Let L1, L2,K1,K2 be paths of Lagrangians such that
Li is homotopic rel endpoints toKi. Then

µ(L1, L2) = µ(K1,K2).

Proofs of these facts follow from the interpretation of the Maslov index as an in-
tersection number (see [5]). It is worth noting that the proof of our main theorem
requires only these elementary properties of the Maslov index, eschewing more
technical tools such as symplectic reduction.

Path additivity does not hold with all possible conventions, and it is for this
property that we use the chosen convention. There are other conventions. To go
back and forth between conventions, one need only know that, ifµ′ is another con-
vention, then there exist numbersσ0 andσ1 in {−1,0,1} ande ∈ {1,−1} such that

µ′(L,M) = e · µ(L,M)+ σ0 · dim(L(0) ∩M(0))+ σ1 · dim(L(1) ∩M(1)).
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A similar remark applies to the spectral flow, and it is not hard to see that the
formula of our main result, Theorem 5.1, remains true provided one chooses the
spectral flow and Maslov index conventions compatibly—after perhaps adding a
correction term depending only on the dimensions of kerD(0) and kerD(1). The
main result of [9] states that our choices of spectral flow and Maslov index con-
ventions are compatible.

Two further simple facts, which we will use in Section 6 without explicit men-
tion, are that (with our chosen conventions):

(1) µ(L,M) = 0 if L andM are constant paths; and
(2) if L,M are paths of Lagrangians inHν(S), then

µ(P−ν ⊕ L,M ⊕ P +ν ) = µ(L,M).
These are easy consequences of the definitions.

The following remarkable theorem of Nicolaescu will be the basis of what
follows.

Theorem 4.1. Let D(t), t ∈ [0,1], be a smooth path of(cylindrical, neck-
compatible, self-adjoint) Dirac operators on a smooth, oriented, closed, odd-
dimensional Riemannian manifoldM that splits asM = X ∪6 Y. Then

SF(D) = µ(3X(D),3Y (D)).
The theorem explicitly states the intuitively appealing notion that counting ker-
nel elements along the path (i.e., counting eigenvalues that cross through zero)
is equivalent to counting pairs of boundary values that match up (i.e., nontrivial
intersections between the Cauchy data spaces). Theorem 4.1 was first proved by
Nicolaescu [15] for paths of Dirac operators whose endpoints have trivial kernel;
the restriction to trivial kernel at the endpoints was removed in [9].

A similar theorem may be stated for manifolds with boundary. In this case we
must impose boundary conditions for the spectral flow to be well-defined. This is
the subject of the next definition.

Definition 4.2. LetX be a manifold with boundary∂X = 6, and letD be a
self-adjoint Dirac operator onX in cylindrical form with tangential operatorS. A
self-adjoint elliptic boundary conditionis a Lagrangian subspaceB ⊂ L2(E|6)
that containsP +ν (S) as a finite codimensional subspace for someν. (See [3] and
[16] for details.)

The condition thatB be Lagrangian implies that the operatorD onX with bound-
ary conditionsB is self-adjoint. The requirement thatB containP + with finite
codimension ensures that the operatorD—acting on sections overX whose re-
striction to the boundary lies inB—is elliptic. Thus, given a pathD(t) of Dirac
operators onX and a path of elliptic self-adjoint boundary conditionsB(t), the
spectral flow SF(D,B) is defined.

Then Nicolaescu’s theorem extends to the bounded case as follows.
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Theorem 4.3. Let D(t), t ∈ [0,1], be a smooth path of(cylindrical, neck-
compatible, self-adjoint) Dirac operators on a smooth, oriented, odd-dimensional
Riemannian manifoldX with nontrivial boundary∂X = 6. LetB(t) be a smooth
path of elliptic boundary conditions forD(t). Then

SF(D,B) = µ(3X(D), B).

5. The General Splitting Formula

In this section we state and prove the general splitting formula. The formula ex-
presses the spectral flow of a path of Dirac operators on a closed manifold in terms
of the spectral flows of the restricted paths (with associated elliptic boundary con-
ditions). Whereas other results of this type have many additional hypotheses and
produce more succinct formulas, our result requires only the minimal hypotheses
but produces a longer formula. In Section 6 we discuss additional conditions that
may be imposed to make various terms in our formula vanish or cancel.

The set-up is as follows. LetD(t) be a smooth path of Dirac operators on a
smooth, oriented, closed, odd-dimensional Riemannian manifoldM. Suppose that
M can be split along a hypersurface6 (M = X∪6 Y ) and that eachD(t) is cylin-
drical and neck-compatible with respect to this splitting. LetBX(t) andBY (t) be
paths of elliptic boundary conditions forD(t) restricted toX andY, respectively.
Then we will show that there is an 11-term formula

SF(D) = SF(DX,BX)+ SF(DY , BY )

+ µ(BY (1− t), BX(1− t))+
∑

i=1,2,4,5,7,8,10,11

µ(Li,Mi). (5.1)

Theµ(Li,Mi) are certain Maslov indices; they will be defined shortly and dis-
cussed at length in the following section.

Theorem 4.1 allows us to replace SF(D) by µ(3X(D),3Y (D)). We have at
our disposal the path additivity and the homotopy invariance of the Maslov index.
We will describe pathsL andM that are homotopic rel endpoints to3X(D) and
3Y (D), respectively. These new paths will each be the concatenation of eleven
pieces(Li andMi, resp.). Each piece will contribute a term to the right-hand side
of Equation 5.1.

To begin, letν0 ≥ 0 andν1 ≥ 0 be numbers chosen such that:
(1) ν0 is in the nonresonance range forD(0) onX and the tangential operator

S(0) has a spectral gap atν0; and
(2) ν1 is in the nonresonance range forD(1) onY and the tangential operatorS(1)

has a spectral gap atν1.

We abbreviate the notation for the Cauchy data spaces using the symbol3rX(t)

for 3Xr (D(t)). Moreover,3X(t) means3X0(D(t)) = 3X(D(t)); similar nota-
tion applies toY. Nicolaescu’s adiabatic limit theorem (Theorem 3.1) shows that
there exists a LagrangianLX(0) ⊂ Hν0 (and gives a recipe for constructing it)
such that
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lim
r→∞3

r
X(0) = P−ν0

(S(0))⊕ LX(0),
and there exists a LagrangianLY (1) ⊂ Hν0 such that

lim
r→∞3

r
Y (1) = LY (1)⊕ P +ν1

(S(1)).

We can now enumerate the eleven pieces of each path.

(1) LetL1 be the path starting at30
X(0) and ending at

lim
r→∞3

r
X(0) = P−ν0

(S(0))⊕ LX(0)
and obtained by stretching. An explicit formula is given in the statement of
Lemma 3.2. LetM1 be the constant path at3Y (0).

(2) LetL2 be any path of Lagrangians starting atP−ν0
(S(0))⊕LX(0) and ending

atBY (0) so that, for allt, L2(t) is a self-adjoint elliptic boundary condition
for the restriction ofD(0) to Y (more generally, it suffices to assume that
(L2(t),3Y (0)) are a Fredholm pair). LetM2 be the constant path3Y (0).

(3) LetL3(t) beBY (t) and letM3(t) be3Y (t). Theorem 4.3 applied toY im-
plies that

µ(L3,M3) = SF(D|Y , BY ). (5.2)

(4) TakeL4 to be the constant pathBY (1), and letM4 be the path from3Y (1) to
lim r→∞3rY (1) = LY (1)⊕P +ν1

(S(1)) obtained by stretching as in Lemma 3.2.
(5) Let L5 be the constant pathBY (1). ForM5, choose a path of Lagrangians

starting atLY (1)⊕ P +ν1
(S(1)) and ending atBX(1) so that, for allt, M5(t) is

a self-adjoint elliptic boundary condition for the restriction ofD(1) toX (or,
more generally, so that(3X(1),M5(t)) form a Fredholm pair).

(6) LetL6 be the pathL3 run backward (i.e.,L6(t) = L3(1− t)), and letM6 be
BX run backward. Thus,

µ(L6,M6) = µ(BY (1− t), BX(1− t)). (5.3)

(7) LetL7 beL2 run backward and letM7 be the constant pathBX(0).
(8) LetL8 beL1 run backward andM8 the constant pathBX(0).
(9) LetL9 be the path3X(t) and letM9 be the pathBX(t). Theorem 4.3 states

that

µ(L9,M9) = SF(D|X, BX). (5.4)

(10) TakeL10 to be the constant path3X(1) andM10 to beM5 run backward.
(11) Finally, letL11 be the constant path3X(1) and letM11 beM4 run backward.

The reader may verify that the composite pathL = L1∗L2∗ · · · ∗L11 is defined
and is homotopic rel endpoints to the path3X. SimilarlyM = M1∗M2∗· · ·∗M11

is homotopic rel endpoints to3Y . Hence

SF(D) = µ(3X,3Y ) = µ(L,M) =
11∑
i=1

µ(Li,Mi),

using homotopy invariance of the Maslov index and additivity of the Maslov index
under composition of paths.
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We summarize our conclusions in the following theorem.

Theorem 5.1. LetD(t) be a continuous path of self-adjoint Dirac operators on
a smooth, closed, oriented, odd-dimensional Riemannian manifoldM. Suppose
thatM can be split along a hypersurface6 (M = X ∪6 Y ) and that eachD(t) is
cylindrical and neck-compatible with respect to this splitting. LetBX(t) andBY (t)
be paths of self-adjoint elliptic boundary conditions for the restriction ofD(t) to
X andY.

Then

SF(D) = SF(D|X, BX)+ SF(D|Y , BY )
+ µ(BY (1− t), BX(1− t))+

∑
i 6=3,6,9

µ(Li,Mi).

6. User’s Guide to Theorem 5.1

In this section we explain how to use Theorem 5.1. Specifically, we show how
various natural hypotheses simplify the formula and then derive some earlier theo-
rems as consequences. We will not exhaust all the possibilities, but we hope to
give some indication of the formula’s utility.

The authors’ background concerns the application of this subject to the odd-
signature operator coupled to a path of connections starting and ending at flat
connections. This is the kind of operator considered in topological applications of
spectral flow, such as computations of Atiyah–Patodi–Singerρα invariants, Cas-
son’s invariant, and Floer homology. The methods we describe are particularly
well suited for this class of problem.

6.1. Transversality at Endpoints and Stretching

First some notation. We have definedXr andY r to be the manifolds obtained by
adding a collar of lengthr toX andY. LetMr be the closed manifold obtained by
stretchingM along6, so that

Mr = Xr ∪6 Y r .
Hypothesis 1. The adiabatic limits of the Cauchy data spaces are transverse at
the endpoints:

lim
r→∞3

r
X(i) ∩ lim

r→∞3
r
Y (i) = 0, i = 0,1.

Proposition 6.1. Suppose that Hypothesis 1 holds. Then there exists anr0 ≥ 0
such that, replacingM byMr for r ≥ r0 in Theorem 5.1, the termsµ(L1,M1) and
µ(L11,M11) vanish.

Proof. Continuity of the path of Lemma 3.2 implies that there exists somer0 such
that the Lagrangians3rX(i) and3rY (i) are transverse forr ≥ r0 and i = 0,1.
Then the LagrangiansL1(t) andM1(t) are transverse for allt ∈ [0,1] and hence
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µ(L1,M1) = 0. The same argument applies at the other end of the path to show
thatµ(L11,M11) = 0.

Notice that the two cases are independent. That is, if the limits of the Cauchy data
spaces are transverse at the initial point thenµ(L1,M1) = 0 for r large enough,
and if they are transverse at the terminal point thenµ(L11,M11) = 0 for r large
enough.

A slight generalization of this can be obtained by using the following hypothesis.

Hypothesis 2. For i = 0,1, the dimension of3rX(i)∩3rY (i) is independent ofr
for r ≥ r0 and equals the dimension of the intersection of the limits of the Cauchy
data spaces:

dim(3rX(i) ∩3rY (i)) = dim
(

lim
r→∞3

r
X(i) ∩ lim

r→∞3
r
Y (i)

)
.

Notice that the intersection3rX(i) ∩3rY (i) is isomorphic to the kernel ofD(i) on
Mr, so Hypothesis 2 implies that the dimension of this kernel is independent ofr.

Proposition 6.2. If Hypothesis 2 holds then, after replacingM byMr for r ≥
r0 in Theorem 5.1, the termsµ(L1,M1) andµ(L11,M11) vanish.

Proof. Let3∞X(0) denote the adiabatic limit of3rX(0),with similar notation forY.
Fix r ≥ r0 and letu ≥ r. Since dim(3uX(0) ∩3rY (0)) is isomorphic to the ker-

nel ofD onMu+r , which in turn is isomorphic to dim(3(u+r)/2
X (0) ∩3(u+r)/2

Y (0)),
Hypothesis 2 implies that

dim(3uX(0) ∩3rY (0)) = dim(3∞X(0) ∩3∞Y (0)).
Thus the dimension of the intersection ofL1(t) with M1(t) is independent oft.
This implies thatµ(L1,M1) = 0. A similar argument shows thatµ(L11,M11)

vanishes.

6.2. Choice of Boundary Conditions

The boundary conditionsBX andBY can be restricted to simplify the splitting
formula. The most direct way to do this is just to kill the termsµ(L2,M2),

µ(L5,M5), µ(L7,M7), andµ(L10,M10) by choosing the boundary conditions
BY (0) andBX(1) as follows.

Hypothesis 3. BY (0) = P−ν0
(0)⊕ LX(0) andBX(1) = LY (1)⊕ P +ν1

(1).

Proposition 6.3. Assume that Hypothesis 3 holds. Then one can choose the
pathsL2 andM5 (and their reversesL7 andM10) so that

µ(L2,M2) = µ(L5,M5) = µ(L7,M7) = µ(L10,M10) = 0.

Proof. TakeL2 andM5 to be constant paths. ThenL7 andM10 are also constant.
By definition,M2, L5,M7, andL10 are constant. Hence the four terms are Maslov
indices of constant paths, and thus all vanish.
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We could have taken the point of view in Theorem 5.1 that only boundary condi-
tions satisfying Hypothesis 3 are allowed. This would have given a formula with
four fewer terms, but the result would have been less flexible. The decision to
state the theorem as we did was made in order to decouple the choice of boundary
conditions from the analysis of the adiabatic limits of the Cauchy data spaces.

6.3. The Nonresonance Range, Limiting Values of Extended
L2 Solutions, and Adiabatic Limits

We next give a more detailed description of the adiabatic limit limr→∞3rX,which
can be useful in controlling some of the terms.

Definition 6.4. LetD be a cylindrical Dirac operator (as before) on a manifold
X with boundary. The Lagrangian subspace

L̃X(D) ⊂ kerS

is defined to be the symplectic reduction of the Cauchy data space to the kernel
of S,

L̃X(D) = projkerS
(
3X(D) ∩ (kerS ⊕ P +(S)))

and is called thelimiting values of extendedL2 solutions.(This terminology comes
from [1].)

For convenience, we recall the notation for several Lagrangians that appear in
this section.

(1) 3rX, the Cauchy data space onXr. This is an infinite-dimensional Lagrangian
subspace ofL2(E|6).

(2) 3̃X, the symplectic reduction of the (length-0) Cauchy data space30
X toHν0

(Equation 3.5) whereν0 ≥ 0 is greater than or equal to the nonresonance level
of D and whereS has a spectral gap atν0. This is a finite-dimensional La-
grangian subspace of the symplectic vector spaceHν0 defined in Equation 2.4.

(3) LX, the limit of e−rS3̃X asr → ∞, a Lagrangian subspace ofHν0 (Equa-
tion 3.7). Thus, the adiabatic limit limr→∞3rX = P−ν0

⊕ LX.
(4) L̃X, the limiting values of extendedL2 solutions, defined as the symplectic

reduction of the Cauchy data space30
X to the kernel ofS in Definition 6.4.

The following theorem relates these Lagrangians and indicates the structure of
LX. It is convenient to extend the notation slightly so that, for the statement and
proof of this theorem, we will allowν < 0 in the definition ofP +ν (Equation 2.6).
For example, ifν is positive and in the complement of the spectrum ofS, then
Hν ⊕ P +ν = P +−ν .

Notice that there is a descending filtration ofHν0 ⊕ P +ν0
corresponding to the

increasing list of eigenvalues−λn+1 < −λn < · · · < 0 < λ1 < · · · , assuming
thatλn ≤ ν0 < λn+1 :

P +−λn+1
⊃ P +−λn ⊃ · · · ⊃ P +0 ⊃ P +λ1

⊃ · · · . (6.1)

Theorem 6.5. With notation as described before, the following statements are
true.
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(1) LX = lim r→∞ e−rS3̃X.
(2) L̃X ⊂ LX.
(3) If ν0 = 0 thenLX = L̃X = 3̃X.
(4) Let 0< λ1 < λ2 < · · · < λn < λn+1 denote the ordered list of positive eigen-

values of the tangential operatorS, so thatλn ≤ ν0 < λn+1. LetE±i denote
the±λi eigenspace. Then

Hν0 = E−n ⊕ E−n−1⊕ · · · ⊕ kerS ⊕ E+1 ⊕ · · · ⊕ E+n , (6.2)

and the LagrangianLX decomposes in this direct sum as

LX = Wn ⊕Wn−1⊕ · · · ⊕ L̃X ⊕ JV1⊕ · · · ⊕ JVn, (6.3)

whereWi ⊂ E−i are subspaces andVi ⊂ E−i are their orthogonal comple-
ments inE−i (and soJVi ⊂ E+i ). Moreover, this decomposition exhibitsLX
as the associated graded vector space to the filtration of3X ∩ (Hν0⊕P +ν0

) =
3X ∩ P +−λn+1

obtained by intersecting3X with the decreasing filtration given
in Equation 6.1.

Proof. The first assertion is the definition ofLX. For the third assertion, ifν0 =
0 thenL̃X = 3̃X by definition. Since the operatorS is zero on its kernel, the re-
striction ofe−rS to kerS is the identity, so thatLX = 3̃X. The second assertion
follows from the fourth, which we will now prove.

Statement (4) follows from a careful analysis of the flow to the adiabatic limit.
Notice that, because theP +ν are defined in terms of strict inequalities,P +−λi is the
span of the eigenvectors whose eigenvalues aregreater than−λi. ThusE−i =
P +−λi+1

/P +−λi andE+i = P +λi−1
/P +λi .

Let
Wn = projE−n (3X ∩ P +−λn+1

) ⊂ E−n .
Hence,

Wn = (3X ∩ P +−λn+1
)/(3X ∩ P +−λn).

Next, let
Wn−1= projE−

n−1
(3X ∩ P +−λn) ⊂ E−n−1.

Continue in this fashion, peeling one space off at a time in the decomposition
(Equation 6.2) ofHν0. We change notation when we arrive at kerS to be consis-
tent with our previous notation. Thus (by definition),

L̃X = projkerS(3X ∩ P +−λ1
) ⊂ kerS.

Continue by letting

V ′1 = projE+1 (3X ∩ P
+
0 ) ⊂ E+1 ,

V ′2 = projE+2 (3X ∩ P
+
λ1
) ⊂ E+2 ,

and so forth until the last step:

V ′n = projE+n (3X ∩ P +λn−1
) ⊂ E+n .
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Now, let us suppose that(wn,wn−1, . . . , w1, h, v1, . . . , vn, q) is an element of
3X ∩ (Hν0 ⊕ P +ν0

) expressed in the decomposition of Equation 6.2 with the addi-
tional elementq ∈P +ν0

. Then(wn,wn−1, . . . , w1, h, v1, . . . , vn) is in 3̃X.
Eitherwn = 0 or elsewn ∈Wn − {0}. Since

1

erλn
(wn,wn−1, . . . , w1, h, v1, . . . , vn)∈ 3̃X

and sincee−rS acts on the decomposition of Equation 6.2 diagonally with (de-
creasing) eigenvalueserλn , erλn−1, . . . , it follows that ifwn 6= 0 then

lim
r→∞ e

−rS 1

erλn
(wn,wn−1, . . . , w1, h, v1, . . . , vn) = (wn,0,0, . . . ,0)

and sown is in lim r→∞ e−rS3̃X = LX. Arguing by induction, we obtain

LX = Wn ⊕ · · · ⊕W1⊕ L̃X ⊕ V ′1 ⊕ · · · ⊕ V ′n.
We must now see thatV ′i = JVi, whereVi is the orthogonal complement of

Wi in E−i . But this follows from dimension counting and the fact thatLX is a
Lagrangian subspace. Indeed, since the symplectic structure onHν0 is given by
ω(x, y) = 〈x, Jy〉, JV ′i is orthogonal toWi and so lies inVi. If, for some i,
JV ′i were a proper subspace ofVi, then by counting dimensions (and using that
the limiting values of extendedL2 solutionsL̃X ⊂ kerS constitute a Lagrangian
subspace of kerS) it would follow thatLX has too small a dimension to be a La-
grangian. ThusJV ′i = Vi and soV ′i = JVi as claimed.

The assertion thatLX is the associated graded vector space to the filtration is
simply a brief description of how theWi, L̃X, V

′
i were constructed.

The fourth statement of Theorem 6.5 suggests a more useful and sophisticated al-
ternative to Hypothesis 3. The underlying motivation comes from the fact that it
is much easier to calculatẽLX ⊂ kerS than to calculateLX ⊂ Hν0. Even getting
a handle on the nonresonance levelν0 can be a difficult problem.

There is a natural choice of path of Lagrangians starting atP−ν0
⊕LX and ending

atP− ⊕ L̃X, defined as follows. Notice that the symplectic subspacesE−i ⊕ E+i
have a further decomposition as a direct sum:

E−i ⊕ E+i = (Wi ⊕ Vi)⊕ (JWi ⊕ JVi) = (Wi ⊕ JWi)⊕ (Vi ⊕ JVi).
Use these decompositions to define a pathC(t) by the formula

C : t 7→ P−ν0
⊕ L̃X⊕ (W1⊕ e−(1−t)(π/2)JV1)⊕· · ·⊕ (Wn⊕ e−(1−t)(π/2)JVn). (6.4)

Then we can make the following hypothesis.

Hypothesis 4. BY (0) = P− ⊕ L̃X andBX(0) = A⊕ P + for some Lagrangian
A ⊂ kerS(0), andL2(t) = C(t).
Lemma 6.6. If Hypothesis 4 holds, thenµ(L7,M7) = 0.

Proof. This is a consequence of the conventions we are using for spectral flow.
Recall thatL7 isL2 run backward and thatM7 is the constant path atBX(0).
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Using Theorem 6.5, we see that the LagrangiansL7(t) = C(1− t) andM7(t) =
BX(0) intersect in the direct sum

L7(t) ∩M7(t) =
{
(L̃X ∩ A)⊕ JV1⊕ JV2⊕ · · · ⊕ JVn if t = 1,

L̃X ∩ A if 0 ≤ t < 1.

Thus,eεJL7(t) is transverse toM7(t) for all t, so thatµ(L7,M7) = 0.

A similar argument shows that ifBX(1) = L̃Y ⊕ P + andBY (1) = P− ⊕ A for
some LagrangianA ⊂ kerS(1), and ifM5 is chosen in a manner similar toC(t)
(formula 6.4), thenµ(L5,M5) = 0.

Finally, with these choices and some additional transversality conditions, one
can sometimes also computeµ(L2,M2) andµ(L10,M10) in terms of the sum of
the dimensions of theVi (which is the same as the dimension of theL2-kernel of
D onX∞) after a preliminary stretching. Lemma 6.6 will be used in a slightly
different context in Theorem 6.13 (to follow).

6.4. When theL2 Kernel ofD|X or D|Y Vanishes at the Endpoints

The nonresonance level forD|X is zero if3X ∩ P + = 0. This is equivalent (see
[1]) to the vanishing of theL2-kernel of the natural extension ofD|X to X∞ =
X ∪6 × [0,∞).

In this context, Nicolaescu’s adiabatic limit theorem states that if3X ∩ P + =
0 (i.e., if theL2 kernel ofD|X onX∞ is zero) then limr→∞3rX = P− ⊕ L̃X.
Hypothesis 5. The operatorsD(i)|X∞ andD(i)|Y∞ have noL2 kernels for
i = 0,1.

(In the terminology of [15], the operatorsD(i)|X∞ andD(i)|Y∞ are nonresonant.)
If Hypothesis 5 holds, then Hypothesis 1 holds if and only ifL̃X(0) ∩ L̃Y (0) =

0 andL̃X(1) ∩ L̃Y (1) = 0. Moreover, in this case one can satisfy Hypothesis 3 by
lettingBY (0) = P−(0)⊕ L̃X(0) andBX(1) = L̃Y (1)⊕ P +(1).

Let us use these ideas to give a simple proof of a theorem of Bunke [4] (see also
[7, Thm. A]). Consider the case when the tangential operator has no kernel along
the path. The following theorem appears (in different notation) in [4]; it also fol-
lows from Theorem A of [7].

Theorem 6.7. Suppose that the kernel of the tangential operatorS(t) vanishes
for all t. Suppose that Hypothesis 5 holds(at the endpoints).

Then there exists anr0 such that, forr ≥ r0,

SF(D,Mr) = SF(DXr ;P +)+ SF(DY r ;P−).
Proof. Hypothesis 5, together with the vanishing of the kernels of the tangential
operatorsS(0) andS(1), implies that the adiabatic limits are

lim
r→∞3

r
X(i) = P−(i) and lim

r→∞3
r
Y (i) = P +(i)
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for i = 0,1. SinceP +(i) is transverse toP−(i),Hypothesis1holds. Thus, Propo-
sition 6.1 implies thatµ(L1,M1) andµ(L11,M11) vanish after sufficient stretching.

Since the kernel ofS(t) is zero for allt, the spacesP ±(t) vary continuously
[3; 13] and so we can takeBX(t) = P +(t) andBY (t) = P−(t). This imme-
diately implies thatµ(Li,Mi) vanishes fori = 2,5,7,10 according to Proposi-
tion 6.3, since Hypothesis 3 holds. We also haveµ(L6,M6) = 0, since this equals
µ(P−(1− t), P +(1− t)) andP +(t) is transverse toP−(t) for all t.

The pathL4 is the constant path atBY (1) = P−(1). The pathM4 is the path
from3Y (1) to lim r→∞3rY (1) = P +(1). SinceP−(1) is transverse toP +(1), after
perhaps makingr larger,µ(L4,M4) = 0. Likewise, after perhaps makingr larger,
µ(L8,M8) = 0.

The only terms remaining areµ(L3,M3) = SF(D|Y r ;P−) andµ(L9,M9) =
SF(D|Xr , P +). This completes the proof.

We next state and prove the theorem of Yoshida and Nicolaescu. The proof we
give is identical to Nicolaescu’s. We include it for the convenience of the reader
and to introduce another useful technique that can be combined with our methods.
Theorem 6.10 generalizes both Theorem 6.7 and Theorem 6.8.

Notice that if the operatorD(t)|X∞ has noL2 kernel for allt ∈ [0,1], and if the
kernel of the tangential operatorS(t) has constant dimension along the path, then
the limiting values of extendedL2 solutionsL̃X(t) constitute a continuous path of
Lagrangians. (The symplectic reduction is “clean” in the sense of [15].) This is
because, for allt, the projection

3X(t) ∩ (kerS(t)⊕ P +(S(t)))→ kerS(t)

(with imageL̃X(t)) has no kernel, and it is easily checked that the image is con-
tinuous because the path3X(t) is continuous.

Thus, the statement of the following theorem makes sense. This is Corollary 4.4
in [15].

Theorem 6.8 (Yoshida, Nicolaescu).Suppose that, for all parameterst ∈ [0,1],
the operatorsD(t)|X∞ andD(t)|Y∞ have noL2 kernel. Assume further that the
kernel of the tangential operatorkerS(t) has constant dimension(i.e., indepen-
dent oft ∈ [0,1]). Assume that

L̃X(0) ∩ L̃Y (0) = 0 (6.5)

and
L̃X(1) ∩ L̃Y (1) = 0. (6.6)

Then there exists anr0 ≥ 0 such that, forr ≥ r0,

SF(D,Mr) = µ(L̃X, L̃Y ).

Proof. Since 0 is the nonresonance level, limr→∞3rX(t) = P−(t) ⊕ L̃X(t) and
lim r→∞3rY (t) = L̃Y (t) ⊕ P +(t) for all t ∈ [0,1]. Together with Equations 6.5
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and 6.6, this implies that there exists anr0 such that ifr ≥ r0 then3rX(i) is trans-
verse to3rY (i) for i = 0,1. Let r1 be any number greater than or equal tor0.

Consider the homotopy from the path of pairs(3r1X(t),3
r1
Y (t)) to(P−(t)⊕L̃X(t),

L̃Y (t) ⊕ P +(t)) obtained by lettingr go to infinity. This homotopy is not a rel
endpoint homotopy, but it does exhibit a rel endpoint homotopy from the path of
pairs(3r1X(t),3

r1
Y (t)) to the composite of three paths:

A(t) =
{
(3

r1/(1−t)
X (0),3r1/(1−t)Y (0)) if t < 1,

(P−(0)⊕ L̃X(0), L̃Y (0)⊕ P +(0)) if t = 1;
B(t) = (P−(t)⊕ L̃X(t), L̃Y (t)⊕ P +(t));

C(t) =
{
(P−(1)⊕ L̃X(1), L̃Y (1)⊕ P +(1)) if t = 0,

(3
r1/t

X (1),3r1/tY (1)) if t > 0.

Therefore, SF(D,Mr1) = µ(A ∗ B ∗ C) = µ(A)+ µ(B)+ µ(C).
Since3rX(i) is transverse to3rY (i) for i = 0,1 and allr ≥ r1, it follows that

µ(A) = 0= µ(C). Thus,

SF(D,Mr1) = µ(B) = µ(L̃X, L̃Y ).

The transversality assumptions in Theorem 6.8 can in some contexts be relaxed
by requiring only assumptions similar to Hypothesis 2. Some care must be taken
with the steps used to calculateµ(L3,M3) andµ(L9,M9).

Next we give a generalization of the two preceding theorems by assuming the
existence of a continuously varying spectral gap.

Definition 6.9. A continuous functionλ : [0,1]→ [0,∞) is aspectral gap for
the family of tangential operatorsS(t) if, for each t ∈ [0,1], λ(t) is not in the
spectrum ofS(t).

Hypothesis 6. The path of tangential operatorsS(t) has a spectral gapλ(t).

As we remarked earlier, if Hypothesis 6 holds then the decomposition of Equa-
tion 2.7 varies continuously. Notice that, by subdividing the path as necessary,
Hypothesis 6 can always be arranged to hold. However, this hypothesis by itself
is not usually sufficient to simplify the formula of Theorem 5.1. The following
theorem gives one possible clean statement that generalizes Theorems 6.7 and 6.8.

Assume that Hypothesis 6 holds. LetAX(t) andAY (t) be continuously vary-
ing Lagrangian subspaces ofHλ(t). Then we can take the self-adjoint boundary
conditions to be

BX(t) = AX(t)⊕ P +λ(t)(t) and BY (t) = P−λ(t)(t)⊕ AY (t). (6.7)

Then Theorem 5.1 states that
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SF(D) = SF(D|X,AX ⊕ P +λ )+ SF(D|Y , P−λ ⊕ AY )
+ µ(AY (1− t), AX(1− t))+

∑
i 6=3,6,9

µ(Li,Mi).

By adding hypotheses, we can make many of the extra terms vanish.

Theorem 6.10. Assume that Hypotheses 5 and 6 hold, with spectral gapλ(t).

Assume that the limiting values of extendedL2 solutionsL̃X(i) and L̃Y (i) are
transverse fori = 0,1. LetAX(t) andAY (t) be continuously varying Lagrangian
subspaces ofHλ(t), with AY (0) = (P−(0) ∩ Hλ(0)) ⊕ L̃X(0) and AX(1) =
L̃Y (1)⊕ (P +(1) ∩ Hλ(1)). Assume further thatAX(0) is transverse toAY (0) and
thatAX(1) is transverse toAY (1).

Then there exists anr0 ≥ 0 such that, for allr ≥ r0,

SF(D,Mr) = SF(D|X,AX ⊕ P +λ )+ SF(D|Y , P−λ ⊕ AY )+ µ(AX,AY ). (6.8)

Proof. Since Hypothesis 5 holds,

lim
r→∞3

r
X(i) = L̃X(i)⊕ P−(i) and lim

r→∞3
r
Y (i) = L̃Y (i)⊕ P +(i)

for i = 0,1. Since we assumed thatL̃X(i) is transverse tõLY (i) for i = 0,1,
Hypothesis 1 holds and so by Proposition 6.1 there exists anr1 such that, after re-
placingM byMr for r ≥ r1, µ(L1,M1) andµ(L11,M11) vanish.

Take elliptic boundary conditionsBX(t) = AX(t)⊕ P +λ(t)(t) and BY (t) =
P−λ(t)(t) ⊕ AY (t). SinceBY (0) = L̃X(0)⊕ P−(0) andBX(1) = L̃Y (1)⊕ P +(1),
Hypothesis 3 holds; henceµ(Li,Mi) = 0 for i = 2,5,7,10.

The pathL4 is the constant path atBY (1) = P−λ(1)(1)⊕AY (1), andM4 is obtained
by stretching3Y (1) to its adiabatic limitL̃Y (1)⊕ P +(1). SinceAY (1) is transverse
to AX(1) = L̃Y (1)⊕ (P +(1) ∩Hλ(1)) by hypothesis,µ(L4,M4) vanishes—after
perhaps replacingM byMr for large enoughr.

The pathL8 is the reverse of stretching3X(0) to its adiabatic limitP−(0) ⊕
L̃X(0), andM8 is the constant path atBX(0) = AX(0)⊕P +(0). By the same argu-
ment as in the preceding paragraph,µ(L8,M8) vanishes (after perhaps replacing
M byMr for large enoughr).

Nowµ(BY (1− t), BX(1− t)) = µ(AY (1− t), AX(1− t)). SinceAX(i) is trans-
verse toAY (i) for i = 0,1 by hypothesis, we have

µ(AY (1− t), AX(1− t)) = µ(AX(t), AY (t)).
Combining these computations proves the theorem.

The following useful corollary is just the special case of the previous theorem
when the path of tangential operators has a spectral gapλ(t) = ε for ε small.

Corollary 6.11. Assume that Hypotheses 1 and 5 hold, that the path of tan-
gential operators has constant-dimensional kernel, and thatAX(t) andAY (t) are
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paths of Lagrangians inkerS(t) with L̃X(i) = AY (i) andL̃Y (i) = AX(i) for i =
0,1. Then, forr large enough,

SF(D,Mr) = SF(D|X,AX ⊕ P +)+ SF(D|Y , P− ⊕ AY )+ µ(AX,AY ).

Proof. Hypotheses 1 and 5 together imply thatL̃X(i) is transverse tõLY (i) for
i = 0,1. Thus, the hypotheses of Theorem 6.10 hold withλ(t) = ε, whereε is
smaller than the smallest nonzero eigenvalue ofS(t) for t ∈ [0,1]. The corollary
follows.

We finish this section with a few comments about comparing Theorem 5.1 to The-
orem C of [7]. Theorem C expresses the spectral flow as a sum of three terms;
formally, it looks identical to the formula 6.8, but no transversality hypotheses are
assumed in their theorem (although they do assume that preliminary stretching has
been done and they restrict the boundary conditions at the endpoints). This might
suggest that some of ourµ(Li,Mi) (in particularµ(L1,M1) andµ(L11,M11))
vanishwithout any of the transversality conditions. But this is not true (exam-
ples can be concocted). The reason that their formula has only three terms is that
their definition of spectral flow differs from ours in the case when transversality
hypotheses do not hold at the endpoint. In particular, in Theorem C the “expo-
nentially small” eigenvalues at the endpoints of the path are treated as if they
were zero.

To derive Theorem C of [7] from Theorem 5.1 would require a more careful
analysis of the rate at which3rX converges to its adiabatic limit. An examination
of Nicolaescu’s proof shows that this rate is exponential. We speculate that, by
replacing the definition of the Maslov index with the “(1/r 2)-Maslov index”, one
could derive Theorem C of [7] from our Theorem 5.1. The article [6] should be
helpful for such a project.

6.5. Spectral Flow around Loops

One nice application of Theorem 5.1 is perhaps of more interest to index theorists
than geometric topologists.

Theorem 6.12. LetD(t) be a loop of cylindrical, neck-compatible Dirac oper-
ators on a manifoldM = X ∪6 Y, and letBX,BY be loops of self-adjoint elliptic
boundary conditions for the restrictions ofD toX andY, respectively. Then

SF(D|X;BX)+ SF(D|Y ;BY )+ µ(BX,BY ) = 0. (6.9)

Proof. This follows from the formula in Theorem 5.1 after much cancellation.
First of all, the collection of all Dirac operators (on a fixed Clifford bundle) is
an affine space and hence contractible. It follows that the spectral flow of a loop
of Dirac operators on a closed manifold is 0. This is the 0 on the right-hand
side of Equation 6.9. Next, one can compute thatµ(BY (1− t), BX(1− t)) =
µ(BX(t), BY (t)) if BX andBY are loops.
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It remains to show that the sum of all the other terms in Theorem 5.1 vanish.
This is easy: the composite paths

Q1= L1 ∗ L2 ∗ L4 ∗ L5 ∗ L7 ∗ L8 ∗ L10 ∗ L11

and
Q2 = M1 ∗M2 ∗M4 ∗M5 ∗M7 ∗M8 ∗M10 ∗M11

are definedsince the path is a loop.But it is immediate from the definitions of
these paths thatQ1 is homotopic to the constant path at3X(0) andQ2 is homo-
topic to the constant path at3Y (0). Thus,∑

i 6=3,6,9

µ(Li,Mi) = µ(Q1,Q2) = 0.

Notice that there are no hypotheses on stretching, boundary conditions, . . . etc. in
Theorem 6.12.

6.6. Applying the Method to the Spectral Flow
on Manifolds with Boundary

We conclude the user’s guide with a discussion on how to apply our method to
compute the spectral flow of the path of operators on a manifold with boundary ob-
tained by fixing the underlying Dirac operator but varying the boundary conditions.

For simplicity we consider only the case when the boundary conditions are of
the special formBX(t) = A(t) ⊕ P + for AX(t) ⊂ kerS a path of Lagrangians;
more general situations can be handled by a similar method. This theorem is very
similar to Theorem D of [7].

Theorem 6.13. LetD be a cylindrical, neck-compatible Dirac operator on a
smooth manifoldX with boundary6. LetA(t) ⊂ kerS be a path of Lagrangian
subspaces of the kernel of the tangential operator, and letB(t) = A(t)⊕ P + be
the corresponding path of elliptic boundary conditions. Letν be in the nonreso-
nance range and letM(t) be the path starting at3X and stretching to the adiabatic
limit P−ν ⊕ LX (given in Lemma 3.2). Let L̃X ⊂ kerS denote the limiting values
of extendedL2 solutions.

Then

SF(D,B) = µ(L̃X,A(t))+ µ(M(t), A(0)⊕ P +)+ µ(M(1− t), A(1)⊕ P +).
In particular, ifP−ν ⊕LX is transverse toA(0)⊕P + (resp. transverse toA(1)⊕P +)
then, after replacingX byXr for r sufficiently large,µ(M(t), A(0) ⊕ P +) = 0
(resp.µ(M(1− t), A(1) ⊕ P +) = 0). Hence, if both transversality conditions
hold,

SF(D,B) = µ(L̃X,A(t)).
Proof. First, SF(D,B) = µ(3X,B) by Theorem 4.3. Apply the method as
follows.
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(1) Let L1(t) = M(t) and letM1(t) be the constant path atA(0) ⊕ P +. Then
µ(L1,M1) = µ(M(t), A(0)⊕ P +).

(2) LetL2(t) be the path defined in Equation 6.4 and letM2 be the constant path
atA(0)⊕ P +. Thenµ(L2,M2) = 0 by Lemma 6.6.

(3) LetL3 be the constant path atP− ⊕ L̃X and letM3(t) = B(t) = A(t)⊕ P +.
Thenµ(L3,M3) = µ(L̃X,A(t)).

(4) LetL4 beL2 run backward, and letM4 be the constant path atA(1) ⊕ P +.
Thenµ(L4,M4) = 0 by Lemma 6.6.

(5) LetL5 beL1 run backward, and letM5 be the constant path atA(1) ⊕ P +.
Thenµ(L5,M5) = µ(M(1− t), A(1)⊕ P +).

ThusL1∗L2 ∗L3 ∗L4 ∗L5 is defined and homotopic rel endpoints to the con-
stant path at3X. Also,M1 ∗M2 ∗M3 ∗M4 ∗M5 is defined and homotopic rel
endpoints to the pathB. Applying the homotopy invariance and additivity of the
Maslov index finishes the proof.

7. Concluding Remarks

We finish with a few comments about Theorem 5.1. First, there is a certain asym-
metry in the formula with respect to the roles thatX andY play. This turns out to
be useful sometimes—for example, Hypothesis 3 only restrictsBY at one endpoint
andBX at the other, rather than restricting both at each endpoint.

Another comment is that the sumsµ(L2,M2)+ µ(L7,M7) andµ(L5,M5)+
µ(L10,M10) (the terms depending on the auxiliary choice of the pathsL2 andM5)

depend only on the endpoints of these paths. Thus, each of these sums could be
thought of as a single quantity and perhaps expressed in terms of invariants (such
as the Maslov triple index) of the endpoints alone, without making any reference
to the choice ofL2 andM5. As we have seen, it is nevertheless convenient for
calculation to have the formula expressed the way we did.

Last (but not least), one significant benefit of our formulation is that, since our
formula expresses the spectral flow entirely as a sum of Maslov indices with the
orderedpairs(Li,Mi) explicitly described, it is easy to keep the signs and con-
ventions under control when carrying out spectral flow calculations.

Appendix

Proof of Lemma 3.2, by K. P. Wojciechowski

The set-up is as follows. We are given a Dirac operatorD on manifoldX with
boundary in cylindrical formD = J(∂/∂u + S) on a collar6 × [−1,0] of the
boundary6 = 6 × {0}. This extends to an operator onXr = X ∪ 6 × [0, r] in
the obvious way. To this extension we associate the Cauchy data spaces3r.

Nicolaescu’s adiabatic limits theorem, Theorem 3.1, states that the path (with
r(t) = 1/(1− t))
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t 7→
{
3r(t) t < 1,

P−ν0
⊕ LX(D) t = 1,

is continuous att = 1. What must be shown is that this path is continuous at finite
neck lengthsr—in other words, that the Cauchy data spaces3r vary continuously
in r. Continuity is measured in the gap topology or (equivalently) in the norm of
the associated projections. For notational convenience we will prove continuity at
r = 0; by reparameterizing, continuity at allr follows easily.

Let ν be a number in the nonresonance range forD onX = X0. Thus30 ∩
P +ν ′ = 0 for all ν ′ ≥ ν. We will make frequent use of the splittingL2(E|6) =
P−ν ⊕Hν⊕P +ν . Notice that the tangential operatorS preserves this splitting, since
the summands are defined by the eigenspace decomposition ofS. The almost com-
plex structureJ of Equation 2.2 preservesHν and interchangesP +ν andP−ν .

We will often use the fact that, ifα is a section ofE on the cylinder6× [−1, r]
that satisfiesDα = 0, then writingα|6×{u} = α(u) for u∈ [−1, r] we have

α(u) = e(t−u)Sα(t).
LetL = projHν (3

0 ∩ (Hν ⊕ P +ν )). Clearly,JL⊕ P +ν is transverse to30.

Lemma A.1. For eachr ≥ −1, 3r is transverse to(e−rSJL)⊕ P +ν .
Proof. Suppose thatv ∈3r ∩ ((e−rsJL)⊕ P +ν ). Then there existsα, a section of
E onXr, such thatDα = 0 and the restriction ofα to 6 × {r} equals 0. Thus
α(u) = e(r−u)Sv for u∈ [−1, r]. But this formula defines an extension ofα(u) for
all u∈ [−1,∞), sinceHν is finite-dimensional and since the restriction ofe(r−u)S

to P +ν decays exponentially asu → ∞. Henceα extends to a bounded smooth
section onXu for all u > −1, and the extension satisfiesDα = 0. In particular,
α(0) is defined, equalserSv, and lies in30. Sincev ∈ (e−rSJL)⊕ P +ν , it follows
thatα(0)∈ e(r−0)S((e−rSJL)⊕P +ν ) = JL⊕P +ν . By the choice ofL, this implies
thatα(0) = 0 and so alsov = 0.

For convenience we introduce some notation for certain projectionsL2(E|6).
(1) Theorthogonal Calderon projectionP r : L2(E|6)→ L2(E|6) is the orthog-

onal projection to the Cauchy data space3r.
(2) Thenegative spectral projectionπ− : L2(E|6)→ L2(E|6) is the orthogonal

projection to the spaceP−(S), the negative eigenspan of the tangential oper-
atorS.

(3) Fix ν ≥ 0 and suppose thatL ⊂ Hν is a Lagrangian (thus,P−ν ⊕ L is a
Lagrangian inL2(E|6)). Defineπ−,L : L2(E|6) → L2(E|6) to be the or-
thogonal projection toP−ν ⊕ L.

What must be shown is that the projectionsP r are continuous in norm asr
varies. It follows from the results in Chapters 12 and 14 of [3] thatP r , π−, and
π−,L are pseudodifferential of order 0.

LetL andν be as in Lemma A.1. For notational ease, define

Mr = erSL ⊂ Hν
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and
πr = π−,Mr

: L2(E|6)→ Mr ⊕ P−ν .
Notice thatMr varies continuously inr and hence so doesπr. The difference
π− − πr has image inHν, a finite-dimensional space of smooth sections, and
hence is a smoothing operator. Corollary 14.3 of [3] shows that the pseudodiffer-
ential operatorsP r andπ− have the same principal symbol. Putting these facts
together shows thatP r − πr is a pseudodifferential operator of order at most−1,
and in particular is a compact operator.

Lemma A.2. The restriction ofπr to3r induces an isomorphism

πr : 3r → Mr ⊕ P−ν .
Proof. It is easy to observe that the operator

πr : 3r → Mr ⊕ P−ν
is a Fredholm operator (see [3]); hence, in particular, it has closed range. The ker-
nel of this map is3r ∩ (Mr ⊕ P−ν )⊥ = 3r ∩ (JMr ⊕ P +ν ) = 0. Since3r and
Mr ⊕ P−ν are Lagrangians, the isometryJ identifies the cokernel with the kernel
of πr and so the map is surjective.

Since the map of Lemma A.2 is an isomorphism, the Cauchy data space3r can
be expressed as a graph of a bounded operator

kr : Mr ⊕ P−ν → JMr ⊕ P +ν ;
herekr is the composite of the inverse ofπr : 3r → Mr ⊕ P−ν and the orthogonal
projection toJMr ⊕ P +ν . Hence,

3r = { (v, kr(v)) | v ∈Mr ⊕ P−ν }. (A.1)

Let r > −1, and choosev− ∈Mr ⊕ P−ν ; hencev = v− + kr(v−) ∈ 3r. Thus
there exists a sectionα in kerD onXr with α(r) = v. As observed before, on the
cylinder6 × [−1, r], α has the form

α(u) = e(r−u)Sv = e(r−u)Sv− + e(r−u)Skr(v). (A.2)

On the other hand,α(u)∈3u for u ≤ r and, takingu = −1, we have

α(−1) = w− + k−1(w−) (A.3)

for somew− ∈M−1⊕ P +ν . Combining Equations A.2 and A.3 yields

w− = e(r+1)Sv− and e−(r+1)Sk−1(w−) = kr(v−).
Therefore,

kr = e−(r+1)S+k−1e
(r+1)S− , (A.4)

where we have denoted the restriction ofS toHν ⊕ P ±ν by S± for clarity.
For the next lemma, we recall the standard fact that the operatorsetS− :

Hν ⊕ P−ν → Hν ⊕ P−ν ande−tS+ : Hν ⊕ P +ν → Hν ⊕ P +ν are norm-continuous
in t for t away from 0.
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Lemma A.3.
lim
r→0
‖kr − k0‖ = 0.

Proof. Using Equation A.4, for− 1
2 ≤ r ≤ 1

2 we compute

‖kr − k0‖ = ‖e−(r+1)S+k−1e
(r+1)S− − e−S+k−1e

S−‖
≤ ‖(e−(r+1)S+k−1e

(r+1)S− − e−(r+1)S+k−1e
(r+1)S−‖

+ ‖(e−(r+1)S+k−1e
S− − e−S+k−1e

S−‖
≤ ‖e−(r+1)S+‖‖k−1(e

(r+1)S− − eS−)‖ + ‖(e−(r+1)S+ − e−S+)k−1‖‖eS−‖
≤ C1‖k−1(e

(r+1)S− − eS−)‖ + C2‖(e−(r+1)S+ − e−S+)k−1‖.
The last inequality follows from the continuity ofe(r+1)S+ in norm for r near 0
and the fact thateS− is independent ofr. Continuing the estimate (using thatk−1

is bounded), we obtain

‖kr − k0‖ ≤ ‖k−1‖(C1‖e(r+1)S− − eS−‖ + C2‖e−(r+1)S+ − e−S+‖). (A.5)

The right-hand side approaches 0 asr → 0 sinceetS− ande−tS+ are continuous in
norm att = 1. This proves the lemma.

In the decomposition

L2(E|6) = (Mr ⊕ P−ν )⊕ (JMr ⊕ P +ν ),
the matrix

Qr =
(

1 0
kr 0

)
is a (nonorthogonal) projection to3r. The formula of Lemma 12.8 in [3] shows
that

P r = QrQ
∗
r(QrQ

∗
r + (Id−Q∗r )(Id−Qr))

−1

=
(
(Id+ k∗r kr )−1 (Id+ k∗r kr )−1k∗r
kr (Id+ k∗r kr )−1 kr(Id+ k∗r kr )−1k∗r

)
. (A.6)

Thus, theP r are continuous inr for r near 0, completing the proof of Lem-
ma 3.2.

We note that the proof of Lemma A.3 can can be modified to show that

lim
r→∞3

r =
(

lim
r→∞Mr

)
⊕ P−ν =

(
lim
r→∞ e

rSL
)
⊕ P−ν .

In contrast to the proof just given of continuity at finiter, in this case one must be
careful with the estimates over the finite-dimensional pieceHν. The argument is
straightforward and is essentially the proof given in Nicolaescu [15].

Note also that in fact we have proved the following important result.
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Theorem A.4. The differenceP r − π− is an operator with a smooth kernel.

Proof. The differenceπr − π− is a smoothing operator. Using Equation A.6, the
differenceP r − πr can be represented as

P r − πr =
(
(Id+ k∗r kr )−1− Id (Id+ k∗r kr )−1k∗r
kr (Id+ k∗r kr )−1 kr(Id+ k∗r kr )−1k∗r

)
.

All entries in this formula are smoothing operators becausekr has a smooth
kernel.

Scott [17] proved this theorem in the nonresonant case. The proof given here
basically extends his proof to cover the general case. A different proof, purely
analytical, was offered by Grubb (see [10]).
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