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1. Introduction

Several articles have been written containing formulas expressing the spectral
flow of a path of self-adjoint Dirac operators on a closed split maniféldM =

X Us Y) in terms of quantities determined by each piece in the decomposition and
“interaction” terms (see e.g. [4; 7; 8; 15; 18]). The article of Nicolaescu [15]is per-
haps the most elegant and conceptually appealing. Additionally, a large number
of articles consider the closely related but more delicate problem of splitting theo-
rems for the Atiyah—Patodi—Singer invariant. The bibliography of Bunke'’s article
[4] contains a long list of citations. Most of these articles, with the exception of
Nicolaescu's, use delicate analytical methods and estimates such as heat kernel
methods, and the results apply only after one has stretched the collar neighbor-
hood of the separating hypersurface. Nicolaescu instead treats the problem largely
from the point of view of linear algebra in a symplectic Hilbert space, and his main
result is appealing in the simplicity of its statement: the spectral flow of the path
equals the Maslov index(Ayx, Ay). HereAy andAy denote the paths of Cauchy
data spaces consisting of the restrictions of nullspace elements of the operators on
X andY to their common boundar¥. Unfortunately, Nicolaescu’s formulation
does not lend itself easily to computation. What is needed is a splitting formula
that isolates the contribution from each of the two pieces of the decomposition to
the spectral flow. This is especially important when studying spectral flow in the
context of cut-and-paste constructions.

In this article we prove a general splitting theorem and show how it can be used
to derive most of the various splitting theorems in the literature. The proof of our
result is quite simple; it uses only elementary properties of the Maslov index in
addition to three results of Nicolaescu: the theorem described in the preceding
paragraph, a version from his subsequent article [16] for manifolds with boundary,
and the calculation of the adiabatic limit of the Cauchy data space from [15].

Our main result, Theorem 5.1, is as follows.

THEOREM. Let D(r) be a continuous path of self-adjoint Dirac operators on a
smooth, closed, oriented, odd-dimensional, Riemannian man#fol&uppose
that M can be split along a hypersurfage (M = X Uy Y) and that eachD(¢) is
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cylindrical and neck-compatible with respect to this splitting. Bgts) and By ()
be paths of self-adjoint elliptic boundary conditions for the restrictio®gf) to
X andY, respectively.

Then

SHD) = SKHD|x, Bx) + SKHDly, By)

+uByL—1), BxA=0)+ > plLi, My).
i=12,4,5,7,8,10,11

The terms appearing in the sum are certain Maslov indices of explicitly defined
paths of Lagrangians.

Notice that this formula, in contrast to the theorems cited previously, holds with
neither any preliminary stretching assumptions nor any prescription on what the
boundary conditions should be.

Perhaps the method itself is more important than the actual formula, in the sense
that in any given application it is probably easier to adapt the method we introduce
here to the specific situation than to make the problem fit our formula. (This is the
case in [2] on thesU(3) Casson invariant.) For that reason we include a lengthy
“user’s guide” (Section 6), which indicates how various additional hypotheses can
be used to force some of the L;, M;) terms to vanish. We also show how to de-
rive with ease many of the different versions of the splitting theorems cited here.
In particular, we derive the splitting theorem of Bunke, give a generalization of
this theorem and the splitting theorem of Yoshida and Nicolaescu, and indicate
the relation between our formula and the formula of [7].

Our results are stated and proven for Dirac operators on odd-dimensional man-
ifolds, since these include most of the geometrically important classes of self-
adjoint elliptic operators—for example, the odd-signature operator and the spin
Dirac operator.

We finish this introduction with a brief example of the method for those read-
ers who are familiar with this subject. Other readers can return to the following
paragraphs after finishing Section 4.

Suppose thaD(¢): I'(E) — T'(E), t € [0, 1] is a path of self-adjoint Dirac
operators on a manifold/ decomposed along a hypersurfae = X Uy Y.

Let Ax(¢+) and Ay (¢) be the Cauchy data spaces associated to the restrictions of
D(r) to X andY, respectively. These are Lagrangian subspaces of the symplec-
tic Hilbert spacel.?(E|x). Assume further that each(¢) is cylindrical (D (1) =
J(8/3s + S(¢)) on a collar neighborhood @) and neck-compatible (for each

S(¢) is self-adjoint). Furthermore, suppose that the kernels of the tangential opera-
tors S(¢) are trivial for allz and denote by *(¢) the positive /negative eigenspace

of S(7).

Finally, suppose thatx (0) = P~(0), Ax() = P~ (1), Ay(0) = P*(0), and
Ay(1) = PT(1). These four equalities rarely hold except in artificial examples,
but Nicolaescu’s adiabatic limit theorem says these conditions are asymptotically
true; compensating for this leads to the extra terms in our formula.



A General Splitting Formula for the Spectral Flow 591

The pathAx (¢) is clearly homotopic rel endpoints to the composite of the three
pathsP~—(t), P~ (1 — t), and Ax(¢). Similarly, the pathAy (¢) is homotopic rel
endpoints tothe composite of the three pathst), P (1—¢), andP*(z). Because
the Maslov index is invariant under rel endpoint homotopies and additive with re-
spect to compositions of paths, we conclude that

SK(D, M) = u(Ax, Ay) (Nicolaescu’s splitting theorem)
=w(P™, Ay) + (P~ (A—1), PTA—1) + n(Ax; P)
= SKD|y; P7)+ SKD|x; PT)

The last step follows from the version of Nicolaescu’s theorem for manifolds with
boundary and the fact th&* and P~ are transverse. The proof of our main re-
sult is no more difficult than this. The extra terms come about by moving to the
adiabatic limits at the endpoints and from allowing general boundary conditions.

The authors thank H. Boden, D. Hoff, and K. P. Wojciechowski for helpful
discussions—and especially L. Nicolaescu, who first gave us a proof of Lemma 3.2.
The authors thank K. P. Wojciechowski for letting us use his proof of this lemma
in the Appendix.

2. Dirac Operators

There are many different definitions Dirac operatorin the literature. For our

purposes, we adopt that of [15]. Briefly, a Dirac operator is determined by a Clif-

ford module over a manifold along with a compatible connection. More precisely,

suppose we are given the following.

(1) Anoriented Riemannian manifol@d, g).

(2) A self-adjoint Clifford moduleE — M. HenceE is a vector bundle over
M with an actionc: C(M) — End(E). HereC(M) is the bundle of Clif-
ford algebras oved generated by the cotangent bundle using the metric. The
adjective “self-adjoint” means thatcarries each element @f*M to askew-
adjoint endomorphism. Together with the Clifford relations, this implies that
each element of *M acts orthogonally. For convenience we assume that the
vector bundleE is a complex vector bundle.

(3) A Clifford compatible covariant derivativ€” on E. Thus,

VE:T(E) > T(EQT*M)
is a differential operator that (a) satisfies the Leibniz rule
VE(fs) =df ® s + fVEs

forany f € C*(M) ands € I'(E), and (b) is compatible with the Clifford
action in the sense that

[VE, c(a)] = ¢(Va),

wherea € T'(C(M)) andV is the Levi—Civita connection (naturally extended
from TM to C(M)).
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These data determine a Dirac operator as the composition

rE) Y rEeT M) S rE),
whereCC denotes contraction with respect to the Clifford action (denoted by
previously). Incidentally, this definition agrees with that dbigac operator on a
Dirac bundleas defined in [14]. In this article, we consider only self-adjoint Dirac
operators over odd-dimensional manifolds.

We are particularly interested in Dirac operators over split manifolds. A mani-
fold M is split along a hypersurfac® if it can be expressed as the union of two
manifolds(X andY) with boundary such thaétX = —9Y = £ = X N Y. In this
case we also require the existence of a neighborlibotlx in M that is isometric
to ¥ x (—1,1). Over this neighborhood, all relevant structures (e.qg., the Clifford
bundleE) should decompose similarly.

Thus we are led to consider Dirac operators on manifolds with boundary, and in
this context we impose two further restrictiostst, such a Dirac operator must
be cylindrical. This means that, in a neighborhood of the boundary (of the form
¥ x (—=1,0]or T x [0, 1) as just described)) can be written as

D = c(du)(d/0u + S), (2.1)

whereu is the second factor iB x (—1, 0] (or X x [0, —1)), chosen so thdldu|| =

1, andS is a Dirac operator ot |3, referred to as theangential operator(Note
that S is assumed to be constant in that it does not depend on the coordipate
Secondwe require thatD be neck-compatiblemeaning that the tangential oper-
ator S is self-adjoint.

In what follows we consider only Dirac operators satisfying these conditions.
Although these conditions may appear restrictive, most important geometrically
defined self-adjoint operators are of this typts+examplethe spin Dirac and
odd-signature operators.

The Clifford relation(v ® w + w ® v = —2(v, w)) implies that the alge-
braic operatorc(du): T'(E|sy) — T'(E|y) is a fiberwise isometry satisfying
c(du)®> = —1d and so induces a complex structure BH E|;,), which we re-
name (suggestively)

J: L3(Elam) = L*(Elom). (2.2)

Thus J2 = —Id. Moreover,SJ = —JS and so the spectrum of the elliptic
self-adjoint operatos : L?(E|yy) — L?(E|y) is Symmetric, and itg. and —x
eigenspaces are interchangedy

Define a hermitian symplectic structure bA(E |4) by

w(x,y) = (x, Jy),

where( , ) denotes thd.? inner product.

DerFiNITION 2.1.  TwoO closed subspacksg, L, of aHilbert space formBredholm
pair if LyN L; is finite dimensional and; + L is closed with finite codimension.
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DEFINITION 2.2.

(1) A closed subspack C L2(E|;y) is calledisotropicif L andJL are orthog-
onal. Thusw(,m) =0foralll,meL.

(2) A closed subspacke C L?(E|;y) is calledLagrangianif JL is the orthog-
onal complement of.. Thus,w(/,m) = O0foralll,m € L andL + JL =
L%(E|am).

SinceSJ = —JS, the Hilbert spacd.?(E|;y) has an orthogonal decomposition
into the orthogonal direct sum of the negative eigenspace, kernel, and positive
eigenspace of:

L%(E|sm) = P~ (S) @ kerS @ PH(S). (2.3)

In this decomposition, ke§ is finite-dimensional becausas elliptic on the closed
manifolddoM. Moreover,J preserves kef and so kefS is a symplectic subspace.
The space® ™ (S) andP~(S) are interchanged by sinceJS = —SJ, soP*(S)
and P~ (S) are infinite-dimensional and isotropic.

If L c kerS is a (finite-dimensional) Lagrangian subspace (defined just as
before but substituting ke for L2(E|;)), then the space®~(S) & L and
L & P*(S) are easily seen to be Lagrangian subspacds @t |;,). An impor-
tant case occurs when kgr= 0, in which caseP*(S) are themselves Lagrangian
subspaces.

It will be convenient to have a slightly more general decompositidt?oE | 5,,)
than Equation 2.3. Toward this end, kdie any nonnegative real number and define

H,(S) =spanz{¢ | S¢ =i and|r| < v}, (2.4)
P;(S)=spanz{¢ | S¢ =xr¢p andir < —v}, (2.5)
PF(S) =spanz{¢ | S¢ = rp andir > v }. (2.6)

Then, as before, the () are infinite-dimensional isotropic subspaces &hd
is a finite-dimensional symplectic subspace. Moreover, the decomposition of
Equation 2.3 is a special caée= 0) of the decomposition

LA (E|ow) = P, (S) @ H,(S) ® P,7(S). 2.7)

It is proven in [13] that ifS is taken to vary continuously over some parame-
ter spacel’'—that is, if the map — S(¢) — S(¢0) is a continuous map fror
into the space of bounded operators (hgrs some fixed base point ifi)—and
if v(¢) is a continuous nonnegative function Brsuch thatS(¢z) has a spectral gap
atv(r) (i.e.,v(r) misses the spectrum &fz)), then the decomposition of Equa-
tion 2.7 is continuous iff'. Continuity for subspaces will always be taken in the

gap topology [11].

3. Cauchy Data Spaces

For a given Dirac operatoD on a manifoldX with nonempty boundary:,
its Cauchy data spacé x (D) is a Lagrangian subspace bf(E|;,,) consisting
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roughly of boundary values of its kernel elements. We give a definition suitable
for our purposes, referring to [15] for a careful construction.

In [3] it is shown that in the present context there is a well-defined, bounded,
injective restriction map

R: ker(D: L% ,(E) — L?,(E)) — L*(E[x) (3.1)

(see [15, Prop. 2.2]). Here?(E) means the Sobolev space of section€afith
s derivatives inL?, extended in the usual way to real

The image ofR is a closed infinite-dimensional Lagrangian subspace of
L?(E|x). It will be denoted by

Ax(D) := R(ker(D: L5 ,(E) — L% 5(E))) (3.2)

and called theCauchy data spacef the operatorD on X. Sometimes we will
abbreviateA x (D) to Ax or evenA whenD or X are clear from the context. Thus
the Cauchy data space is space of boundary values of solutidds te- 0. In
[15] itis proven that, ifD varies regularly (smooth is sufficient but not necessary)
in the space of Dirac operators with respect to some parameter gptwn the
Cauchy data spacesy (D(t)) vary regularly (at least?') in t € T. Regularity for
closed subspaces may be interpreted in terms of the norm topology of the associ-
ated projections. The resulting topology is equivalent to the gap topology [11].

An important property of the Cauchy data space of a Dirac operatof the
form J(3/9u + S) on the collarz x [—1, 0] of the boundary ofX is that the
pair (Ax (D), P*(S)) forms a Fredholm pair of subspaces [15]. SidE(S) C
P*(S) has finite codimension, it follows that i is any closed subspace of
LZ(E|2)thatcontainst(S)forsoma; with finite codimension, thet x (D), B)
form a Fredholm pair.

The proof of our main theorem will requisgretchingwhich we now describe.
Given a manifoldX with boundaryx and (open) collak x (-1, 0], define

X' =X Usx(-10] Y x (=1, r] for r > 0. (33)

ThusX = X°. Using Equation 2.1 to defin® on  x (-1, ] gives a natural
extension ofD to X". In this way one obtains a 1-parameter family of Cauchy
data spaceax- (D). The limit of Ax-(D) asr approaches infinity is identified in
Theorem 4.9 of [15]. We elaborate on this important and interesting result.

For notational convenience we writg, for Ax- (D) andP, for P,F(S). Since
A% N Py is finite-dimensional, and singg, . P, = 0, there exists a number
vo > 0 such that

AGNPH=0. (3.4)

Following Nicolaescu, the set of all nonnegative real numbers that satisfy Equa-
tion 3.4 is a nonempty, closed, unbounded interval calleshtimeesonance range

of D. The smallest suchy is called thenonresonance level d@. Fix somevg in

the nonresonance range bf



A General Splitting Formula for the Spectral Flow 595

The symplectic reduction ofS, to H,, is the Lagrangian subspace

A N (Hy, & P)
A NP

Ax(D) = proju, (A% N (Hy, ® PF)) = C Hy,. (3.5)

The decomposition of Equation 2.7 is preserved bgince this is a decomposi-
tion in terms of eigenspaces §f In particular,S preservedd,, and the restriction
of S to H,, is self-adjoint, with all eigenvalues in-vg, vo]. Thus we can form
the 1-parameter family of (finite-dimensional) operators

e Hy, — H,,. (3.6)

It is not too hard to see that the limit
Lx(D) = lim e Ax(D) (3.7)

r—00

exists and is a Lagrangian subspaceéiof.
We may now state Nicolaescu’s adiabatic limit theorem [15].

THEOREM 3.1. ASr — o0,
ANy (D) — P, @& Lx(D). (3.8)

The limiting subspace is called tladiabatic limitof A’y. Thus the adiabatic limit
is determined, up to a finite-dimensional piece, by the tangential operator.

The identification of the adiabatic limit is an important ingredient in the proof of
our splitting formula, but we require a little bit more. We complement the previ-
ous theorem with a lemma stating that the adiabatic deformation is in fact regular.

LeEmmA 3.2. Letr(t) = 1/(1 —¢) for ¢t € [0,1). The path of Lagrangian sub-
spaces
{ NO, t <1,
t
P ®Lx(D), 1=1
is continuous.

The proof of Lemma 3.2 was provided to us by K. P. Wojciechowski and can be
found in the Appendix.

One warningisin order here. Itis not true that the adiabatic limits of the Cauchy
data spaces vary continuously wheris varying continuously over some param-
eter space, evenif; is larger than the nonresonance level for every opeuatior
this family. The reason for this is that the dynamicgs of acting on subspaces of
H,, is quite sensitive to the initial subspace. See [2] for an explicit example of an
analytic path of Dirac operatotd(z) for which the path of adiabatic limits of the
Cauchy data spacds (r) @ Lx (D(t)) isnotcontinuous. There are some special
circumstances under which one can conclude that the adiabatic limits vary con-
tinuously, and in those cases a splitting theorem can be proven easily. One such
example is our Theorem 6.8.
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We now letM be a closed manifold split along a hypersurfacmto two pieces

X andY (M = X Uy Y). As before, we identify a closed neighborhoodin

M asX¥ x (-1, 1), with ¥ = 9X = —0aY. In the previous paragraphs we have

stated various facts about Dirac operators from the point of view of Xtlsade”.

For convenience we state the analogous facts for Ytlsele”. The main thing to

keep in mind here is that the complex structuren L?(E|x) and the cylindri-

cal decomposition (2.1) in the collar both use the outward normal, tehich is

the inward normal t&. This generally has the effect of switching signs. Chasing

down the repercussions, we have the following facts (see [15]).

Q) (P~(S), Ay(D)) is a Fredholm pair.

(2) The limitasr — oo of Ay-(D) is Ly (D) & P;;(S), wherev; is in the non-
resonance range d@ acting onY andLy (D) is defined similarly talx (D)
but by takingr — —oc.

(3) The pair(Ax (D), Ay(D)) is a Fredholm pair.

(4) The kernel ofD: I'(E) — T'(E) is taken isomorphically to the intersection
Ax (D) N Ay (D) by restricting tox.

4. Spectral Flow Equals Maslov Index

The theorems of Nicolaescu presented in this section establish the equality of two
a priori different invariants that can be associated to a path of Dirac operators. Ac-
cordingly, we begin with a description of these two invariants.

The spectrum of a Dirac operatbron a closed manifold/ consists of discrete
eigenvalues of finite multiplicity. Thepectral flowof a continuous patl(z) (¢ €
[0, 1)) of self-adjoint Dirac operators is (roughly) defined to be the algebraic count
(with multiplicity) of the number of eigenvalues crossing through zero. Although
this definition is somewhat imprecise, it suffices for our purposes—particularly
because we never actually work with the spectral flow directly. Instead, we use
Nicolaescu’s theorems to convert the spectral flow to the Maslov index. In any
case, precise definitions of the spectral flow can be found in [7; 12; 15].

An important technical point is appropriate here. One must set conventions so
that the spectral flow is well defined on path$t) for which D(0) and/orD(2)
have nontrivial kernel. One must decide whether or not an eigenvaluséintsor
endsat 0 counts as crossirigroughO. It is important to be precise here, because
different conventions appear in the literature, and the particular choice affects the
properties of the invariant. Among the several such conventions that can be found,
we use the following. Given a paifi(¢) (¢ € [0, 1]) of Dirac operators, let > 0
be a number small enough so that the operafai® and D (1) have no eigenval-
ues in the intervalf¢, 0). We define the spectral flow of the pali(r) to be the
spectral flow of the pati®(r) + ¢ Id:

SF(D(1)) := SK(D(z) + ¢ Id).

Effectively, we count the eigenvalues that cressrather than those that cross 0
Notice that this avoids the issue of starting or ending at the crossing value because,
by definition, no eigenvalues start or end-at
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Given a continuous path of Fredholm pairs of Lagrangigagz), Ax(¢)) in a
symplectic vector space, tiaslov indexu (A1, A) is the integer defined to be
the algebraic count of how many timas(r) passes through,(¢) along the path.

The complex structurd is used to specify the signs in this algebraic count. In

particular, the normalization is chosen so tha@'/A1, A»), t € [—e, €], equals

dim(A1, A2) whenA; and A, are constant paths. See [5; 8; 15] for the precise
definition.

Note: the condition that the Lagrangians be Fredholm is vacuous in the finite-
dimensional case but critical in our contéXt?(E|x)). Typically, the Fredholm
property is easily verified—for any pair of paths we consider—by appealing to
facts about Cauchy data spaces and related Lagrangians, as discussed in Section 2.

As with the spectral flow, a convention must be chosen to define the Maslov
index for paths of pairs that are not transverse at the endpoints. Again, it is impor-
tant to be explicit here because there are a number of possibilities. We use a con-
vention defined in terms of the complex structuteas explained in [5]. Choose
a small positives such that:

(1) (e¥L1(t), L2(t)) form a Fredholm pair for eachand each G< s < ¢ (this is
possible because Fredholm pairs form an open subspace of the space of closed
pairs [11]); and

(2) e*/L1(0) is transverse td.»(0) ande*/L1(1) is transverse td. (1) for all 0 <
s < ¢ (the proof that such anexists can be found in [5]).

Thus the path of pair&’*L(¢), L»(¢)) forms a path of Fredholm pairs which are

transverse at the endpoints. One then defines the Maslov indexanid L, by

taking

(L1, L2) = p(e”Ly, Ly). (4.)

We will use the following two elementary properties of the Maslov index.

(1) Path Additivity.Let L4, L,, K1, K be paths of Lagrangians such thiafl) =

K;(0) fori = 1,2, and letM; be the path obtained by concatenatingand
K; (we writeM; = L; x K;). Then

(M1, M3) = (L, L) + n(Ky, Ko).

(2) Homotopy Invariancelet L;, Lo, K1, K be paths of Lagrangians such that
L; is homotopic rel endpoints t&;. Then

w(L1, Lo) = n(Ky, K2).

Proofs of these facts follow from the interpretation of the Maslov index as an in-
tersection number (see [5]). It is worth noting that the proof of our main theorem
requires only these elementary properties of the Maslov index, eschewing more
technical tools such as symplectic reduction.

Path additivity does not hold with all possible conventions, and it is for this
property that we use the chosen convention. There are other conventions. To go
back and forth between conventions, one need only know thatigfanother con-
vention, then there exist numbergando; in {—1, 0, 1} ande € {1, —1} such that

WL, M)=e-u(L, M)+ og-dim(L©) N M(0)) + o1 - dim(L(Q) N M ().
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A similar remark applies to the spectral flow, and it is not hard to see that the
formula of our main result, Theorem 5.1, remains true provided one chooses the
spectral flow and Maslov index conventions compatibly—after perhaps adding a
correction term depending only on the dimensions offkéd) and kerD(1). The
main result of [9] states that our choices of spectral flow and Maslov index con-
ventions are compatible.

Two further simple facts, which we will use in Section 6 without explicit men-
tion, are that (with our chosen conventions):

(1) w(L, M) =0if L andM are constant paths; and
(2) if L, M are paths of Lagrangians i, (S), then

w(P, ®L,M®PS)=pn(L, M).

These are easy consequences of the definitions.
The following remarkable theorem of Nicolaescu will be the basis of what
follows.

THEOREM 4.1. Let D(¢), ¢t € [0,1], be a smooth path ofcylindrical, neck-
compatible, self-adjointDirac operators on a smooth, oriented, closed, odd-
dimensional Riemannian manifoM that splits asM = X Uy Y. Then

SH(D) = u(Ax (D), Ay(D)).

The theorem explicitly states the intuitively appealing notion that counting ker-
nel elements along the path (i.e., counting eigenvalues that cross through zero)
is equivalent to counting pairs of boundary values that match up (i.e., nontrivial
intersections between the Cauchy data spaces). Theorem 4.1 was first proved by
Nicolaescu [15] for paths of Dirac operators whose endpoints have trivial kernel;
the restriction to trivial kernel at the endpoints was removed in [9].

A similar theorem may be stated for manifolds with boundary. In this case we
must impose boundary conditions for the spectral flow to be well-defined. This is
the subject of the next definition.

DEeFINITION 4.2, LetX be a manifold with boundar§X = X, and letD be a
self-adjoint Dirac operator o in cylindrical form with tangential operatdt. A
self-adjoint elliptic boundary conditiois a Lagrangian subspad c L2(E|x)
that contains”," (S) as a finite codimensional subspace for saméSee [3] and
[16] for details.)

The condition thaB be Lagrangian implies that the operaf@ion X with bound-
ary conditionsB is self-adjoint. The requirement th&t contain P+ with finite
codimension ensures that the operalbsacting on sections oveX whose re-
striction to the boundary lies iB—is elliptic. Thus, given a patlv(¢) of Dirac
operators orX and a path of elliptic self-adjoint boundary conditioB&), the
spectral flow SED, B) is defined.

Then Nicolaescu’s theorem extends to the bounded case as follows.
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THEOREM 4.3. Let D(¢), t € [0,1], be a smooth path ofcylindrical, neck-
compatible, self-adjointDirac operators on a smooth, oriented, odd-dimensional
Riemannian manifol& with nontrivial boundarypX = X. Let B(¢) be a smooth
path of elliptic boundary conditions fab(z). Then

SK(D, B) = u(Ax(D), B).

5. The General Splitting Formula

In this section we state and prove the general splitting formula. The formula ex-
presses the spectral flow of a path of Dirac operators on a closed manifold in terms
of the spectral flows of the restricted paths (with associated elliptic boundary con-
ditions). Whereas other results of this type have many additional hypotheses and
produce more succinct formulas, our result requires only the minimal hypotheses
but produces a longer formula. In Section 6 we discuss additional conditions that
may be imposed to make various terms in our formula vanish or cancel.

The set-up is as follows. Lab(z) be a smooth path of Dirac operators on a
smooth, oriented, closed, odd-dimensional Riemannian marifol8uppose that
M can be splitalong a hypersurfage(M = X Us, Y) and that eaclb (¢) is cylin-
drical and neck-compatible with respect to this splitting. Bgtz) and By (¢) be
paths of elliptic boundary conditions f@¥ () restricted taX andY, respectively.
Then we will show that there is an 11-term formula

SH(D) = SK(Dx, Bx) + SK(Dy, By)

+uByd—1), ByA=0)+ Y wliM). (5.1)
i=12,4,5,7,8,10,11

The u(L;, M;) are certain Maslov indices; they will be defined shortly and dis-
cussed at length in the following section.

Theorem 4.1 allows us to replace @9 by u(Ax (D), Ay(D)). We have at
our disposal the path additivity and the homotopy invariance of the Maslov index.
We will describe pathd, and M that are homotopic rel endpoints 19 (D) and
Ay (D), respectively. These new paths will each be the concatenation of eleven
pieces(L; andM;, resp.). Each piece will contribute a term to the right-hand side
of Equation 5.1.

To begin, letvg > 0 andv; > 0 be numbers chosen such that:

(1) vo is in the nonresonance range fbr0) on X and the tangential operator

S(0) has a spectral gap a§; and
(2) viisinthe nonresonance range fo(1) onY and the tangential operat8¢l)

has a spectral gap af.

We abbreviate the notation for the Cauchy data spaces using the sypol

for Ax-(D()). Moreover,Ax(t) meansAyo(D(t)) = Ax(D(¢)); similar nota-
tion applies toY. Nicolaescu’s adiabatic limit theorem (Theorem 3.1) shows that
there exists a Lagrangialy (0) C H,, (and gives a recipe for constructing it)
such that
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rli—>moo Nx(0) = P; (S(0)) & Lx(0),
and there exists a Lagrangian (1) C H,, such that
lim Ay (D) = Ly() & P(SQ).

We can now enumerate the eleven pieces of each path.
(1) LetL; be the path starting at% (0) and ending at

lim A’ (0) = P,(S(0) ® Lx (0)

and obtained by stretching. An explicit formula is given in the statement of
Lemma 3.2. LetM; be the constant path aty (0).

(2) LetL, be any path of Lagrangians starting/gt (S(0)) © Lx(0) and ending
at By (0) so that, for allt, L,(¢) is a self-adjoint elliptic boundary condition
for the restriction ofD(0) to Y (more generally, it suffices to assume that
(L2(2), Ay(0)) are a Fredholm pair). Le¥, be the constant pathy (0).

(3) Let L3(z) be By(r) and letM3(¢) be Ay (¢). Theorem 4.3 applied t& im-
plies that

n(L3, M3) = SK(Dly, By). (5.2)

(4) TakeL4to be the constant paty (1), and letM, be the path from\y (1) to
M, e Ay (D =Ly(D® PJ(S(l)) obtained by stretching as in Lemma 3.2.

(5) Let Ls be the constant patBy(1). For Ms, choose a path of Lagrangians
starting atLy (1) & P;;(S(l)) and ending aByx (1) so that, for alk, Ms(z) is
a self-adjoint elliptic boundary condition for the restriction/l) to X (or,
more generally, so th&iAx (1), Ms(¢)) form a Fredholm pair).

(6) LetLg be the pathL; run backward (i.e.Lg(t) = L3(1—1)), and letMg be
By run backward. Thus,

n(Le, M) = u(By(L—1), Bx(1—1)). (5.3)

(7) LetL7beL, run backward and le¥; be the constant patBy (0).

(8) LetLgbe L, run backward and/g the constant pati®y (0).

(9) LetLg be the patmy () and letMg be the pathBy (). Theorem 4.3 states
that

u(Lo, Mg) = SK(D|x, Bx). (5.4)
(10) TakeLpto be the constant pathy (1) andM;o to be Ms run backward.
(11) Finally, letLq; be the constant pathy (1) and letM1; be M4 run backward.

The reader may verify that the composite path L1x Lo *---* L7 is defined
and is homotopic rel endpoints to the path. Similarly M = My« Mo* - - -x M1;
is homotopic rel endpoints tay. Hence

11
SK(D) = pu(Ax, Ay) = p(L, M) = Y u(Li, My),
i=1

using homotopy invariance of the Maslov index and additivity of the Maslov index
under composition of paths.
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We summarize our conclusions in the following theorem.

THEOREM 5.1. Let D(¢) be a continuous path of self-adjoint Dirac operators on
a smooth, closed, oriented, odd-dimensional Riemannian marifol8uppose
that M can be split along a hypersurface (M = X Uy Y) and that eachD(¢) is
cylindrical and neck-compatible with respect to this splitting. Bgtr) and By (1)
be paths of self-adjoint elliptic boundary conditions for the restrictio®gf) to
X andY.

Then

SH(D) = SK(D|x, Bx) + SK(Dly, By)

+u(By(L—1), BxA—=0)+ Y pu(Li, My).
i#3.6,9

6. User’s Guide to Theorem 5.1

In this section we explain how to use Theorem 5.1. Specifically, we show how
various natural hypotheses simplify the formula and then derive some earlier theo-
rems as consequences. We will not exhaust all the possibilities, but we hope to
give some indication of the formula’s utility.

The authors’ background concerns the application of this subject to the odd-
signature operator coupled to a path of connections starting and ending at flat
connections. This is the kind of operator considered in topological applications of
spectral flow, such as computations of Atiyah—Patodi—Sipgénvariants, Cas-
son’s invariant, and Floer homology. The methods we describe are particularly
well suited for this class of problem.

6.1. Transversality at Endpoints and Stretching

First some notation. We have defin®d andY" to be the manifolds obtained by
adding a collar of length to X andY. Let M" be the closed manifold obtained by
stretchingM alongXx, so that

M =X UgY'.

HypoTHEsIs 1. The adiabatic limits of the Cauchy data spaces are transverse at
the endpoints

lim AG) N lim A G) =0, i=0,1

r—00 r—00

ProposITION 6.1. Suppose that Hypothesis 1 holds. Then there existg a&n0
such that, replacings by M" forr > rgin Theorem 5.1, the terms(L,, M1) and
,u(Lll, M11) vanish.

Proof. Continuity of the path of Lemma 3.2 implies that there exists saysech
that the Lagrangiang’, (i) and A, (i) are transverse far > ro andi = 0,1
Then the Lagrangiansi(¢r) and M, () are transverse for atle [0, 1] and hence
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w(L1, My) = 0. The same argument applies at the other end of the path to show
thatu,(L]_]_, M) = 0. O

Notice that the two cases are independent. That s, if the limits of the Cauchy data
spaces are transverse at the initial point tpg€hi, M;) = 0 for r large enough,
and if they are transverse at the terminal point th€h,, M1;) = O for r large
enough.

A slightgeneralization of this can be obtained by using the following hypothesis.

HypotHEsIs 2. Fori = 0,1, the dimension o\ (i) N A}, (i) is independent of
for r > ro and equals the dimension of the intersection of the limits of the Cauchy
data spaces

dim(A, (i) N AL (1)) = dim( lim A% ()N lim A’Y(i)).

Notice that the intersectioN, (i) N A, (i) is isomorphic to the kernel db (i) on
M?", so Hypothesis 2 implies that the dimension of this kernel is independent of

ProrosiTiON 6.2. If Hypothesis 2 holds then, after replacing by M" for r >
ro in Theorem 5.1, the terms(L1, M1) and 1« (L1, M17) vanish.

Proof. Let A% (0) denote the adiabatic limit af’, (0), with similar notation fory.

Fix r > ro and letu > r. Since dim A’ (0) N A, (0)) is isomorphic to the ker-
nel of D on M+, which in turn is isomorphic to ditn*"/2(0) N AL*"/%(0)),
Hypothesis 2 implies that

dim(A% (0) N A}, (0)) = dim(AT (0) N AF(0)).

Thus the dimension of the intersection bf(¢) with M,(¢) is independent of.
This implies thatu (L1, M1) = 0. A similar argument shows that (L1, M11)
vanishes. O

6.2. Choice of Boundary Conditions

The boundary condition8y and By can be restricted to simplify the splitting
formula. The most direct way to do this is just to kill the terméL,, M),
w(Ls, Ms), u(L7, M7), and u(L10, M10) by choosing the boundary conditions
By (0) andBx (1) as follows.

HypoTHESIS 3. By (0) = PV‘O(O) @ Lx(0)andBx() =Ly() & Pv‘g(l).

ProrosiTION 6.3. Assume that Hypothesis 3 holds. Then one can choose the
pathsL, and M5 (and their reversed.; and M1p) so that

w(L2, M) = u(Ls, Ms) = u(L7, M7) = u(L1, M1o) = 0.

Proof. TakeL, andMs to be constant paths. Théry and M, are also constant.
By definition,M», Ls, M, andL g are constant. Hence the four terms are Maslov
indices of constant paths, and thus all vanish. O
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We could have taken the point of view in Theorem 5.1 that only boundary condi-
tions satisfying Hypothesis 3 are allowed. This would have given a formula with
four fewer terms, but the result would have been less flexible. The decision to
state the theorem as we did was made in order to decouple the choice of boundary
conditions from the analysis of the adiabatic limits of the Cauchy data spaces.

6.3. The Nonresonance Range, Limiting Values of Extended
L? Solutions, and Adiabatic Limits

We next give a more detailed description of the adiabatic limit limy A, which
can be useful in controlling some of the terms.

DEFINITION 6.4. LetD be a cylindrical Dirac operator (as before) on a manifold
X with boundary. The Lagrangian subspace

Ly(D) C kerS

is defined to be the symplectic reduction of the Cauchy data space to the kernel
of S, ~
Lx (D) = projkers(Ax(D) N (kerS & P*(S)))

and is called thémiting values of extendek? solutions.(This terminology comes

from [1].)

For convenience, we recall the notation for several Lagrangians that appear in
this section.

(1) A, the Cauchy data space afi. This is an infinite-dimensional Lagrangian
subspace of.2(E|y).

(2) Ax, the symplectic reduction of the (length-Gauchy data spact, to H,,
(Equation 3.5) whereg > 0 is greater than or equal to the nonresonance level
of D and whereS has a spectral gap ap. This is a finite-dimensional La-
grangian subspace of the symplectic vector sgagedefined in Equation 2.4.

(3) Ly, the limit of e "SAy asr — oo, a Lagrangian subspace &, (Equa-
tion 3.7). Thus, the adiabatic limit lim, . A’y = P, ® Ly.

(4) Ly, the limiting values of extendefi? solutions, defined as the symplectic
reduction of the Cauchy data spat% to the kernel ofS in Definition 6.4.

The following theorem relates these Lagrangians and indicates the structure of
Lyx. Itis convenient to extend the notation slightly so that, for the statement and
proof of this theorem, we will allow < 0 in the definition ofPt (Equation 2.6).

For example, ifv is positive and in the complement of the spectruntpthen

H,® Pf = P2,

Notice that there is a descending filtration/8f, © P} corresponding to the

increasing list of eigenvaluesi, 1 < —4, < --- < 0 < A; < ---, assuming
thati, <vg < Apt1:
PL ,DP, D--DP DPID- (6.1)

THEOREM 6.5. With notation as described before, the following statements are
true.
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(1) Lx =1lim,_ o e "SAx.

(2) Z,X C Ly.

(3) Ifvo=0thenLy = Ly = Ax.

(4) LetO < Ay < Ao < --+ < A, < A,y1denote the ordered list of positive eigen-
values of the tangential operatdt, so thati, < vg < A, 1. Let E,.i denote
the+A; eigenspace. Then

Hy,=E, ®E, - - ®kerSOE; &---®E,, (6.2)
and the Lagrangiarl x decomposes in this direct sum as
Ly=W,®W, 1®--- 0Ly ®JIVi®--- D JV,, (6.3)

whereW; C E; are subspaces and; C E; are their orthogonal comple-
ments inE;” (and soJV; C E;’). Moreover, this decomposition exhibits
as the associated graded vector space to the filtratiof,of (H,,, ® P;g) =
Ax N P_*A”+1 obtained by intersecting y with the decreasing filtration given
in Equation 6.1.

Proof. The first assertion is the definition éfy. For the third assertion, ifg =
OthenLy = Ay by definition. Since the operatdris zero on its kernel, the re-
striction ofe™”S to kerS is the identity, so thal.y = Ay. The second assertion
follows from the fourth, which we will now prove.

Statement (4) follows from a careful analysis of the flow to the adiabatic limit.
Notice that, because the" are defined in terms of strict inequalitieB?, is the
span of the eigenvectors whose eigenvaluesgegater than —A;. ThusE;” =
/P, andES = P} /P

)~ i+l
Let
= prOJE (AxN P _A ) CE,; .
Hence,
= (AxNPE )/(AxNPH ).
Next, let

Wy—1 = projg- (Ax N PL)CE, .

Continue in this fashion, peeling one space off at a time in the decomposition
(Equation 6.2) ofH,,. We change notation when we arrive at i§eio be consis-
tent with our previous notation. Thus (by definition),

Lx = projkers(Ax N P, 5) C kers.
Continue by letting

V) = Projg (Ax N P C Ef,
V3 = projes (Ax N PY) C E3,
and so forth until the last step:

V, = projz+(Ax N Pt ) CES.
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Now, let us suppose thatv,, w,_1, ..., wy, h, vy, ..., v,, g) iS an element of
Ax N (H,, ® P}) expressed in the decomposition of Equation 6.2 with the addi-
tional element; € P, Then(w,, wy_1, ..., w1, h, v1, ..., v,) isin Ay.

Eitherw, = 0 or elsew, € W, — {0}. Since

—— (Wny Wty -y W1, By V1, -0, U,) € Ay
er)\,,
and sincee™"S acts on the decomposition of Equation 6.2 diagonally with (de-
creasing) eigenvalueg*», e”»-1 . it follows that if w, # 0 then
. 1
lim eer_)\(wn’ Wp-1, ---, W1, ha Vi, .ees vn) = (wna 0’ Oa cees O)
r—>00 e’n

and sow, is in lim,_,« ¢ ™Ay = Lx. Arguing by induction, we obtain
Ly=W,® - OWi®LydV® - DV,

We must now see that/ = JV;, whereV; is the orthogonal complement of
W; in E7. But this follows from dimension counting and the fact tiiat is a
Lagrangian subspace. Indeed, since the symplectic structukg pis given by
w(x,y) = (x,Jy), JV! is orthogonal toW; and so lies inV;. If, for somei,

JV/! were a proper subspace Wf, then by counting dimensions (and using that
the limiting values of extendedl? solutionsLy C ker S constitute a Lagrangian
subspace of ke$) it would follow that Ly has too small a dimension to be a La-
grangian. Thug'V/ = V; and soV; = JV; as claimed.

The assertion thaty is the associated graded vector space to the filtration is
simply a brief description of how th&;, Ly, V! were constructed. O

The fourth statement of Theorem 6.5 suggests a more useful and sophisticated al-
ternative to Hypothesis 3. The underlying motivation comes from the fact that it
is much easier to calculafey C ker S than to calculatd y C H,,. Even getting
a handle on the nonresonance leygtan be a difficult problem.

There is a natural choice of path of Lagrangians startintj a® Lx and ending
at P~ @ Ly, defined as follows. Notice that the symplectic subspdtesp E;"
have a further decomposition as a direct sum:

ET®E =W, V)@ (UW, @ JV) =W, dJW) @ (V; ®JV)).

Use these decompositions to define a gath by the formula

Citr PL@Lly®Wide “" Vg ..o W, @ 727y,). (6.4)

Then we can make the following hypothesis.

HypoTHEsIs 4. By(0) = P~ & Ly andBx(0) = A & P for some Lagrangian
A C kerS§(0), andL,(r) = C(z).

LeEMMA 6.6. If Hypothesis 4 holds, them(L7, M7) = 0.

Proof. This is a consequence of the conventions we are using for spectral flow.
Recall thatl.; is L, run backward and thal/ is the constant path dy (0).
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Using Theorem 6.5, we see that the Lagrangiasp@) = C(1—1¢) andM(t) =
Bx (0) intersect in the direct sum

LxNA@IVI® IV, ®---®JV, if 1=1
LyNA if 0<r<1
Thus,e®/L+(t) is transverse td1,(¢) for all ¢, so thatu (L7, M7) = 0. O

L7(t) N M7(t) = {

A similar argument shows that By (1) = Ly ® Pt andBy(l) = P~ & A for
some Lagrangiad c kerS(1), and if Ms is chosen in a manner similar ¢)
(formula 6.4), then«(Ls, Ms) = 0.

Finally, with these choices and some additional transversality conditions, one
can sometimes also compyi€L,, M,) andu (L1, M) in terms of the sum of
the dimensions of th&; (which is the same as the dimension of ftiekernel of
D on X°) after a preliminary stretching. Lemma 6.6 will be used in a slightly
different context in Theorem 6.13 (to follow).

6.4. When thé.? Kernel of D|x or D|y Vanishes at the Endpoints

The nonresonance level f@ |y is zero if Ax N P+ = 0. This is equivalent (see
[1]) to the vanishing of the ?-kernel of the natural extension @f|y to X* =
X UZX x [0, 00).

In this context, Nicolaescu’s adiabatic limit theorem states thagifh P~ =
0 (i.e., if theL? kernel of D|x on X is zero) then lim_, Ny =P & Ly.

HypoTHEsIs 5. The operatorsD(i)|x~ and D(i)|y~ have noL? kernels for
i=0,1

(In the terminology of [15], the operatof3(i)| x-- andD(i)|y~ are nonresonant.)

If Hypothesis 5 holds, then Hypothesis 1 holds if and onlg,f0) N Ly (0) =
0 andLx(1) N Ly(1) = 0. Moreover, in this case one can satisfy Hypothesis 3 by
letting By (0) = P~(0) ® Lx(0) andBx (1) = Ly(1) ® Pt ().

Let us use these ideas to give a simple proof of a theorem of Bunke [4] (see also
[7, Thm. A]). Consider the case when the tangential operator has no kernel along
the path. The following theorem appears (in different notation) in [4]; it also fol-
lows from Theorem A of [7].

THEOREM 6.7. Suppose that the kernel of the tangential operat@y vanishes
for all t. Suppose that Hypothesis 5 hol@s the endpoinis
Then there exists ary such that, forr > rg,

SF(D, M’) = SF(DXV, P+) + SF(Dyr, P_)

Proof. Hypothesis 5, together with the vanishing of the kernels of the tangential
operatorsS(0) andS (1), implies that the adiabatic limits are

lim A%G) =P (@) and lim A} () = PT(i)
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fori = 0,1 SinceP (i) istransverse t® (i), Hypothesis 1 holds. Thus, Propo-
sition 6.1 implies thaf (L1, M1) andu (L1, M11) vanish after sufficient stretching.

Since the kernel of(¢) is zero for allz, the space *(r) vary continuously
[3; 13] and so we can takBx(r) = P*(r) and By(t) = P~ (¢). This imme-
diately implies thaf(L;, M;) vanishes foi = 2,5, 7,10 according to Proposi-
tion 6.3, since Hypothesis 3 holds. We also havég, Mg) = 0, since this equals
w(P~A—1), PT(1—1)) andP™(¢) is transverse t®@~ (¢) for all .

The pathL, is the constant path &y (1) = P~ (1). The pathM, is the path
from Ay tolim,_,. o A} (1) = P*(2). SinceP~ (1) is transverse t@* (1), after
perhaps makinglarger,u (L4, M4) = 0. Likewise, after perhaps makimdarger,
u(Lg, Mg) = 0.

The only terms remaining ane(Ls, M3) = SK(D|y-; P~) andu(Lg, Mg) =
SK(D|x-, PT). This completes the proof. O

We next state and prove the theorem of Yoshida and Nicolaescu. The proof we
give is identical to Nicolaescu’s. We include it for the convenience of the reader
and to introduce another useful technique that can be combined with our methods.
Theorem 6.10 generalizes both Theorem 6.7 and Theorem 6.8.

Notice that if the operatab (¢)| x~ has noL? kernel for allt € [0, 1], and if the
kernel of the tangential operatS(r) has constant dimension along the path, then
the limiting values of extendeb? solutionsLy (¢) constitute a continuous path of
Lagrangians. (The symplectic reduction is “clean” in the sense of [15].) This is
because, for all, the projection

Ax() N (kerS@t) & PT(S(r))) — kerS(r)

(with imageLx (1)) has no kernel, and it is easily checked that the image is con-
tinuous because the patty () is continuous.

Thus, the statement of the following theorem makes sense. Thisis Corollary 4.4
in [15].

THEOREM 6.8 (Yoshida, Nicolaescu).Suppose that, for all parameters [0, 1],
the operatorsD(z)| x~ and D(t)|y~ have noL? kernel. Assume further that the
kernel of the tangential operatdeer S(¢) has constant dimensigfne., indepen-
dent ofr € [0, 1]). Assume that

Lx(©0)N Ly(0) =0 (6.5)
and
Ly()NLy@ =0. (6.6)

Then there exists ary > 0 such that, for > rg,
SK(D, M") = u(Lx, Ly).

Proof. Since 0 is the nonresonance level, limg, A (t) = P~ (1) @ Ly (t) and
lim, o A (t) = Ly(t) @ P*(¢) for all t € [0,1]. Together with Equations 6.5
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and 6.6, this implies that there existsrarsuch that ifr > rg thenA’, (i) is trans-

verse toA), (i) fori = 0,1 Letry be any number greater than or equatdo
Consider the homotopy from the path of pair§} (1), A} (1)) to (P~ (1)@ Lx (z),

Ly(t) & P*(r)) obtained by letting go to infinity. This homotopy is not a rel

endpoint homotopy, but it does exhibit a rel endpoint homotopy from the path of

pairs(Ay (1), Ay (1)) to the composite of three paths:

(N0 ), A0(0)) if 1 <1
(P~(0) ® Lx(0), Ly(0) ® P*(0)) if t =1
B(t) = (P~(t) ® Lx (1), Ly(t) @ P*(1));

(P~() @ Ly, Ly ® P+@)) if t =0,
A, N (@) if r>0.

Alt) = {

C(t) = {

Therefore, SED, M) = w(A* B % C) = u(A) + u(B) + u(C).
Since A, (i) is transverse ta\, (i) fori = 0,1 and allr > ry, it follows that
w(A) =0= u(C). Thus,

SK(D, M") = u(B) = n(Ly, Ly). O

The transversality assumptions in Theorem 6.8 can in some contexts be relaxed
by requiring only assumptions similar to Hypothesis 2. Some care must be taken
with the steps used to calculatéL 3, M3) andu(Lg, Mg).

Next we give a generalization of the two preceding theorems by assuming the
existence of a continuously varying spectral gap.

DEFINITION 6.9. A continuous functioi: [0, 1] — [0, co) is aspectral gap for
the family of tangential operatorS(z) if, for eacht € [0, 1], A(z) is not in the
spectrum ofS(z).

HyrotHEsis 6. The path of tangential operato(¢) has a spectral gap(z).

As we remarked earlier, if Hypothesis 6 holds then the decomposition of Equa-
tion 2.7 varies continuously. Notice that, by subdividing the path as necessary,
Hypothesis 6 can always be arranged to hold. However, this hypothesis by itself
is not usually sufficient to simplify the formula of Theorem 5.1. The following
theorem gives one possible clean statement that generalizes Theorems 6.7 and 6.8.
Assume that Hypothesis 6 holds. L&k (1) and Ay (¢) be continuously vary-
ing Lagrangian subspaces Hf,;,. Then we can take the self-adjoint boundary
conditions to be

Bx(1) = Ax(1) ® P;{,,(1) and By(r) = P, (1) @ Ay(1). (6.7)

Then Theorem 5.1 states that
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SK(D) = SK(D|x, Ax ® P;') + SK(D|y, P, @ Ay)

+ Ay A =0, AxA=0)+ Y pu(Li, My).
i#36,9

By adding hypotheses, we can make many of the extra terms vanish.

THEOREM 6.10. Assume that Hypotheses 5 and 6 hold, with spectraligap
Assume that the limiting values of extendedsolutions Ly (i) and Ly (i) are
transverse fof = 0,1 LetAx(¢) andAy(¢) be continuously varying Lagrangian
subspaces o, with Ay(0) = (P~(0) N Hyp) ® Lx(0) and Ax() =
Ly() & (PT(1) N H,q). Assume further thati x (0) is transverse toty (0) and
that Ax (1) is transverse tody (1).

Then there exists ary > 0 such that, for all- > rq,

SK(D, M") = SK(D|x, Ax ® P,") + SF(D|y, P, & Ay) + u(Ax, Ay). (6.8)
Proof. Since Hypothesis 5 holds,
lim AyG)=Lx()® P~(G) and lim A () = Ly(i) ® P (i)

fori = 0,1 Since we assumed thaty (i) is transverse td.y (i) fori = 0,1,
Hypothesis 1 holds and so by Proposition 6.1 there exists anch that, after re-
placingM by M" for r > ry, u(L1, M1) andu (L1, My1) vanish.

Take elliptic boundary condition®y (1) = Ax(7) ® P;g,)(t)~and By(t) =
P () @ Ay (1). SinceBy(0) = Lx(0) @ P7(0) and By () = Ly(1) ® P* (D),
Hypothesis 3 holds; henge(L;, M;) = 0fori = 2,5, 7, 10.

The pathL 4 is the constant path 8y (1) =P, Q@A (D), andM, is obtained
by stretchingAy (1) to its adiabatic limitLy (1) & P*(1). SinceAy (1) is transverse
t0 Ax(D) = Ly() @ (PTQ N H, 1)) by hypothesisu (L4, Ma) vanishes—after
perhaps replacing/ by M" for large enouglr.

The pathLg is the reverse of stretchingy (0) to its adiabatic limitP~(0) &
Ly (0), andMg is the constant path & (0) = Ax(0)® P*(0). By the same argu-
ment as in the preceding paragraptiLg, Mg) vanishes (after perhaps replacing
M by M" for large enoughr).

Now u(By(1—1), By(1—1)) = u(Ay(d—1), Ax(1—1)). SinceAx (i) is trans-
verse toAy (i) for i = 0,1 by hypothesis, we have

pn(AyQ—1), Ax(A—1)) = n(Ax (@), Ay (1)).

Combining these computations proves the theorem. O

The following useful corollary is just the special case of the previous theorem
when the path of tangential operators has a spectral.gap= ¢ for ¢ small.

CoroLLARY 6.11. Assume that Hypotheses 1 and 5 hold, that the path of tan-
gential operators has constant-dimensional kernel, and that) and Ay (¢) are
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paths of Lagrangians iker S(¢) with Lx(i) = Ay(i)andLy (i) = Ax(i) fori =
0,1 Then, forr large enough,

SK(D, M") = SF(D|x, Ax ® PY) + SK(D|y, P~ ® Ay) + u(Ax, Ay).

Proof. Hypotheses 1 and 5 together imply that (i) is transverse td.y (i) for
i = 0,1 Thus, the hypotheses of Theorem 6.10 hold with) = ¢, wheree is
smaller than the smallest nonzero eigenvalus ©f for ¢ € [0, 1]. The corollary
follows. O

We finish this section with a few comments about comparing Theorem 5.1to The-
orem C of [7]. Theorem C expresses the spectral flow as a sum of three terms;
formally, it looks identical to the formula 6.8, but no transversality hypotheses are
assumed in their theorem (although they do assume that preliminary stretching has
been done and they restrict the boundary conditions at the endpoints). This might
suggest that some of owr(L;, M;) (in particularu(Lq, M1) and (L1, M17))
vanishwithout any of the transversality conditions. But this is not true (exam-
ples can be concocted). The reason that their formula has only three terms is that
their definition of spectral flow differs from ours in the case when transversality
hypotheses do not hold at the endpoint. In particular, in Theorem C the “expo-
nentially small” eigenvalues at the endpoints of the path are treated as if they
were zero.

To derive Theorem C of [7] from Theorem 5.1 would require a more careful
analysis of the rate at which’, converges to its adiabatic limit. An examination
of Nicolaescu’s proof shows that this rate is exponential. We speculate that, by
replacing the definition of the Maslov index with thél/r?)-Maslov index”, one
could derive Theorem C of [7] from our Theorem 5.1. The article [6] should be
helpful for such a project.

6.5. Spectral Flow around Loops

One nice application of Theorem 5.1 is perhaps of more interest to index theorists
than geometric topologists.

THEOREM 6.12. Let D(¢) be a loop of cylindrical, neck-compatible Dirac oper-
ators on a manifold = X Uy Y, and letBy, By be loops of self-adjoint elliptic
boundary conditions for the restrictions ffto X andY, respectively. Then

SK(D|x; Bx) + SKH(D|y; By) + u(Bx, By) =0. (6.9)

Proof. This follows from the formula in Theorem 5.1 after much cancellation.
First of all, the collection of all Dirac operators (on a fixed Clifford bundle) is
an affine space and hence contractible. It follows that the spectral flow of a loop
of Dirac operators on a closed manifold is This is the 0 on the right-hand
side of Equation 6.9. Next, one can compute théBy (1 — ), By(1 — 1)) =
w(Bx(t), By(¢)) if By andBy are loops.
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It remains to show that the sum of all the other terms in Theorem 5.1 vanish.
This is easy: the composite paths

Qj_:L1>l<L2*L4*L5*L7*L8*L10*L11
and
Q2:Ml*Mz*M4*M5*M7*M8*M10*M11

are definedsince the path is a loopBut it is immediate from the definitions of
these paths tha®; is homotopic to the constant path & (0) and Q5 is homo-
topic to the constant path aty (0). Thus,

> wLi M) = u(Q1. Q) =0. O

i#3.6,9

Notice that there are no hypotheses on stretching, boundary conditicets. in
Theorem 6.12.

6.6. Applying the Method to the Spectral Flow
on Manifolds with Boundary

We conclude the user’s guide with a discussion on how to apply our method to
compute the spectral flow of the path of operators on a manifold with boundary ob-
tained by fixing the underlying Dirac operator but varying the boundary conditions.

For simplicity we consider only the case when the boundary conditions are of
the special formBx (r) = A(t) ® P+ for Ax(¢t) C kerS a path of Lagrangians;
more general situations can be handled by a similar method. This theorem is very
similar to Theorem D of [7].

THEOREM 6.13. Let D be a cylindrical, neck-compatible Dirac operator on a
smooth manifold with boundaryX. Let A(r) C kerS be a path of Lagrangian
subspaces of the kernel of the tangential operator, an@{et = A(r) ® P* be
the corresponding path of elliptic boundary conditions. Léte in the nonreso-
nance range and le¥ (¢) be the path starting at x and stretching to the adiabatic
limit P;” & Lx (given in Lemma 3)2 Let Ly C kerS denote the limiting values
of extended.? solutions.

Then

SK(D, B) = u(Lx, A1) + p(M(1), AQ) & P*) + u(M1—1), A & P).

Inparticular, if P, @ Ly istransverse te\(0)@ P+ (resp. transverse ta(1) @ P )
then, after replacingX by X" for r sufficiently largeu(M(z), A(Q) ® PT) =0
(resp.u(M@Q — 1), AQ) ® P*) = 0). Hence, if both transversality conditions
hold,

SK(D, B) = u(Lyx, A(1)).

Proof. First, SKD, B) = wu(Ax, B) by Theorem 4.3. Apply the method as
follows.
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(1) Let Li(r) = M(r) and letMy(r) be the constant path a(0) & P*. Then
(L1, My) = n(M(t), A(O) @ P+).

(2) LetL,(¢) be the path defined in Equation 6.4 andAgt be the constant path
atA(0) ® P*. Thenu(L,, M) = 0 by Lemma 6.6.

(3) LetL3be the constant path & & Ly and letMs(r) = B(1r) = A(r) & P™.
Thenu (L3, M3) = u(Lx, A(?)).

(4) Let L4 be L, run backward, and let/4 be the constant path at(1) & P™.
Thenu (L4, M) = 0 by Lemma 6.6.

(5) LetLs be L; run backward, and le/s be the constant path &t(1) & P™*.
Thenu(Ls, Ms) = p(M(1—1), AQ) & PT).

ThusLy* L, * L3* Lg% Lsis defined and homotopic rel endpoints to the con-
stant path aiAy. Also, M1 x M, x M3 x M4 * Ms is defined and homotopic rel
endpoints to the patB. Applying the homotopy invariance and additivity of the
Maslov index finishes the proof. O

7. Concluding Remarks

We finish with a few comments about Theorem 5.1. First, there is a certain asym-
metry in the formula with respect to the roles tikaandY play. This turns out to

be useful sometimes—for example, Hypothesis 3 only restBigtst one endpoint
and By at the other, rather than restricting both at each endpoint.

Another comment is that the sums$L,, M) + w(L7, M7) andu(Ls, Ms) +
w(L19, Myo) (the terms depending on the auxiliary choice of the pathandMs)
depend only on the endpoints of these paths. Thus, each of these sums could be
thought of as a single quantity and perhaps expressed in terms of invariants (such
as the Maslov triple index) of the endpoints alone, without making any reference
to the choice ofL, and Ms. As we have seen, it is nevertheless convenient for
calculation to have the formula expressed the way we did.

Last (but not least), one significant benefit of our formulation is that, since our
formula expresses the spectral flow entirely as a sum of Maslov indices with the
orderedpairs(L;, M;) explicitly described, it is easy to keep the signs and con-
ventions under control when carrying out spectral flow calculations.

Appendix

Proof of Lemma 3.2, by K. P. Wojciechowski

The set-up is as follows. We are given a Dirac oper@oon manifold X with

boundary in cylindrical formD = J(3/du 4+ S) on a collar x [—1, O] of the

boundaryx = ¥ x {0}. This extends to an operator off = X U X x [0, r] in

the obvious way. To this extension we associate the Cauchy data spaces
Nicolaescu's adiabatic limits theorem, Theorem 3.1, states that the path (with

r(t) =1/ -1)
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. { ATO t <1,
Pl @®Lx(D) t=1
is continuous at = 1. What must be shown is that this path is continuous at finite
neck lengthg—in other words, that the Cauchy data spa&ésary continuously
in r. Continuity is measured in the gap topology or (equivalently) in the norm of
the associated projections. For notational convenience we will prove continuity at
r = 0; by reparameterizing, continuity at alfollows easily.
Let v be a number in the nonresonance rangefoon X = X° ThusA° N
P} = 0forallv' > v. We will make frequent use of the splitting?(E|x) =
P; @ H,® P;t. Notice that the tangential operat®preserves this splitting, since
the summands are defined by the eigenspace decomposiioffloé almost com-
plex structure/ of Equation 2.2 preserve$, and interchangeg," and P, .
We will often use the fact that, if is a section o on the cylinders x [—1, r]
that satisfiedDa = 0, then writinge| x « .y = a(u) for u € [-1, r] we have

a(u) = "5 (1).

Let L = proju, (A° N (H, @ P,5)). Clearly,JL & P, is transverse ta\°.
Lemma A.l.  Foreachr > —1, A" is transverse tde "SJL) & P,".

Proof. Suppose that € A" N ((e"*JL) & P,"). Then there exists, a section of
E on X", such thatba = 0 and the restriction ok to X x {r} equals 0. Thus
a(u) = e Sy for u e [—1, r]. But this formula defines an extensionaodi) for

all u e [-1, 00), sinceH, is finite-dimensional and since the restrictiore8f S

to Pt decays exponentially as — oco. Hencea extends to a bounded smooth
section onX* for all © > —1, and the extension satisfiéx = 0. In particular,
«(0) is defined, equale™v, and lies inA°. Sincev € (e"SJL) @ P, it follows
thata (0) € e"~95((e™SJL) ® P;}) = JL & P,. By the choice of., this implies
thata(0) = 0 and so als@ = 0. O

For convenience we introduce some notation for certain projecfiég|y).

(1) Theorthogonal Calderon projectio®”: L?(E|s) — L?(E|s) is the orthog-
onal projection to the Cauchy data space

(2) Thenegative spectral projection_: L?(E|y) — L?(E|y) is the orthogonal
projection to the spac—(S), the negative eigenspan of the tangential oper-
atorS.

(3) Fix v > 0 and suppose thdt C H, is a Lagrangian (thusP @ L is a
Lagrangian inL?(E|x)). Definer_ ;. L?(E|yx) — L?(E|x) to be the or-
thogonal projection t®,” & L.

What must be shown is that the projectidR$ are continuous in norm as
varies. It follows from the results in Chapters 12 and 14 of [3] th&t 7_, and
7_, 1, are pseudodifferential of order O.

Let L andv be as in Lemma A.l. For notational ease, define

M, =L C H,
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and

m =n_y: L*E|z) - M, ® P, .
Notice thatM, varies continuously in and hence so does.. The difference
n_ — m, has image inH,, a finite-dimensional space of smooth sections, and
hence is a smoothing operator. Corollary 14.3 of [3] shows that the pseudodiffer-
ential operator$?” andxz_ have the same principal symbol. Putting these facts
together shows th&" — x, is a pseudodifferential operator of order at me4f
and in particular is a compact operator.

LemMma A.2. The restriction ofr, to A" induces an isomorphism
7 N - M P, .

Proof. It is easy to observe that the operator
TN — M, ® P/

is a Fredholm operator (see [3]); hence, in particular, it has closed range. The ker-
nel of this map isA” N (M, & P,)* = A" N (JM, & P,") = 0. SinceA” and

M, & P; are Lagrangians, the isometfyidentifies the cokernel with the kernel

of =, and so the map is surjective. O

Since the map of Lemma A.2 is an isomorphism, the Cauchy data gyjazan
be expressed as a graph of a bounded operator
k,: M, ® P, — JM, ® P,;

herek, is the composite of the inverseof: A~ — M, & P, and the orthogonal
projection toJM, & P,". Hence,

N ={(, kW) |veM &P} (A1)

Letr > —1, and choose_ € M, ® P, ; hencev = v_ + k,(v_) € A". Thus
there exists a sectianin ker D on X" with a(r) = v. As observed before, on the
cylinderX x [—1, r], « has the form

a(u) = ey = TSy 4 eTTISE, (). (A.2)
On the other handy(u) € A* for u < r and, takinge = —1, we have
a(=D) =w_ +k_y(w_) (A.3)

for somew_ € M_; & P,t. Combining Equations A.2 and A.3 yields
w_ =e"D5%_ and e "YSk_y(w_) =k, (vo).

Therefore,
kr — e_(r+l)S+k_1€(r+l)S7, (A4)

where we have denoted the restrictionsab H, & P* by S.. for clarity.

For the next lemma, we recall the standard fact that the operatdrs
H,® P — H,® P, ande™+: H, ® P," — H, ® P, are norm-continuous
in z for t away from 0.
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LEmMA A.3.
lim ||k, — ko]l = O.
r—0
Proof. Using Equation A.4, for-1 < r < 1 we compute
Ik — koll = le™ DS k15 — e=Srk s
< II(ef(’H)S*k_le(’“)S* _ e*(’“)S*k_le(’*l)S*H
+ ||(e’(’+1)s+k_1e5* _ e’s+k_1e5*||
< [le” IS lk_g(e TS — eS| + (e — e Sk fle |
< Callkoa(e ™5 — &%) + Call (7" — e k).

The last inequality follows from the continuity ef*>5+ in norm forr near 0
and the fact tha¢S- is independent of. Continuing the estimate (using that;
is bounded), we obtain

Ik, — koll < llk—all(Calle" ™5~ — &5~ + Calle™ "5+ —e™S+|).  (A5)

The right-hand side approaches 0-as- 0 sincee’s- ande "5+ are continuous in
norm att = 1. This proves the lemma. O

In the decomposition

L3(E|z) = (M, ® P,) & (JM, & P)),

1 0
Qr:<kr 0)

is a (nonorthogonal) projection W&". The formula of Lemma 12.8 in [3] shows
that

the matrix

P’ = Q,00,0f +(d— 0)H(ld—0,)*

_( d+kk)Tt (d +kfk)
T\ k(d+kk)TE ke (1d + Kk TS )

Thus, theP” are continuous i for » near 0, completing the proof of Lem-
ma 3.2. O

(A.6)

We note that the proof of Lemma A.3 can can be modified to show that

im &= (lim M,)® P, =(lim L) P
r—00 r—00 r—0oQ0
In contrast to the proof just given of continuity at finiten this case one must be
careful with the estimates over the finite-dimensional piE#ge The argument is
straightforward and is essentially the proof given in Nicolaescu [15].

Note also that in fact we have proved the following important result.
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THEOREM A.4. The differencé®” — n_ is an operator with a smooth kernel.

Proof. The differencer, — 7_ is a smoothing operator. Using Equation A.6, the
differenceP” — x, can be represented as

pr_ o (Ud+EE)=1d - (Id + kfk,)
"TN\ kUd+ k)Y k(D4 kk) TS )

All entries in this formula are smoothing operators becaysbas a smooth
kernel. O

Scott [17] proved this theorem in the nonresonant case. The proof given here
basically extends his proof to cover the general case. A different proof, purely
analytical, was offered by Grubb (see [10]).
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