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1. Introduction and Statement of Results

In this paper we give a multifractal description of the Patterson measureµ sup-
ported on the limit setL(G) of a geometrically finite Kleinian groupG with par-
abolic elements. More precisely, we estimate theweak singularity spectraof µ,
which means that forθ > 0 we determine the Hausdorff dimensions of the fol-
lowing sets:

I θ(µ) :=
{
ξ ∈L(G) : lim inf

r→0

logµ(B(ξ, r))

logr
≤ θ

}
,

I θ (µ) :=
{
ξ ∈L(G) : lim inf

r→0

logµ(B(ξ, r))

logr
≥ θ

}
,

S θ(µ) :=
{
ξ ∈L(G) : lim sup

r→0

logµ(B(ξ, r))

logr
≤ θ

}
,

Sθ (µ) :=
{
ξ ∈L(G) : lim sup

r→0

logµ(B(ξ, r))

logr
≥ θ

}
,

whereB(ξ, r) denotes the Euclidean ball of radiusr centered atξ.
This “weak multifractal analysis” of the Patterson measure will be based on a

further investigation of the Hausdorff dimension dimH (Jσ(G)) of the associated
σ -Jarník limit setsJσ(G) ⊂ L(G), which represent the natural generalization of
the well-approximable real numbers to the theory of Kleinian groups(Jσ(G) is
defined at the end of this section).

In [12] we derived a complete description ofJσ(G) in terms of the dimension
with respect toµ. As a consequence, we were able to determine dimH (Jσ(G)) for
those cases in which dimH (L(G)) does not exceed the maximal rank of the para-
bolic fixed points ofG. The first aim of this paper will be to show how to modify
the construction in [12] in order to deal with the remaining cases. That is, based
on the construction in [12], we compute dimH (Jσ(G)) for all geometrically finite
Kleinian groups with parabolic elements. We then discuss how these estimates
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Figure 1 The interesting spectra in case (C)

give access to the aforementioned multifractal aspects of the Patterson measure.
The results obtained clearly suggest that the most natural way to view the derived
Hausdorff dimension ofJσ(G) is exactly this interpretation in terms of the theory
of multifractals.

In order to state these main results more explicitly, we recall that dimH (L(G))

has been proven to be equal to theexponent of convergenceδ = δ(G) ofG,which
is given by the exponent of convergence of the Dirichlet series
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g∈G

exp(−sd(0, g0)),

whered denotes the hyperbolic distance in the Poincaré ballD3 (note that, for
simplicity, we restrict the discussion to hyperbolic 3-space) . In fact, a combi-
nation of the global measure formula (see Section 2) and the Khintchine law for
geodesics (cf. [17]) immediately shows that, forµ-almost allξ ∈L(G), we have

δ = lim inf
r→0

logµ(B(ξ, r))

logr
= lim sup

r→0

logµ(B(ξ, r))

logr
.

Also, recall that a parabolic element of a Kleinian group acting onD3 may be
either of rank 1 or of rank 2, depending on whether the stabilizer of the associ-
ated parabolic fixed point is isomorphic to a finite extension ofZ or Z2. If kmin

andkmax denote the minimal and maximal possible ranks among the parabolic ele-
ments occurring inG, then it is well known [1] thatδ > kmax/2. Combining this
fact with the global measure formula forµ then shows that the investigation of the
weak singularity spectra ofµ has to be split into the following five cases:

(A) kmax= 1 andδ < 1;
(B) kmax= 1 andδ > 1;
(C) 1= kmin < kmax= 2;
(D) kmin = kmax= 2;
(E) kmax= 1 andδ = 1.

Note that (A) includes as a special case all finitely generated “second-kind” Fuch-
sian groups with parabolic elements. Also, we shall see that, from the multifractal
point of view, (B) and (C) provide the most interesting cases (see also Figure 1).

The following theorem is the main result in this paper.

Theorem 1. LetG be a geometrically finite Kleinian group with parabolic ele-
ments and with exponent of convergenceδ. The weak singularity spectra of the
associated Patterson measureµ are then determined as follows.

(A) If kmax= 1and δ < 1, then

dimH (I θ(µ)) =


0 for 0< θ ≤ 2δ −1,

δ
1−δ θ − δ(2δ−1)

1−δ for 2δ −1< θ ≤ δ,
δ for θ > δ;

dimH (Sθ (µ)) =
{
δ for 0< θ ≤ δ,
0 for θ > δ.

(B) If kmax= 1and δ > 1, then

dimH (I θ(µ)) =
{

0 for 0< θ < δ,

δ for θ ≥ δ;
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dimH (Sθ (µ)) =


δ for 0< θ ≤ δ,

(1− δ)− (1−δ)(2δ−1)
θ−1 for δ ≤ θ ≤ (2δ −1)− δ−1

δ
,

δ
1−δ θ − δ(2δ−1)

1−δ for (2δ −1)− δ−1
δ
≤ θ ≤ 2δ −1,

0 for 2δ −1≤ θ.
(C) If 1= kmin < kmax= 2, then

dimH (I θ(µ)) =


0 for 0< θ ≤ 2δ − 2,

δ
2−δ θ − δ(2δ−2)

2−δ for 2δ − 2< θ ≤ δ,
δ for θ > δ;

dimH (Sθ (µ)) =


δ for 0< θ ≤ δ,

(1− δ)− (1−δ)(2δ−1)
θ−1 for δ ≤ θ ≤ (2δ −1)− δ−1

δ
,

δ
1−δ θ − δ(2δ−1)

1−δ for (2δ −1)− δ−1
δ
≤ θ ≤ 2δ −1,

0 for 2δ −1≤ θ.
(D) If kmin = kmax= 2, then

dimH (I θ(µ)) =


0 for 0< θ ≤ 2δ − 2,

δ
2−δ θ − δ(2δ−2)

2−δ for 2δ − 2< θ ≤ δ,
δ for θ > δ;

dimH (Sθ (µ)) =
{
δ for 0< θ ≤ δ,
0 for θ > δ.

Furthermore, in each of the cases(A)–(D) we have that

dimH (I θ (µ)) =
{
δ for 0< θ ≤ δ,
0 for θ > δ;

dimH (S θ(µ)) =
{

0 for 0< θ < δ,

δ for θ ≥ δ.
(E) If kmax = 1 and δ = 1, then the weak singularity spectra ofµ are trivial.

In this case, for allξ ∈L(G) we have that

lim
r→0

logµ(B(ξ, r))

logr
= δ.

Note that, in (B) and (C), the lower lim sup spectrum exhibits aphase transition
at θ = θ∗, whereθ∗ := 2δ − 1− (δ − 1)/δ. The significance of this value is that
dimH (Sθ∗(µ)) = 1 (see Figure 1).

As we have already mentioned, one of the main ingredients in the proof of this
theorem will be the explicit calculation of the Hausdorff dimension of theσ -Jarník
limit setsJσ(G). In order to state this result more precisely, recall from [12] the
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actual definition ofJσ(G). For t > 0 let ξt denote the unique point on the ray
between the origin 0∈ D3 andξ ∈ L(G) whose hyperbolic distance from 0 is
equal tot. Let1 denote theray excursion function,which is given by1(ξt ) :=
d(ξt ,G(0)). Forσ > 0, theσ -Jarník limit setJσ(G) is defined by

Jσ(G) :=
{
ξ ∈L(G) : lim sup

t→∞
1(ξt )

t
≥ σ

1+ σ
}

(see Section 2 for an alternative definition). We obtain the following theorem.

Theorem 2. LetG be a geometrically finite Kleinian group with parabolic ele-
ments and with limit set of Hausdorff dimensionδ. For σ > 0, the Hausdorff
dimension of theσ -Jarník limit setJσ(G) is determined as follows.

(1) For δ ≤ kmax, we havedimH (Jσ(G)) = δ
1+σ .

(2) For δ > kmax,

dimH (Jσ(G)) =
{

δ
1+σ for δ

1+σ ≤ 1,

δ+σ
1+2σ for δ

1+σ ≥ 1.

Remarks. (1) Our estimates of the weak singularity spectra ofµ, combined
with the fact thatµ has a flat Rényi dimension spectrum equal to the exponent
of convergenceδ (cf. [14]), reveal thatµ can not be analyzed by means of the
usual multifractal theory, whose goal it is to relate the dimension spectrum and
the Rényi spectrum by means of a Legendre transform. Furthermore, a complete
multifractal analysis for those cases in which the Patterson measure is equivalent
to the 1-dimensional Lebesgue measure has not yet been fully developed. Such an
analysis relates closely to the multifractal analysis of the continued fraction map,
and here we refer to [11] for some very interesting preliminary results.

(2) Recall that Jarník [6] (and later also Besicovitch [2]) showed that the Haus-
dorff dimension of the set ofwell-approximable irrational numbersis given by

dimH

({
x ∈R :

∣∣∣∣x−pq
∣∣∣∣< (q−2)1+σ for infinitely many reduced

p

q

})
= 1

1+ σ .

Some first generalizations of this result to certain special cases of geometrically
finite Kleinian groups with parabolic elements were derived in [7; 12]. Now, as ex-
plained previously, in this paper we also deal with the remaining cases and hence
complete this generalization to geometrically finite Kleinian groups with parabolic
elements. We mention that, for Kleinian groups of this type, the Hausdorff dimen-
sion of the set of well-approximable limit points has been computed also in [5]
and that, for finitely generated second-kind Fuchsian groups, the results concern-
ing the weak singularity spectra of the Patterson measure have been stated in [14].

(3) After submitting this paper for publication, we completed work on analogous
results for the entropy-dimensional conformal measure on Julia sets of parabolic
rational maps ([15]; see also [16]). In particular, combining the work in this paper
with the results in [15], we obtain a new chapter in the “Julia–Klein dictionary”
initiated by Sullivan in [20].
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2. Preliminaries

In this section we recall a few well-known results that are fundamental for what
follows. LetG denote a geometrically finite Kleinian group with parabolic ele-
ments. For simplicity we assume thatG acts on hyperbolic 3-spaceD3.

The Jarník Set as a lim sup Set. LetP be a complete set of inequivalent para-
bolic fixed points ofG. Forp ∈P, letTp ⊂ G denote a set of coset representatives
of Gp chosen such that|g(0)| ≤ |h(0)| for eachg ∈ Tp and for allh ∈ Gg(p) :=
gGpg

−1. Also, for p0 ∈ P such that the rankk(p0) of p0 is equal tokmax, let
Tmax := Tp0 and defineT := ⋃

p∈P Tp. It is well known [17] that to eachg ∈
Tp we may associate astandard horoballHg(p)(rg) ⊂ D3 atg(p) with Euclidean
radiusrg � (1− |g(0)|), so that the set{Hg(p)(rg) : g ∈ Tp, p ∈ P } comprises a
G-equivariant set of pairwise disjoint horoballs. IfHξ (r) denotes the radial pro-
jection of a horoballHξ(r) at ξ of radiusr projected from the origin inD3 onto
the boundaryS2 of hyperbolic 3-space, then we can expressJσ(G) in terms of the
set of standard horoballs as follows. LetF denote the set of functionsφ : R+ →
R+ such that limx→0 logφ(x)/ logx = 0. Using basic hyperbolic geometry, we
see thatξ ∈ Jσ(G) if and only if ξ ∈⋃φ∈F lim sup{Hg(p)(φ(rg)r1+σ

g ) : g ∈ Tp,
p ∈P }; that is, we have

Jσ(G) =
⋃
φ∈F

⋂
n∈N

⋃
p∈P

⋃
g∈Tp
rg≤1/n

Hg(p)(φ(rg)r1+σ
g ).

The Patterson Measure. For the construction and basic properties of the Pat-
terson measureµwe refer to [8; 9; 10; 18]. Recall thatµ is a nonatomic probability
measure supported on the limit setL(G), for which we derived in [17] (see also
[19]) a formula concerning its scaling properties. This formula describes in a uni-
form way the decay ofµ around arbitrary limit points. In order to restate this
formula, we require the following notation. Forξ ∈ L(G) and positivet define
k(ξt ) to be equal tok(p) if ξt ∈Hg(p)(rg) for somep ∈P andg ∈ Tp, and letk(ξt )
be equal toδ otherwise.

The Global Measure Formula. Forξ ∈L(G) and positivet, we have

µ(B(ξ, e−t )) � e−tδe−1(ξt )(δ−k(ξt )).

3. Hausdorff Dimensions of Jarník Limit Sets

In this section we give the proof of Theorem 2; that is, for arbitrary geometri-
cally finite Kleinian groups with parabolic elements we calculate the Hausdorff
dimension of the Jarník limit setJσ(G). As we mentioned in Section 1, part (1)
of Theorem 2 has already been dealt with in [12], and we refer to that paper for
the proof in this case. Hence, we now concentrate on the proof of part (2) of
Theorem 2 and so assume thatδ > kmax or (equivalently) thatkmax= 1 andδ > 1.
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Our arguments are based on certain parts of the construction in [12]. In particular,
we shall recall two lemmata derived in [12] and restate a construction of a proba-
bility measure supported on a Cantor-like subset contained inJσ(G).

For simplicity, we adapt the following notation from [12]. Forn ∈ N, τ > 0,
andg ∈ Tmax, define

An(τ) := {h∈ Tmax : τ n+1 ≤ rh < τ n },
Qn(g, σ, τ ) := {h∈An(τ) : Hh(p)(rh) ⊂ Hg(p)(r1+σ

g ) }.
The following result was obtained as Proposition 1 in [12].

Lemma 1. There existρ, k0, k1, k2 > 0 and an increasing functionι : N→ R+
such that, ifg ∈An(ρ) for somen > k0, then form > ι(n) we have that

k1ρ
δ(n−m)+σn(2δ−kmax) ≤ card(Qm(g, σ, ρ)) ≤ k2ρ

δ(n−m)+σn(2δ−kmax).

For the rest of this section let us fix the numberρ derived in this lemma.
Following the construction in [12], let{nk}k∈N denote a sequence of positive

integers such thatn0 > max{k0;2σ−1}, nk > ι(nk−1) for all k, and

lim
m→∞

(
1

nm

m−1∑
j=0

nj

)
= 0.

Fork ∈N, let
Nk := min

g∈Ank−1(ρ)
cardQnk(g, σ, ρ).

Further, simply by deleting certain elements if necessary, we reduce for an ar-
bitrary h ∈ Ank−1(ρ) the number of elements inQnk(h, σ, ρ) to Nk. The result-
ing set is denoted bỹQnk(h). Hence, by definition, for allk ∈N andh∈Ank−1(ρ)

we haveNk = cardQ̃nk(h). For a fixedg0 ∈An0(ρ), we have the following defi-
nitions.

(1) I σ0 := {Hg0(p0)(r
1+σ
g0

)}.
(2) If I σk−1 is defined fork in N, then let

I σk := {Hh(p0)(r
1+σ
h ) : h∈ Q̃nk(g) for someg ∈Ank−1(ρ)

such thatHg(p0)(r
1+σ
g )∈ I σk−1 }.

By construction, each element inI σk−1 contains exactlyNk elements ofI σk . This
allows us to define the Cantor-like setIσ :=⋂k≥0

⋃
I∈I σ

k
I. Next, in order to con-

struct a probability measure onIσ , renormalize the Patterson measure on every
I σk . That is, for eachk ∈N, define a probability measureν(k)σ on I σk such that, for
Borel setsE ⊂ S2, we have

ν(k)σ (E) =
∑
I∈I σ

k

1

N1 · · ·Nk
µ(E ∩ I )
µ(I )

.

Using Helly’s theorem, we obtain a probability measureνσ onIσ as the weak limit
of the sequence of measures{ν(k)σ }k∈N. Note thatν(k)σ (I ) = νσ(I ) for eachk ∈N
andI ∈ I σk .
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Now, recall the following lemma obtained as Lemma 6 in [12].

Lemma 2. There exists ak3 > 0 such that, ifξ ∈ Iσ andr has the propertyρnk ≤
r < ρnk−1 for somek ∈N, thenB(ξ, r) intersects at most one element inI σk−1 and

card{ I ∈ I σk : I ∩ B(ξ, r) 6= ∅ } ≤ k3ρ
−δnkµ(B(ξ, r)).

The following lemma marks the difference between the construction here and the
construction in [12]. The reader is asked to compare this result with Lemma 3
in [12].

Lemma 3. There exists ak4 > 0 such that, for eachε > 0, there exists ar0(ε) >

0 with the property that, for allξ ∈ Iσ and for all 0< r < r0(ε) such thatρnk ≤
r < ρnk−1 for somek ∈N, we have

νσ(B(ξ, r)) ≤ k4µ(B(ξ, r))ρ
−nk−1(σ(2δ−kmax)+ε).

Proof. Let ξ andr be given as stated in the lemma. By construction of the mea-
sureνσ and using Lemma 2, we have that

νσ(B(ξ, r)) ≤
k∏

j=0

N−1
j card{ I ∈ I σk : I ∩ B(ξ, r) 6= ∅ }

≤ k3ρ
−nkδµ(B(ξ, r))

k∏
j=0

N−1
j .

Using Lemma 1, it follows that

νσ(B(ξ, r)) ≤ k3k
−1
1 ρ
−nkδµ(B(ξ, r))k−(k−1)

1 ρδ(nk−nk−1)ρ−σnk−1(2δ−kmax)

· ρδ(nk−1−n0)ρ
−σ(2δ−kmax)

∑
k−2
j=0 nj

= k3k
−1
1 µ(B(ξ, r))

· ρnk−1(−σ(2δ−kmax)−n−1
k−1(n0+σ(2δ−kmax)

∑
k−2
j=0 nj+(k−1)(logk1)(logρ)−1))

.

By construction of the sequence(nk), for eachε > 0 and for sufficiently large
k we have that

n0 + σ(2δ − kmax)

k−2∑
j=0

(nj + (k −1)(logk1)(logρ)−1) < εnk−1.

Using this fact in the foregoing estimate, the statement of the lemma follows.

Proposition 1. For eachε > 0 there existsr1(ε) > 0 such that, for eachξ ∈ Iσ
and0< r < r1(ε), we have

νσ(B(ξ, r))�
{

r δ/(1+σ)−ε for σ ≥ δ −1,

r(δ+σ)/(1+2σ)−ε for σ ≤ δ −1.

Proof. Let ξ ∈ Iσ be given. Without loss of generality, assume thatρnk ≤ r <
ρnk−1 and thatξ ∈Hg(p)(r1+σ

g ) for someg ∈ Tp with rg � ρnk−1. We then have the
following.
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(1) “Before the visit toHg(p)(r1+σ
g )”:

If (ρnk−1)1+σ ≤ r < ρnk−1, thenνσ(B(ξ, r))� r δ/(1+σ)−ε/(1+σ).

Proof: Since by constructionνσ(Hg(p)(rg)) � νσ(Hg(p)(r1+σg )), it follows that

νσ(B(ξ, r))� νσ(Hg(p)(r1+σ
g ))

� µ(Hg(p)(r1+σ
g ))ρ−nk−1(σ(2δ−1)+ε)

� r δg r σ(2δ−1)
g ρ−nk−1(σ(2δ−1)+ε)

� r δg r−εg
� (r1+σ

g )δ/(1+σ)r−εg

� r δ/(1+σ)r−ε/(1+σ). �
(2) “After having metHg(p)(r1+σ

g ) and while still visitingHg(p)(rg)”:
If (ρnk−1)1+2σ ≤ r < (ρnk−1)1+σ , then

νσ(B(ξ, r))�
{

r δ/(1+σ)r−ε/(1+σ) for σ ≥ δ −1,

r(δ+σ)/(1+2σ)r−ε/(1+σ) for σ ≤ δ −1.

Proof: Let r = ρnk−1(1+σ+τ) for some 0< τ ≤ σ. In this case, the fluctuation
of the Patterson measure is maximal for1(ξt ) = −(σ − τ)nk−1 logρ (note that
r � e−t , wheret = −nk−1(1+ σ + τ) logρ). This gives that

νσ(B(ξ, r))� µ(B(ξ, r))ρ−nk−1(σ(2δ−1)+ε)

� r δρnk−1(σ−τ)(δ−1)ρ−nk−1(σ(2δ−1)+ε)

� ρnk−1(1+σ+τ)δρnk−1(σ−τ)(δ−1)ρ−nk−1(σ(2δ−1)+ε)

= (ρnk−1)δ+τρ−nk−1ε

= (ρnk−1(1+σ+τ))(δ+τ)/(1+σ+τ)(ρnk−1(1+σ+τ))−ε/(1+ε+τ)

�
{

r δ/(1+σ)r−ε/(1+σ) for σ ≥ δ −1,

r(δ+σ)/(1+2σ)r−ε/(1+σ) for σ ≤ δ −1.
�

(3) “After the visit toHg(p)(rg)”:
If ρnk ≤ r < (ρnk−1)1+2σ , thenνσ(B(ξ, r))� r(δ+σ)/(1+2σ)−ε/(1+2σ).

Proof: Sinceδ > 1, the global measure formula implies thatµ(B(ξ, r))� r δ.

Using this and Lemma 3, it follows that

νσ(B(ξ, r))� µ(B(ξ, r))ρ−nk−1(σ(2δ−1)+ε)

� r δr−(σ(2δ−1)+ε)/(1+2σ)

� r(δ+σ−ε)/(1+2σ)

� r(δ+σ)/(1+2σ)r−ε/(1+2σ). �
The statement of the proposition now follows by summing up the previous three
considerations.
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Proof of Theorem 2.Recall that we have just obtained that, for eachσ > 0, there
exists a setIσ ⊂ Jσ(G) that supports a probability measureνσ with the property
that, for eachε > 0 and for eachξ ∈ Iσ , there existsr1(ε) such that, for all 0<
r < r1(ε), we have

νσ(B(ξ, r))�
{

r δ/(1+σ)−ε
′

for σ ≥ δ −1,

r(δ+σ)/(1+2σ)−ε′ for σ ≤ δ −1.

Hence, by the mass distribution principle (see e.g. [4]), for eachσ > 0 we have

dimH (Jσ(G)) ≥
{

δ
1+σ for σ ≥ δ −1,

δ+σ
1+2σ for σ ≤ δ −1.

In order to obtain the upper bounds for the Hausdorff dimension ofJσ(G), note
first that for this it is sufficient to give upper bounds for the Hausdorff dimension
of the set

Wσ(G) :=
⋂
n∈N

⋃
p∈P

⋃
g∈Tp
rg≤1/n

Hg(p)(r1+σ
g ).

Now, {Hg(p)(r1+σ
g ) : p ∈P, g ∈ Tp } provides a “natural cover” ofWσ(G). Using

this and the fact that
∑

p∈P
∑

g∈Tp(r
1+σ
g )δ/(1+σ)+ε converges for anyε > 0, it fol-

lows that

dimH (Wσ(G)) ≤ δ

1+ σ .

On the other hand, note that the intersection ofL(G) with the shadow of any
σ -reduced horoballHg(p)(r1+σ

g ) is contained in some “tie-shaped region” (see
Figure 2). This observation, together with the fact that the largest horoball one
can possibly meet after having traveled throughHg(p)(r

1+σ
g ) is of the sizer1+2σ

g ,

yields that we may coverL(G) ∩Hg(p)(r1+σ
g ) by r−σg Euclidean balls of size

r1+2σ
g (these balls are not necessarily shadows of horoballs!). Clearly, this gives

us an alternative way of coveringWσ(G) (see Figure 2), and for this cover we ob-
tain that ∑

p∈P

∑
g∈Tp

r−σg r(1+2σ)s
g

{
converges fors > (δ + σ)/(1+ 2σ),

diverges fors ≤ (δ + σ)/(1+ 2σ).

In particular, this implies that

dimH (Wσ(G)) ≤ δ + σ
1+ 2σ

.

Combining the two upper bounds for the Hausdorff dimension, an elementary
calculation now gives that

dimH (Wσ(G)) ≤
{

δ
1+σ for σ ≥ δ −1,

δ+σ
1+2σ for σ ≤ δ −1,

which proves the theorem.
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Figure 2 The “alternative cover”

4. Weak Singularity Spectra of the Patterson Measure

In this section we give the estimates that lead to the weak singularity spectra of the
Patterson measureµ. The results are a consequence of a combination of Theorem 2
and the global measure formula forµ.

Proof of Theorem 1.Because the arguments are similar for cases (A)–(D), we
restrict our discussion to the cases (B) and (C), which are hardest to derive and
where the outcome is most interesting.

We consider case (B) first and so assume thatG has exclusively rank-1 para-
bolic fixed points and thatδ > 1. In this case, the global measure formula forµ

gives the existence of a universal constantc > 1 such that, for eachξ ∈L(G) and
everyt > 0, we have

δ + (δ −1)
1(ξt )

t
− logc

t
≤ logµ(B(ξ, e−t ))

loge−t
≤ δ + (δ −1)

1(ξt )

t
+ logc

t
.

From this we immediately see that

ξ ∈Jσ(G) ⇐⇒ lim sup
t→∞

logµ(B(ξ, e−t ))
loge−t

≥ δ + (δ −1)
σ

1+ σ .

Hence, if we letθ = δ + (δ −1) σ
1+σ then, with an elementary calculation, we see

that Theorem 2 implies
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dimH (Sθ (µ)) =


δ for 0< θ ≤ δ,

(1− δ)− (1−δ)(2δ−1)
θ−1 for δ ≤ θ ≤ (2δ −1)− δ−1

δ
,

δ
1−δ θ − δ(2δ−1)

1−δ for (2δ −1)− δ−1
δ
≤ θ ≤ 2δ −1,

0 for 2δ −1≤ θ.
In order to determine the remaining spectra in case (B), note that the global mea-
sure formula gives in particular that, for allξ ∈ L(G) and t > 0, we have
µ(B(ξ, e−t )) � e−δt . Note also that, forδ < θ ≤ 2δ − 1, the inequality
µ(B(ξ, e−t )) � e−θt holds t-eventually(i.e., uniformly for large values oft)
only if ξ ∈G(P ); for θ > 2δ − 1, we even have that this inequality never holds.
Using these observations, we derive that

dimH (I θ (µ)) =
{
δ for 0 ≤ θ ≤ δ,
0 for θ > δ.

In a similar way, we see that forθ ≥ δ the inequalityµ(B(ξ, e−t )) � e−θt is
satisfied for each radial limit pointξ ∈Lr(G) := L(G)\G(P ) for some sequence
{tn} tending to infinity (where{tn} depends onξ). For θ < δ, no such sequence
{tn} exists for anyξ ∈L(G). Hence, we have

dimH (I θ(µ)) =
{

0 for 0≤ θ < δ,

δ for θ ≥ δ.
Finally, we see that forθ ≥ δ the inequalityµ(B(ξ, e−t )) � e−θt is t-eventu-

ally satisfied for anyξ in theuniformly radial limit setLur(G) := { ξ ∈ L(G) :
1(ξt )� 1 for all t > 0 }. (This is also referred to as the set of badly approximable
limit points; cf. [13].) Forθ < δ, this inequality is nevert-eventually satisfied for
anyξ ∈L(G). Using the fact that dimH (Lur(G)) = δ, which we obtained in [13]
(for an alternative proof see [3]), it follows that

dimH (S θ(µ)) =
{

0 for 0< θ < δ,

δ for θ ≥ δ.
This gives the weak singularity spectra ofµ in the case (B).

Next, we consider the case (C); that is, we assume 1= kmin < kmax= 2. Note
that, since in generalδ > kmax/2, we have thatδ > 1. In this case the global mea-
sure formula forµ gives the existence of a universal constantc > 1 such that, for
eachξ ∈L(G) and everyt > 0, we have

c−1e−t (δ+(δ−1)1(ξt )/t) ≤ µ(B(ξ, e−t )) ≤ ce−t (δ−(2−δ)1(ξt )/t).
Obviously, the scaling ofµ in rank-1 cusps differs from the scaling ofµ in

rank-2 cusps. Because of this, we now decomposeJσ(G) as follows. Forl =
1,2, let1l denote the ray excursion function detecting only excursions into rank-l

cusps. That is, forξ ∈ L(G) andt > 0 we let1l(ξt ) = d(ξt ,G(0)) if ξt is con-
tained in a standard horoball associated with some rank-l parabolic fixed point;
otherwise, we let1l be equal to some fixed constant. Then the(σ, l)-Jarník limit
setJσ,l(G) is defined by
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Jσ,l(G) :=
{
ξ ∈L(G) : lim sup

t→∞
1l(ξt )

t
≥ σ

1+ σ
}
.

Clearly, we have thatJσ(G) = Jσ,1(G) ∪ Jσ,2(G), which is of course not a dis-
joint union. The Hausdorff dimensions ofJσ,1(G) andJσ,2(G) are derived fol-
lowing essentially the same line of arguments given in the previous section and in
[12]. Here it is important to note that, as an immediate consequence of the decou-
pling lemma in [17] we have that, forl = 1,2, the exponent of convergence of the
Dirichlet series

∑
p∈P,rk(p)=l

∑
g∈Tp r

s
g remains equal toδ (this gives the upper

bounds of dimH (Jσ,l(G))). Hence, for computing dimH (Jσ,2(G)), we may pro-
ceed as in the case “kmin = 2” and so obtain that

dimH (Jσ,2(G)) = δ

1+ σ .

For computing dimH (Jσ,1(G)), we proceed as we did in the case “kmax = 1 and
δ > 1”, which gives that

dimH (Jσ,1(G)) =
{

δ
1+σ for σ ≥ δ −1,

δ+σ
1+2σ for σ ≤ δ −1.

Using these observations, we can now determine the weak singularity spectra
as follows. Namely, exactly as in case (B), we have that

ξ ∈Jσ,1(G) ⇐⇒ lim sup
t→∞

logµ(B(ξ, e−t ))
loge−t

≥ δ + (δ −1)
σ

1+ σ
and hence

dimH (Sθ (µ)) =


δ for 0< θ ≤ δ,

(1− δ)− (1−δ)(2δ−1)
θ−1 for δ ≤ θ ≤ (2δ −1)− δ−1

δ
,

δ
1−δ θ − δ(2δ−1)

1−δ for (2δ −1)− δ−1
δ
≤ θ ≤ 2δ −1,

0 for 2δ −1≤ θ.
Also, using once again the global measure, we have that

ξ ∈Jσ,2(G) ⇐⇒ lim inf
t→∞

logµ(B(ξ, e−t ))
loge−t

≤ δ − (2− δ) σ

1+ σ ,

which gives, by substitutingθ = δ − (2− δ) σ
1+σ , that

dimH (I θ(µ)) =


0 for 0< θ ≤ 2δ − 2,

δ
2−δ θ − δ(2δ−2)

2−δ for 2δ − 2< θ ≤ δ,
δ for θ > δ.

For the remaining parts of the spectra, note that, for 0< θ ≤ δ, we have that
µ(B(ξ, e−t )) � e−θt is t-eventually satisfied for at least allξ ∈Lur(G). For δ <
θ ≤ 2δ − 1, this inequality holdst-eventually only for rank-1 parabolic fixed
points, and forθ > 2δ − 1 we have that this inequality never holdst-eventually.
Hence, it follows that
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dimH (I θ (µ)) =
{
δ for 0 ≤ θ ≤ δ,
0 for θ > δ.

The computation of dimH (S θ(µ)) is essentially the same as in case (B). Here,
the only difference is that, for 2δ − 2 ≤ θ < δ, the inequalityµ(B(ξ, e−t )) �
e−θt is satisfiedt-eventually by all rank-2 parabolic fixed points (which are, of
course, the only elements inL(G) with this behavior). It follows that

dimH (S θ(µ)) =
{

0 for 0< θ < δ,

δ for θ ≥ δ.
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