Weak Singularity Spectra of the
Patterson Measure for Geometrically Finite
Kleinian Groups with Parabolic Elements

BERND O. STRATMANN

1. Introduction and Statement of Results

In this paper we give a multifractal description of the Patterson measgig-
ported on the limit seL (G) of a geometrically finite Kleinian grou@ with par-
abolic elements. More precisely, we estimatewsak singularity spectraf u,
which means that fof > 0 we determine the Hausdorff dimensions of the fol-
lowing sets:

20 = & € L(G) : liminf I EE. D) 59}
r—0 | gr

Ty = £ € L(G) : liminf 9L BE. 1) ze}
r—0 | ogr

S = £ eL(G) limsup2ILEED) }
r—0 lo ogr

So(n) :={&€L(G): Iimsuplog“l(# > }
r—0

whereB (&, r) denotes the Euclidean ball of radiusentered af.

This “weak multifractal analysis” of the Patterson measure will be based on a
further investigation of the Hausdorff dimension ¢ji6y/,(G)) of the associated
o-Jarnik limit sets7,(G) C L(G), which represent the natural generalization of
the well-approximable real numbers to the theory of Kleinian graupsG) is
defined at the end of this section).

In [12] we derived a complete description g§(G) in terms of the dimension
with respect tqt. As a consequence, we were able to determing,dify (G)) for
those cases in which dig(L(G)) does not exceed the maximal rank of the para-
bolic fixed points ofG. The first aim of this paper will be to show how to modify
the construction in [12] in order to deal with the remaining cases. That is, based
on the construction in [12], we compute dif\7,(G)) for all geometrically finite
Kleinian groups with parabolic elements. We then discuss how these estimates
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dimy (17)

dimH( S 0 )

3 26-1 0
25-1-(5-1)/5

Figure 1 The interesting spectra in case (C)

give access to the aforementioned multifractal aspects of the Patterson measure.
The results obtained clearly suggest that the most natural way to view the derived
Hausdorff dimension aof/,(G) is exactly this interpretation in terms of the theory
of multifractals.

In order to state these main results more explicitly, we recall that, diG))
has been proven to be equal to ti@onent of convergenée= §(G) of G, which
is given by the exponent of convergence of the Dirichlet series
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> exp(—sd (0, g0)),

geG

whered denotes the hyperbolic distance in the Poincaré bal(note that, for
simplicity, we restrict the discussion to hyperbolic 3-space) . In fact, a combi-
nation of the global measure formula (see Section 2) and the Khintchine law for
geodesics (cf. [17]) immediately shows that, foalmost alls € L(G), we have

5 — liminf 29ABED) ey supw_
r—0 logr 0 logr

Also, recall that a parabolic element of a Kleinian group actin@dmmay be
either of rank 1 or of rank 2, depending on whether the stabilizer of the associ-
ated parabolic fixed point is isomorphic to a finite extensio @it Z2. If kmin
andkmax denote the minimal and maximal possible ranks among the parabolic ele-
ments occurring irG, then it is well known [1] that > knax/2. Combining this
fact with the global measure formula farthen shows that the investigation of the
weak singularity spectra ¢f has to be split into the following five cases:

(A) kmax=121ands < 1,
(B) kmax=121ands > 1,
(C) 1=kmin < kmax=2;
(D) kmin = kmax = 2;

(E) kmax=1ands =1

Note that (A) includes as a special case all finitely generated “second-kind” Fuch-

sian groups with parabolic elements. Also, we shall see that, from the multifractal

point of view, (B) and (C) provide the most interesting cases (see also Figure 1).
The following theorem is the main result in this paper.

THEOREM 1. LetG be a geometrically finite Kleinian group with parabolic ele-
ments and with exponent of convergedcd he weak singularity spectra of the
associated Patterson measweare then determined as follows.

(A) If kmax=21ands$ < 1, then

0 for0<6<25—-1,
dimy (Z9(w) = { 256 — 2252 for 25 —1< 0 <3,
§ for 6 > §;
dimus (So (1)) = § for 0<6 <3,
0 for 6 > 6.

(B) If kmax=21ands$ > 1, then

0 for0<6 <3,

dimy; (Z° () = {8 for 6 > §;
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§ for 0<6 <56,

. 1-8)— EBD for § <9 < (256 —1) — 2,
dimg (Se(p)) = 5 5(25—1) 51
50— S5 for 26-1) -5 <60<25-1,

0 for 26 —1<0.
(C) If 1= kmin < kmax = 2, then

0 for0<6 <2852,

dimy (Z9(w) = | 5556 — 222 for 26 —2 <0 <3,

§ for 6 > §;

§ for 0<6 <356,

A-8) - LIBD for § <9 < (26 -1 — 22,
dimg (Se (1)) =

) 8(26-1 §—1
EQ—T fOI’(25—1)—T§9§28—1,

0 for 26 —1<0.

(D) If kmin = kmax = 2, then

0 for 0<0 <286—2,
dimy (Z9(w) = { 556 — 252 for 26 —2 <0 <3,
§ for 6 >3;
§ for 0<6 <3,

0 for 6 > 6.

dimy (Sp(1)) =

Furthermore, in each of the casés)—(D) we have that

§ for 0<0O <3§,

dimr (Lo () = {0 for 6 > ¢;

0 for 0<9 <3,

dimy; (5 () = {8 for 8 > §

(E) If kmax = 1and § = 1, then the weak singularity spectra of are trivial.
In this case, for alk € L(G) we have that

i 10gu(BE. M)

5.
r—0 logr

Note that, in (B) and (C), the lower lim sup spectrum exhibifghase transition
ato = 0* where6* .= 25§ — 1— (§ — 1)/8. The significance of this value is that
dimg (Sy«(u)) = 1 (see Figure 1).

As we have already mentioned, one of the main ingredients in the proof of this
theorem will be the explicit calculation of the Hausdorff dimension otthiarnik
limit sets 7,(G). In order to state this result more precisely, recall from [12] the
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actual definition of7,(G). Fort > 0 let&, denote the unigue point on the ray
between the origin & D3 andé € L(G) whose hyperbolic distance from 0 is
equal tor. Let A denote theay excursion functionwhich is given byA (&) :=
d(&,, G(0)). Foro > 0, theo-Jarnik limit set7,(G) is defined by
A
TA(G) = {geL(G) : lim sup ) o }

t—00 t “ 140

(see Section 2 for an alternative definition). We obtain the following theorem.

THEOREM 2. LetG be a geometrically finite Kleinian group with parabolic ele-
ments and with limit set of Hausdorff dimensi&nFor ¢ > 0, the Hausdorff
dimension of the-Jarnik limit set7,(G) is determined as follows.

(1) For § < kmax. We havedimy (7,(G)) = .
(2) For 8§ > kmaxs

) )

=2 for 2 <1

. 1+o 4o —
dimy (7,(G) = { . .

1+20 for 4o z 1

REMARKS. (1) Our estimates of the weak singularity spectrauofcombined
with the fact thatu has a flat Rényi dimension spectrum equal to the exponent
of convergence (cf. [14]), reveal thatw can not be analyzed by means of the
usual multifractal theory, whose goal it is to relate the dimension spectrum and
the Rényi spectrum by means of a Legendre transform. Furthermore, a complete
multifractal analysis for those cases in which the Patterson measure is equivalent
to the 1-dimensional Lebesgue measure has not yet been fully developed. Such an
analysis relates closely to the multifractal analysis of the continued fraction map,
and here we refer to [11] for some very interesting preliminary results.

(2) Recall that Jarnik [6] (and later also Besicovitch [2]) showed that the Haus-
dorff dimension of the set afell-approximable irrational numbeiis given by

1
dimH({ xeR: < ("2 for infinitely many reduced” }) =
q

140

Some first generalizations of this result to certain special cases of geometrically
finite Kleinian groups with parabolic elements were derived in [7; 12]. Now, as ex-
plained previously, in this paper we also deal with the remaining cases and hence
complete this generalization to geometrically finite Kleinian groups with parabolic
elements. We mention that, for Kleinian groups of this type, the Hausdorff dimen-
sion of the set of well-approximable limit points has been computed also in [5]
and that, for finitely generated second-kind Fuchsian groups, the results concern-
ing the weak singularity spectra of the Patterson measure have been stated in [14].

(3) After submitting this paper for publication, we completed work on analogous
results for the entropy-dimensional conformal measure on Julia sets of parabolic
rational maps ([15]; see also [16]). In particular, combining the work in this paper
with the results in [15], we obtain a new chapter in the “Julia—Klein dictionary”
initiated by Sullivan in [20].

p
==
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2. Preliminaries

In this section we recall a few well-known results that are fundamental for what
follows. Let G denote a geometrically finite Kleinian group with parabolic ele-
ments. For simplicity we assume th@tacts on hyperbolic 3-spad&®.

THE JARNIK SET AS A LIM SUP SET.  Let P be a complete set of inequivalent para-
bolic fixed points ofG. For p € P, let7, C G denote a set of coset representatives
of G, chosen such thag (0)| < |h(0)| for eachg € T, and for allh € Gy =
gG,,g‘l. Also, for pg € P such that the rank(po) of pg is equal tokmax, let
Tmax := Ty, and defineT” := J,.p 7,. It is well known [17] that to eacly €

7, we may associatestandard horoballH,,(r,) C D* atg(p) with Euclidean
radiusr, < (1—|g(0)]), so that the set Hy(,»(r,) : g € T,, p € P } comprises a
G-equivariant set of pairwise disjoint horoballs.#f; () denotes the radial pro-
jection of a horoballH; (r) at£ of radiusr projected from the origin if>® onto
the boundany? of hyperbolic 3-space, then we can exprgseG) in terms of the
set of standard horoballs as follows. LEtdenote the set of functions: R —
R* such that lim_.qlog¢(x)/logx = 0. Using basic hyperbolic geometry, we
see that € 7,(G) if and only if & € |,z limsup{ H, ) (@ () r; 7)) : g €T,

p € P}; that is, we have

TG = MU U Hem@ri™).

¢eF neN peP geT,
rg<1/n

THE PATTERSON MEASURE. For the construction and basic properties of the Pat-
terson measure we refer to [8; 9; 10; 18]. Recall thatis a nonatomic probability
measure supported on the limit 9e4G), for which we derived in [17] (see also
[19]) a formula concerning its scaling properties. This formula describes in a uni-
form way the decay oft around arbitrary limit points. In order to restate this
formula, we require the following notation. Fére L(G) and positiver define
k(&) to be equal ta(p) if & € Hy(p(r,) for somep € P andg € 7,, and letk(,)

be equal t&§ otherwise.

THE GLOBAL MEASURE FormuLA. Foré € L(G) and positiver, we have

W(BE, e™)) = e e MENG—kED)

3. Hausdorff Dimensions of Jarnik Limit Sets

In this section we give the proof of Theorem 2; that is, for arbitrary geometri-

cally finite Kleinian groups with parabolic elements we calculate the Hausdorff
dimension of the Jarnik limit sef,(G). As we mentioned in Section 1, part (1)

of Theorem 2 has already been dealt with in [12], and we refer to that paper for
the proof in this case. Hence, we now concentrate on the proof of part (2) of
Theorem 2 and so assume that kmaxOr (equivalently) thatmax = 1ands > 1.
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Our arguments are based on certain parts of the construction in [12]. In particular,
we shall recall two lemmata derived in [12] and restate a construction of a proba-
bility measure supported on a Cantor-like subset containgg (6).

For simplicity, we adapt the following notation from [12]. Ferc N, 7 > 0,
andg € Tmax define

An(f) = {h e7dI’T1aX: TnJrl =r < " }s
0n(8.0.7) 1= {h € An(r) : Hu(p)(ra) C Hg(p)(ry ™) }.
The following result was obtained as Proposition 1 in [12].

LeEmMmA 1. There exisp, ko, k1, ko > 0 and an increasing function N — R*

such that, ifg € A, (p) for somen > kg, then form > ((n) we have that
klpé(nfm)Jran(Zéfkmax) < Cal'(XQm(g, o, 10)) < kzpb'(nfm)Jran(Z(?fkmax).

For the rest of this section let us fix the numederived in this lemma.

Following the construction in [12], lefin, }r ey denote a sequence of positive
integers such thaty > max(ko; 20 %}, ny > 1(nx_y) for all k, and

1 m—l
lim | — ] =0.
m—)oo(nm an)

Ny = min cardQ,,(g, o, p).
8€An,_1(p)

Fork e N, let

Further, simply by deleting certain elements if necessary, we reduce for an ar-
bitrary h € A,,_,(p) the number of elements i@, (h, o, p) to N;. The result-

ing set is denoted b@nk(h). Hence, by definition, for at e Nandh € A, ,(p)

we haveN; = cardan(h). For a fixedgo € A, (p), we have the following defi-
nitions.

1) 1 = {Hgo(Po)(r{}:a)}'

(2) If 17, is defined fork in N, then let

17 = {Hupo) (7)€ Q,,(g) for someg € A, ,(p)
such thatH (o) (rg 7)) € 174 }.
By construction, each elementifi_ , contains exactly; elements of?. This

allows us to define the Cantor-like ggt:= (1. U/e/; I. Next, in order to con-

struct a probability measure dij, renormalize the Patterson measure on every
I7. Thatis, for eaclt € N, define a probability measurg® on 7¢ such that, for
Borel setsE ¢ S?, we have

1 ENI
v((,k)(E): Z u( )
fep N N )

Using Helly's theorem, we obtain a probability measw®n I, as the weak limit
of the sequence of measurgg® };.n. Note thatv¥(I) = v,(I) for eachk e N
andl e I .
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Now, recall the following lemma obtained as Lemma 6 in [12].

LEmMA 2. There exists &; > Osuch that, if§ € I, andr has the property” <
r < p"1for somek € N, thenB(&, r) intersects at most one element/fh, and

card( I el : INBEr) #0) < kap u(B(E, ).

The following lemma marks the difference between the construction here and the
construction in [12]. The reader is asked to compare this result with Lemma 3
in [12].

LEmMA 3. There exists &4 > Osuch that, foreach > 0, there exists @p(s) >
0 with the property that, for alk € I, and for allO < r < ro(e) such thatp"t <
r < p"=1for somek € N, we have

Vo(B(E, 1) < kapu(B(§, r)p "t Ho @ madte),

Proof. Let & andr be given as stated in the lemma. By construction of the mea-
surev, and using Lemma 2, we have that

k
ve(B(E. 1) <[ [N card I el - INBE. r) #0}
j=0

J

k
<kap "u(BE N[N
j=0

Using Lemma 1, it follows that
Vo (B(E, 1) < kakyp " (B, r)ky FPp D pmoni i@ hman

. pé(nk,l—ng)p—a(%—kmax) Zlk;[)z nj

= kak 1 (B(E, 1))

pnHea(zafkma)ofn;,ll(now(zafkmax) X5 nj+(k=D(logky)(log p) )

By construction of the sequen¢e;), for eache > 0 and for sufficiently large
k we have that
k—2
no+0(28 — kmad »_(n; + (k — D(logks)(logp)™) < eny_.
j=0

J
Using this fact in the foregoing estimate, the statement of the lemma folldw's.

ProrosiTioN 1.  For eache > Othere exists1(¢) > 0such that, for eacl € I,
and0 < r < ry(g), we have

p/to)—¢ for ¢ > 8§ —1,
Vo(B(§. 1)) < {r(8+0)/(1+2¢7)—5 for o <86 —1

Proof. Let & € I, be given. Without loss of generality, assume thét < r <
p"-tand thak € H,(,)(r;t7) for someg e 7, with r, < p"«-1. We then have the
following.
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(1) “Before the visit toH, ) (r:7)":
If (p"e)7 <7 < it thenvy(B(E, ) < o=/t

Proof: Since by constructiong(H,,)(r,)) < ug(Hg<p)(r§+”)), it follows that
Vo(B(E. 1)) K Vo(Hy(p)(ri )

< M(Hg([,)(rglJra))p*”k—l(0(2571)+e)

r;r;(%fl) —n_1(0(28=D+e)

~
=~

0

- #0.—¢
= rgrg

- 1+0\8/(A+0) .—¢
A(rg ) re

< rzS/(l—f—a)r—e/(l-&-a)' [

(2) “After having metHg(p)(rg””) and while still visiting Hy((r)"
If (pnk,1)1+2tr <r< (pnk,l)l+o', then
r(S/CH’U)r*S/(:H’U) for o > 5 — 1’
Vo (B(E, 1) < {r(6+a)/(l+20)r8/(l+tr) for o <6 —1

Proof: Letr = p™-13+o+7) for some O< 7 < o. In this case, the fluctuation
of the Patterson measure is maximal fot¢,) = —(o — 7)ni_1logp (note that
r=<e ', wherer = —n;,_1(1+ o + 1) log p). This gives that

Vo(B(§, 1)) K p(B(§, r))p~"-10@—b+e)
< rSpnk—l(”—T)(S—l)p—’lk—l(0(23—1)+5)
< pnk_1(1+o+1')5’0:1;(_1(07r)(87l)pfnk_1(cr(2871)+s)
— (p”k—l)tSJerfnk,la
— (p”k—1(1+0+1’))(5+T)/(1+(T+T)(pnk—1(1+f7+f))_5/(1+8+T)
po/Ato)—e/dto)  for ¢ > § — 1,
< r(5+a)/(1+20)r78/(l+a) for o < §—1

(3) "After the visit to Hy(p)(r,)™:
If ,Onk <r< (pnk_l)l+2(7’ thenv(,(B(.f, I")) < r(8+a)/(1+20)7£/(l+2zr).

Proof: Sinces > 1, the global measure formula implies thatB(, r)) <« r?.
Using this and Lemma 3, it follows that

Vo(B(§. 1)) < 1(B(&, r))p 227t
< r8r7(0(257l)+e)/(l+20)

< r(6+<7—s)/(1+2<7)
< r(5+a)/(1+2(r)r—£/(l+20)' ]

The statement of the proposition now follows by summing up the previous three
considerations. O
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Proof of Theorem 2Recall that we have just obtained that, for eack 0, there
exists a sel, C J,(G) that supports a probability measurgwith the property
that, for eacte > 0 and for eacl§ € I,,, there exists1(¢) such that, for all O<
r < ri(¢), we have

Pi/Ato—¢ for o > § —1,
UU(B(%_’ I")) < r(8+a)/(l+20)7£’ for o < §—1

Hence, by the mass distribution principle (see e.g. [4]), for @ach0 we have

_ e foro=6-1
dimy (J,(G)) >
1‘3:2‘; for o <5 —1

In order to obtain the upper bounds for the Hausdorff dimensigr, 6f), note
first that for this it is sufficient to give upper bounds for the Hausdorff dimension

of the set
WG(G) = ﬂ U U Hg(p)(r;+ )

neN peP geT,
rg<l/n
Now, { Hg(,,)(rg”") . pe P, geT,}provides a“natural cover” ofV;(G). Using
this and the fact thal ., 3, (7)™ ** converges for any > 0, it fol-
lows that 5
dimy W, (G)) < ——
HWs(G)) < 1ro
On the other hand, note that the intersectior ¢&) with the shadow of any
o-reduced horobamg(p)(r;+”) is contained in some “tie-shaped region” (see
Figure 2). This observation, together with the fact that the largest horoball one
can possibly meet after having traveled through,,(r;*°) is of the sizer;+%,
yields that we may coveL(G) N ’Hg(p)(rl““") by rg_” Euclidean balls of size
1+2“ (these balls are not necessarily shadows of horoballs!). Clearly, this gives
us an alternative way of covering, (G) (see Figure 2), and for this cover we ob-
tain that

Z Z —0o (1+2(f)s

{ converges fors > (8§ + 0)/(1+ 20),
peP geT,

diverges fors < (8 +0)/(1+ 20).

In particular, this implies that
4o
1+ 20

Combining the two upper bounds for the Hausdorff dimension, an elementary
calculation now gives that

dimy (Ws(G)) <

)
Tro fOI’UZ(S—l,

dimy (W,(G)) < { -
1120 for o <s5-—1
which proves the theorem. O
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Figure 2 The “alternative cover”

4. Weak Singularity Spectra of the Patterson Measure

In this section we give the estimates that lead to the weak singularity spectra of the

Patterson measure The results are a consequence of a combination of Theorem 2
and the global measure formula far

Proof of Theorem 1Because the arguments are similar for casés-(B), we
restrict our discussion to the cases (B) and (C), which are hardest to derive and
where the outcome is most interesting.

We consider case (B) first and so assume thdtas exclusively rank-1 para-
bolic fixed points and that > 1. In this case, the global measure formula for

gives the existence of a universal constant 1 such that, for eache L(G) and
everyr > 0, we have

54 (5 _1)A(;§z) B Io?c - Iog,uIE)IZ(f,te—t)) <54 _1)A(t§,) Iogc'

t
From this we immediately see that

. logu(B(, e™)) o
§€To(G) — "E‘Li;‘pW >84 (5 — 1)1+_G.

Hence, if we let) = § + (§ — 1) ;7 then, with an elementary calculation, we see
that Theorem 2 implies
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5§ for 0<0 <36,

. 1-8) — SDBD for § <9< (256 -1 — L,
dimy (S (1)) = L -
50 — "5 for 26-1) -5t <6<25-1

0 for 26 —1<0.

In order to determine the remaining spectra in case (B), note that the global mea-
sure formula gives in particular that, for &l e L(G) andt > 0, we have
w(B(,e™)) <« e7%. Note also that, fos < 6 < 2§ — 1, the inequality
w(B(&,e™)) <« e~ holdst-eventually(i.e., uniformly for large values of)

only if £ € G(P); for 6 > 25 — 1, we even have that this inequality never holds.
Using these observations, we derive that

§ for 0<6 <35,

dimy (Zo (1)) = {0 for 8 > 8

In a similar way, we see that fér > § the inequalityu (B(&, e™*)) > e % is
satisfied for each radial limit poigte L, (G) := L(G) \ G(P) for some sequence
{z,} tending to infinity (wherd,} depends o). Forf < §, no such sequence
{z,} exists for any € L(G). Hence, we have

0 for 0<06 <3,

dimy; (Z° () = { § for0>6

Finally, we see that fof > § the inequalityu(B(£, e™")) > e % is t-eventu-
ally satisfied for anyt in the uniformly radial limit setL (G) = {£ € L(G) :
A(&) « 1forallr > 0}. (Thisis also referred to as the set of badly approximable
limit points; cf. [13].) Foré < §, this inequality is never-eventually satisfied for
any& € L(G). Using the fact that dim (L (G)) = 8, which we obtained in [13]
(for an alternative proof see [3]), it follows that

0 for 0<8 <3,

dimy; (S°() = {a for 0> §

This gives the weak singularity spectra;ofn the case (B).

Next, we consider the case (C); that is, we assumekkin < kmax = 2. Note
that, since in generdl > knax/2, we have thas > 1. In this case the global mea-
sure formula for gives the existence of a universal constant 1 such that, for
eaché € L(G) and every > 0, we have

Lo GHO-DAEND < | (B(E, ¢)) < ce!O-@DAENN

Obviously, the scaling ofc in rank-1 cusps differs from the scaling pfin
rank-2 cusps. Because of this, we now decomp@s&;) as follows. Forl =
1 2, let A, denote the ray excursion function detecting only excursions intokank-
cusps. That is, fof € L(G) andr > 0 we letA;(&;,) = d(&,, G(0)) if & is con-
tained in a standard horoball associated with some fgrdeabolic fixed point;
otherwise, we lef\; be equal to some fixed constant. Then g )-Jarnik limit
setJ,.(G) is defined by
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: Ay(&) o
- 1(G) == L(G) : limsup———= > .
T5.1(G) {56 (G) Hoo|0 p —1+a}
Clearly, we have tha?,(G) = 7,.1(G) U J,.2(G), which is of course not a dis-
joint union. The Hausdorff dimensions ¢f, 1(G) and J, »(G) are derived fol-
lowing essentially the same line of arguments given in the previous section and in
[12]. Here it is important to note that, as an immediate consequence of the decou-
pling lemma in [17] we have that, fér= 1, 2, the exponent of convergence of the
Dirichlet seriesZPeP’rk(mz, deﬁ r, remains equal t@ (this gives the upper
bounds of ding (J5.;(G))). Hence, for computing dima(7,,2(G)), we may pro-
ceed as in the casémin = 2” and so obtain that

. )
dimy (J5,2(G)) = 1o

For computing ding (J,.1(G)), we proceed as we did in the casgnax = 1 and
8 > 17, which gives that

)
T for o >68 -1,

$+ao
oy foro <8§—-1

dimy (75,1(6)) = {

Using these observations, we can now determine the weak singularity spectra
as follows. Namely, exactly as in case (B), we have that

logu(B(, e™)

£ e Jy1(G) < limsup S840 —1)——
1+o

t—00 |Og e !
and hence
§ for 0<6 <3,
. 1-8)— TDBD for § <9< (2561 — L,
dimy (Se(n)) =

250 — 2250 for 28— - 5t<p<25-1

0 for25—-1<6.
Also, using once again the global measure, we have that

loguBE.e ™) 5 55 O
Ioge" = 1+o’

which gives, by substituting = § — (2 — §);7, that
0 for 0<6 <25—-2,

dimy (Z%(n)) = | 5250 — %22 for 2§ -2 <6 <34,

5§ for 6 >34.

For the remaining parts of the spectra, note that, fer 8 < §, we have that
w(B(&, e™)) « e % ist-eventually satisfied for at least glle L(G). Fors <
6 < 28 — 1, this inequality holds-eventually only for rank-1 parabolic fixed
points, and fop > 2§ — 1 we have that this inequality never holdeventually.
Hence, it follows that

£€T52006) Iipwinf
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§ for 0<6 <3,

dimg (Zo(w)) = {0 for 9 > 6

The computation of dim(S?(uw)) is essentially the same as in case (B). Here,
the only difference is that, for— 2 < 6 < §, the inequalityu(B(&, e™")) >
e~ is satisfiedr-eventually by all rank-2 parabolic fixed points (which are, of
course, the only elements i G) with this behavior). It follows that

dim (8%(0)) = 0 for 0<9 <3, -
HIOI =15 for 0> 6.
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