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0. Introduction

One of the well-known methods to construct a new 4-manifold from an old one is
the Gluck surgery along an embedded 2-sphere with trivial normal bundle, which
is defined as follows (see [G]). LetM be a smooth 4-manifold andK a smoothly
embedded 2-sphere inM. We suppose that the tubular neighborhoodN(K) of K
inM is diffeomorphic toS2×D2. Let τ be the self-diffeomorphism ofS2×S1 =
∂(S2 × D2) defined byτ(z, α) = (αz, α), where we identifyS1 with the unit
circle of C andS2 with the Riemann spherêC = C ∪ {∞}. Then consider the
4-manifold obtained fromM − IntN(K) by regluingS2 ×D2 along the bound-
ary usingτ. We say that the resulting 4-manifold, denoted by6(K), is obtained
fromM by theGluck surgeryalongK (see [G] or [Kir2, p. 16]).

When the ambient 4-manifold is the 4-sphereS 4,we call a smoothly embedded
2-sphereK in S 4 a 2-knot. In this case, the resulting 4-manifold6(K) is always a
homotopy 4-sphere. It has been known that, for certain 2-knotsK, 6(K) is again
diffeomorphic toS 4 (see e.g. [Gom1; Gor; HMY; Mo; Pl]). It has not been known
if the Gluck surgery along a 2-knotK in S 4 produces a 4-manifold6(K) not dif-
feomorphic toS 4 for someK (see [Kir1, 4.11, 4.24, 4.45] and [Gom2]). On the
other hand, for 2-spheres embedded in 4-manifoldsM not necessarily diffeomor-
phic toS 4, Akbulut [Ak1; Ak2] constructed an example of an embedded 2-sphere
K in such anM such that6(K) is homeomorphic but is not diffeomorphic toM.
For Gluck surgeries, see also [Ak3; AK; AR; Gom1; Gom2].

Price [P] considered a similar construction using embedded projective planes in
S 4. LetP be a smoothly embedded projective plane inS 4. In the following, we fix
an orientation forS 4. Then it is known that the tubular neighborhoodN(P ) of P is
always diffeomorphic to the nonorientableD2-bundle overRP 2 with Euler num-
ber±2 (see [M1; M2]), which we denote byNe with e = ±2 the Euler number.
Note that∂Ne is diffeomorphic to the quaternion spaceQ, whose fundamental
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group is isomorphic to the quaternion group of order 8. Then consider the closed
orientable 4-manifold5(P )ϕ obtained fromS 4− IntN(P ) by regluingNe along
the boundary using a self-diffeomorphismϕ ofQ. Then we say that5(P )ϕ is ob-
tained fromS 4 by a Price surgeryalongP with respect toϕ. In fact, Price [P]
showed that there are exactly six isotopy classes of orientation-preserving self-
diffeomorphisms ofQ—thus we have essentially six choices forϕ—and that ex-
actly four of them produce homotopy 4-spheres by a Price surgery. Furthermore,
he has also shown that there are at most two diffeomorphism types among the
four homotopy 4-spheres thus constructed, one of which is the standard 4-sphere.
In the following,5(P ) will denote the unique homotopy 4-sphere obtained by
the Price surgery alongP with respect to a nontrivial self-diffeomorphism ofQ,
which may not be diffeomorphic to the 4-sphere.

Obviously we can generalize this definition of Price surgeries to those along pro-
jective planes embedded in arbitrary 4-manifolds with normal Euler number±2.

Let P0 be a standardly embedded projective plane inS 4 whose normal Euler
number is either 2 or−2 (see e.g. [La1; La2; PR; Y1]). One of our main results
of the present paper is the following theorem concerning the relationship between
Gluck surgeries and Price surgeries.

Theorem 0.1. LetK be a2-knot inS 4. Then the homotopy4-sphere6(K) ob-
tained by the Gluck surgery alongK is diffeomorphic to the homotopy4-sphere
5(P0 ]K) obtained by the Price surgery along the projective planeP0 ]K,where
] denotes the connected sum.

In fact, this theorem is a direct consequence of a more general result as follows.
In the following, for a projective planeP smoothly embedded inS 4,we denote by
N(P ) andE(P ) its tubular neighborhood inS 4 andS 4− IntN(P ), respectively;
we callE(P ) theexteriorof P.

Theorem 0.2. LetK andK ′ be an arbitrary pair of2-knots inS 4. Then there
exist four self-diffeomorphismsϕj (j = 1,2,3,4) ofQ such that the closed ori-
ented4-manifoldE(P0 ]K)∪ϕj −E(P0 ]K

′), obtained by gluingE(P0 ]K) and
−E(P0 ]K

′) along their boundaries usingϕj, is orientation-preservingly diffeo-
morphic toS 4, 6(K), 6(K ′!), and6(K) ]6(K ′!) for j = 1, 2, 3, and 4 (re-
spectively), where−E(P0 ]K

′) denotesE(P0 ]K
′) with the reversed orientation

andK ′! denotes the mirror image ofK ′.

In this theorem, ifK ′ is unknotted thenE(P0) = E(P0 ]K
′) is diffeomorphic

to N∓2 (see [La1; La2; M2; P; PR; Y1]) and6(K ′!) is diffeomorphic toS 4.

Thus, Theorem 0.1 follows from Theorem 0.2. Note that, in Theorem 0.2, the fact
thatE(P0 ]K) ∪ϕ1 −E(P0 ]K

′) is diffeomorphic toS 4 for someϕ1 has already
been obtained by the fourth author [Y3] whenK andK ′ are 2-twist spun 2-knots
(see[Z]).

Using our Theorem 0.1, we will show that the Gluck surgery along a smoothly
embedded 2-sphereK in an arbitrary 4-manifoldM is always realized by a Price
surgery along the connected sumP0 ]K of K and a standardly embedded projec-
tive planeP0 contained in a 4-disk inM.
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The paper is organized as follows. In Section 1, we study the decomposition
S 4 = N(P0)∪E(P0) and show that, for every pair of 2-knotsK andK ′ in S 4, the
4-sphereS 4 decomposes asE(P0 ]K) ∪ −E(P0 ]K

′). In Section 2, we review
the result of Price [P] concerning the mapping class groupM(Q) of the quater-
nion spaceQ. Recall thatQ admits a structure of a Seifert fibered space overS2

with three singular fibers (see [Y1]). We will identifyM(Q) with the symmet-
ric group on three letters, where to a self-diffeomorphismϕ ofQ corresponds the
bijection on the set of the singular fibers associated with a fiber-preserving diffeo-
morphism isotopic toϕ. In Section 3, we will prove Theorem 0.2. In Section 4,
we show that every Gluck surgery in an arbitrary 4-manifold is realized by a Price
surgery. In the Appendix, we will introduce a method to describe the homotopy
4-sphere6(K) obtained by the Gluck surgery along a 2-knotK in S 4 by using
a framed link inS3. This result will be used in the proof of Theorem 0.2 in Sec-
tion 3. In fact, the result itself seems to be folklore; however, we have included
it because (to the authors’ knowledge) there has been nothing explicitly written in
the literature.

Throughout the paper, all manifolds and maps are of classC∞ unless otherwise
indicated. The symbol “∼= ” denotes a (orientation-preserving) diffeomorphism
between (oriented) manifolds or an appropriate isomorphism between algebraic
objects.

Acknowledgment. The authors would like to thank Katsuyuki Yoshikawa and
Seiichi Kamada for their helpful comments on embedded projective planes inS 4.

They would also like to express their sincere gratitude to the referee for helpful
comments and suggestions. The second author would like to express his thanks to
the people at the University of Liverpool for their hospitality during the prepara-
tion of the manuscript.

1. Decompositions of the 4-Sphere

In this section, we study decompositions of the 4-sphereS 4 into the union of the
exteriors of two embedded projective planes inS 4.

LetP+ (resp.P−) denote the standardly embedded projective plane inS 4 whose
normal Euler number is equal to 2 (resp.−2) (see e.g. [La1; La2; PR; Y1]). First
we review the decomposition ofS 4 into the union of a tubular neighborhoodN(P+)
(∼= N2) of P+ in S 4 and its exteriorE(P+) (see [Y1]). It is well known thatE(P+)
is diffeomorphic to−N2 (∼= N−2) [La1; La2; M2; P; PR; Y1], where−N2 de-
notesN2 with the reversed orientation. Hence we have the decompositionS 4 ∼=
−N2 ∪∂ N2, where∪∂ means that we glue−N2 andN2 along their boundaries.

In [Y1], the fourth author gave a handlebody decomposition ofN2 and described
it by a framed link. Here we describeE(P+) ∼= −N2 by the framed link as in
Figure 1. We denote by−N2 = H 0 ∪ H 1 ∪ H 2 the handlebody decomposition
corresponding to the left-hand side framed link of Figure 1, whereH r denotes a
handle of indexr.

Using the handlebody decomposition of−N2 and the decompositionS 4 ∼=
−N2 ∪∂ N2, we obtain the decomposition ofS 4 as follows:
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Figure 1

S 4 ∼= (H 0
− ∪H 1

− ∪H 2
−) ∪ (H 2

+ ∪H 1
+ ∪H 0

+), (1)

whereH r
± denotes ther-handle of±N2. In the following, the(4− r)-handle dual

to ther-handleH r
± will be denoted by(H r

±)
⊥. The attaching circle and the fram-

ing of (H 2
+)
⊥, which is attached toH 0

− ∪H 1
− ∪H 2

−, is studied in [Y1, Sec. 5].
In the theory of framed links, it is usual to omit drawing 3- and 4-handles (see

[LP]). In this sense, the decomposition ofS 4 in (1) gives a nontrivial handlebody
decomposition that is described by the framed link as in Figure 2 (see also [Y1,
Fig. 6]).

Figure 2

Examining the framed link representation, we see easily thatH 0
−∪H 1

−∪ (H 2
+)
⊥

is diffeomorphic to the 4-diskD4. In the following, we identifyH 0
−∪H 1

−∪(H 2
+)
⊥

with D4. Then we can summarize the decomposition ofS 4 as follows:

S 4 ∼= −N2 ∪∂ N2 (2)

= (H 0
− ∪H 1

− ∪H 2
−) ∪ (H 2

+ ∪H 1
+ ∪H 0

+) (3)

= (H 0
− ∪H 1

− ∪ (H 2
+)
⊥) ∪ ((H 2

−)
⊥ ∪H 1

+ ∪H 0
+) (4)

= D4 ∪∂ −D4. (5)

Intuitively, we can regard the decompositionS 4 ∼= −N2 ∪∂ N2 shown in Fig-
ure 3(1) as follows (cf. [Y1, Fig. 3]). LetD4

+ (resp.D4
−) denote the upper (resp.

lower) hemisphere ofS 4, and letk = k+ ∪ k− be the torus link of type(4,2) in
∂D4
+ = ∂D4

− = D4
+ ∩D4

−, wherek± are the components ofk. Sincek+ (resp.k−)
is an unknotted circle in∂D4

+ (resp. in∂D4
−), it bounds a 2-diskD2

+ (resp.D2
−)
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properly embedded inD4
+ (resp. inD4

−) such that(D4
+,D

2
+) (resp.(D4

−,D
2
−)) is a

standard disk pair. LetT± be a small tubular neighborhood ofD2
± inD4

± and letX±
denote the union of the closure ofD4

±−T± inD4
± andT∓. Then the decomposition

(S 4;−N2, N2) is diffeomorphic to the decomposition(D4
+∪D4

−;X−, X+). Then,
by replacing the 2-disksD2

± in D4
± with knotted 2-disks, we can construct new

decompositions ofS 4. The idea of such a decomposition is seen in Figure 3(2).

Figure 3

In the foregoing handlebody decomposition±N2 = H 0
± ∪H 1

± ∪H 2
±, the union

of the 0-handle and the 1-handle is diffeomorphic toS1 × D3, which is diffeo-
morphic to the exterior of an unknotted 2-sphere inS 4. In other words,H 0

± ∪H 1
±

corresponds to the closure ofD4
±−T± inD4

±. Furthermore,H 2
± corresponds toT∓.

For given 2-knotsK andK ′ in S 4, let us consider the operation of replacingD2
+

andD2
− with D2

+ ]K
′! andD2

− ]K, respectively. This corresponds to replacing
H 0
− ∪ H 1

− with E(K) andH 1
+ ∪ H 0

+ with E(K ′!), respectively, in the decompo-
sition (3), whereK ′! is the mirror image ofK ′. We can regard the small tubular
neighborhoods ofD2

+ ]K
′! andD2

− ]K inD4
+ andD4

− (respectively) as 2-handles,
and we denote them using the same notationH 2

∓ as before. Then, since we have
E(K) ∪H 2

− ∼= E(P+ ]K) andH 2
+ ∪ E(K ′!) ∼= −E(P+ ]K ′), it follows that

S 4 ∼= (E(K) ∪H 2
−) ∪ (H 2

+ ∪ E(K ′!)) (6)

∼= E(P+ ]K) ∪∂ −E(P+ ]K ′). (7)
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Thus we have the following lemma.

Lemma 1.1. For every pair of2-knotsK andK ′ in S 4, we can decompose the
standard4-sphereS 4 into the union ofE(P+ ]K) and−E(P+ ]K ′).
Remark 1.2. This result has already been obtained by the fourth author [Y3] in
the case whereK andK ′ are the 2-twist spun 2-knots (see[Z]).

Note that—using the notation to be introduced in the Appendix—we can represent
E(P+ ]K) by the framed link as in Figure 4(1).

Figure 4

2. Mapping Class Group of the Quaternion Space

Let Q denote the quaternion space, which is identified with∂N2. We denote by
M(Q) the mapping class group ofQ, which is (by definition) the group of iso-
topy classes of orientation-preserving self-diffeomorphisms ofQ. In [P], Price
investigated the self-diffeomorphisms of the quaternion spaceQ and showed that
M(Q) is isomorphic toS3, the symmetric group on three letters. In this section,
we study the self-diffeomorphisms ofQ using a Seifert fibered structure ofQ and
define four self-diffeomorphismsfij (i, j = 0,1) of Q.

Recall thatQ admits a Seifert fibered structure whose Seifert invariants in the
sense of [Or, Section 5.2] are given by{−1; (o1,0); (2,1), (2,1), (2,1)}. Let K
be a 2-knot inS 4. In the framed link representation ofE(P+ ]K), the three sin-
gular fibersS−1, S0, S1 correspond to the circles in∂E(P+ ]K) = −Q, as in Fig-
ure 4(2). HereS−1 is a co-core of the 2-handleH 2

−, S0 is a meridional circle of
D2
− ]K, and the third one isS1. For an elementσ of S3, the symmetric group on

the three letters{−1,0,1}, there exists a self-diffeomorphismfσ ofQ which pre-
serves the Seifert fibered structure and which satisfiesfσ(Si) = Sσ(i). By using
a result of Price [P] together with a calculation of the automorphisms ofπ1(Q)

induced byfσ , it is not difficult to show that every self-diffeomorphism ofQ is
isotopic tofσ for a uniqueσ ∈S3.

Now letK ′ be another 2-knot inS 4. Then we can construct closed oriented
4-manifolds by gluingE(P+ ]K) and−E(P+ ]K ′) along their boundaries. By
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the previous paragraph, we have at most six diffeomorphism types for the resulting
4-manifolds. Here we are interested only in homotopy 4-spheres. By an argument
using the Mayer–Vietoris sequence, we see easily that if the gluing map sends the
singular fiberS−1 onto itself then the resulting 4-manifold has nontrivial first ho-
mology group. Thus we consider the following four self-diffeomorphisms that
sendS−1 onto anSk (k 6= −1) as gluing maps. Letfij (i, j = 0,1) denote the
self-diffeomorphism ofQ which preserves the Seifert fibered structure and which
satisfiesfij(S−1) = Si andf −1

ij (S−1) = Sj . In other words,fij = fσ for

σ =
(−1 j j̄

i −1 ī

)
∈S3,

where{−1, i, ī } = {−1, j, j̄ } = {−1,0,1}.

3. Proof of Theorem 0.2

LetK andK ′ be 2-knots inS 4. In this section, we study the homotopy 4-spheres
obtained by gluingE(P0 ]K) and−E(P0 ]K

′) along their boundaries.

Proof of Theorem 0.2.We may assume thatP0 = P+. Let us begin with the de-
composition ofS 4 obtained in Section 1 as follows:

S 4 ∼= E(P+ ]K) ∪∂ −E(P+ ]K ′) (8)

∼= (E(K) ∪H 2
−) ∪ (H 2

+ ∪ E(K ′!)) (9)

= (E(K) ∪ (H 2
+)
⊥) ∪ ((H 2

−)
⊥ ∪ E(K ′!)). (10)

Note that, in (10),E(K) ∪ (H 2
+)
⊥ and(H 2

−)
⊥ ∪ E(K ′!) are diffeomorphic toD4

and−D4, respectively. Let us denote byg the gluing map∂(−E(P+ ]K ′)) →
∂E(P+ ]K) in the decomposition (8).

Let us verify that the gluing mapg is isotopic tof00. As we have seen in Sec-
tion 1 (see Figure 2), the co-coreS−1 ofH 2

+ lying on∂(H 2
+ ∪E(K ′!)) corresponds

by g to S0 lying on ∂(E(K) ∪H 2
−). Thus we haveg(S−1) = S0. By a similar ar-

gument, we see thatg−1(S−1) = S0. Thusg is isotopic tof00 and hence we have
the first diffeomorphism of the theorem withϕ1= f00.

Next let us consider the following:

E(P+ ]K) ∪fij −E(P+ ]K ′)
∼= (E(K) ∪H 2

−) ∪fij (H 2
+ ∪ E(K ′!)) (11)

= (E(K) ∪Si (H 2
+)
⊥) ∪ ((H 2

−)
⊥ ∪Sj E(K ′!)), (12)

whereE(K)∪Si (H 2
+)
⊥ (resp.(H 2

−)
⊥ ∪Sj E(K ′!)) denotes the compact 4-manifold

obtained fromE(K) (resp. fromE(K ′!)) by attaching the 2-handle(H 2
+)
⊥ (resp.

(H 2
−)
⊥) along the circleSi (resp.Sj ). By an argument similar to the foregoing,

we see that ifi = 0 thenE(K) ∪Si (H 2
+)
⊥ is diffeomorphic toD4 and that ifj =

0 then(H 2
−)
⊥ ∪Sj E(K ′!) is diffeomorphic to−D4.
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Let us show that ifi = 1 thenE(K) ∪Si (H 2
+)
⊥ is diffeomorphic to6(K)◦,

where6(K) is the homotopy 4-sphere obtained by the Gluck surgery alongK

(see Section 0) and6(K)◦ = 6(K)− IntD4.

We shall prove this claim by using the framed link theory together with a method
to be explained in the Appendix. The 4-manifoldE(K) is represented by an un-
knotted circle with a dot together with the symbolK, and the attaching circle of
(H 2
+)
⊥ coincides withS1 as in Figure 4(2). Let us determine the framingn of the

2-handle(H 2
+)
⊥. First note that∂(E(K)∪H 2

− ∪S1(H
2
+)
⊥) ∼= ∂E(K ′!) ∼= S2×S1.

By Lemma A.3, we can represent this boundary by the framed link as in Figure 5.
Because the linking matrix

A =
( 0 1 2

1 n 1
2 1 0

)
of the framed link is a presentation matrix ofH1(S

2×S1;Z) ∼= Z, its determinant
detA = 4− 4n must vanish. Thus we haven = +1. HenceE(K) ∪S1 (H

2
+)
⊥ is

described by the framed linkM(K,1), as in Figure A2 (in the Appendix). There-
fore it is diffeomorphic to6(K)◦, by Lemma A.2.

Figure 5

By the same argument, we can show that(H 2
−)
⊥ ∪S1 E(K

′!) ∼= 6(K ′!)◦.
Therefore, by (12), we see that

E(P+ ]K) ∪f01 −E(P+ ]K ′) ∼= D4 ∪6(K ′!)◦,
E(P+ ]K) ∪f10 −E(P+ ]K ′) ∼= 6(K)◦ ∪ −D4,

E(P+ ]K) ∪f11−E(P+ ]K ′) ∼= 6(K)◦ ∪6(K ′!)◦.
Thus we have the conclusion of Theorem 0.2 withϕ2 = f10, ϕ3 = f01, andϕ4 =
f11. This completes the proof.

As a direct consequence of Theorem 0.2, we have the following.

Corollary 3.1. LetK be a2-knot inS 4. Then there exist self-diffeomorphisms
ϕ andψ ofQ such that

E(P0 ]K) ∪ϕ −E(P0 ]K) ∼= S 4,

E(P0 ]K) ∪ψ −E(P0 ]K) ∼= 6(K).
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In other words,S 4 and6(K) can be decomposed as twisted doubles of the exte-
rior of P0 ]K.

For twisted double decompositions of the 4-sphere, see [La1; Y1; Y2].
We now discuss further related results and problems concerning Theorems 0.1

and 0.2.

Remark 3.2. Concerning surgeries along embedded tori inS 4, a result similar
to Theorem 0.1 has been obtained by Iwase [I, Prop. 3.5].

Corollary 3.3. LetK be a2-knot inS 4 such that the homotopy4-sphere6(K)
obtained by the Gluck surgery alongK is diffeomorphic toS 4. Then all the homo-
topy 4-spheres obtained by Price surgeries alongP0 ]K are also diffeomorphic
to S 4.

Corollary 3.4. LetK andK ′ be2-knots inS 4. If E(P0 ]K) is diffeomorphic
toE(P0 ]K

′), then6(K ′) is diffeomorphic to6(K).

Proof. By applying Theorem 0.2 toK and the trivial 2-knot, we see that the homo-
topy 4-sphere obtained by gluingE(P0 ]K) and−E(P0) along their boundaries
is diffeomorphic toS 4 or 6(K). Similarly, the homotopy 4-sphere obtained by
gluingE(P0 ]K

′) and−E(P0) is diffeomorphic toS 4 or6(K ′). Thus, by our as-
sumption, we have{S 4, 6(K)} = {S 4, 6(K ′)} as sets of diffeomorphism classes
of homotopy 4-spheres. If6(K) ∼= S 4, then the number of elements of the set is
equal to 1 and hence we haveS 4 ∼= 6(K ′). If 6(K) 6∼= S 4, then the number of
elements of the set is equal to 2. Thus6(K ′) 6∼= S 4 and, by the foregoing equal-
ity, we have6(K ′) ∼= 6(K). This completes the proof.

Viro showed that there exists a nontrivial 2-knotK in S 4 such thatP0 ]K is iso-
topic toP0 ([V]; see also [PR]). By Theorem 0.1 (or Corollary 3.4), for such a
2-knotK, 6(K) is diffeomorphic to the 4-sphere.

As a generalization of Viro’s construction, let us consider a 2-knotK in S 4 and
consider the local move as depicted in Figure 6. A disk and an annulus, which are
parts ofK, are properly embedded in a 4-ballD4 ∼= D3 × [−1,1] in S 4, and we
change those parts ofK in the 4-ball (or, more precisely, inD3× {0}), as in Fig-
ure 6, without changing the other parts. Then it is not difficult to show that if a
2-knotK is changed toK ′ by a finite number of local changes of this type, then
the pairK andK ′ satisfies the assumption of Corollary 3.4. Note that this type
of operation, which is a slight generalization of Viro’s example, does create many
pairs ofdistinct2-knots(K,K ′) such thatK ]P± is isotopic toK ′ ] P±.

Thus we have the following result, which purely concerns Gluck surgeries along
2-knots.

Corollary 3.5. LetK andK ′ be2-knots inS 4. If K is transformed toK ′ by
a finite iteration of local changes of the type just described, then6(K ′) is diffeo-
morphic to6(K).
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Figure 6

Note that a more general version of this corollary has been obtained in [HMY] by
using a different method.

It has been known that, for certain 2-knots inS 4, the results of the Gluck sur-
geries along them are diffeomorphic toS 4 (see e.g. [Gom1; Gor; HMY; Mo; Pl]).
Note that we do not know if the Gluck surgery along every 2-knot gives a homo-
topy 4-sphere diffeomorphic to the standard 4-sphere (see [Kir1, 4.11, 4.24, 4.45]).
The answer to this question will be affirmative if the following problem is nega-
tively solved.

Problem 3.6. Does there exist a smoothly embedded projective planeP in S 4

such that the Price surgery alongP gives a homotopy 4-sphere that is not diffeo-
morphic toS 4?

The following corollary is a direct consequence of our Theorem 0.1 and [AR,
Thm. 4.6].

Corollary 3.7. LetK be a2-knot inS 4 and let5(P0 ]K) be the homotopy
4-sphere obtained by the Price surgery alongP0 ]K. Then5(P0 ]K) ]CP 2 is
always diffeomorphic toCP 2.
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We do not know if this corollary holds for homotopy 4-spheres obtained by Price
surgeries along arbitrary projective planes inS 4.

Remark 3.8. Here we note that all known examples of projective planes smoothly
embedded inS 4 are isotopic to the connected sum of a standardly embedded pro-
jective plane and a 2-knot. In [Ka1; Ka2; Kin; PR, Sec. V], some examples of such
knotted projective planes whose exteriors have fundamental groups not isomor-
phic to Z 2 have been constructed and studied. In fact, theKinoshita conjecture
posits that every smoothly embedded projective plane inS 4 is isotopic to such a
connected sum. (Although this conjecture has not appeared in the literature, it has
been known to knot theorists in Japan for many years; see e.g. [Yo].) If this conjec-
ture is true, then our Theorem 0.1 would imply that the homotopy 4-spheres pro-
duced by Price surgeries along embedded projective planes inS 4 are nothing but
the homotopy 4-spheres produced by Gluck surgeries along embedded 2-spheres
in S 4.

Remark 3.9. It has been known that there exist inequivalent 2-knots inS 4 with
diffeomorphic exteriors (see [CS]). We do not know if there exist inequivalent pro-
jective planes inS 4 with diffeomorphic exteriors. Note that, by [P], there are at
most two such projective planes with a fixed exterior. For example, for the 2-knots
K andK ′ of [CS] with the properties just described, we do not know ifP0 ]K

andP0 ]K
′ also have the same property.

Remark 3.10. In [Y3] it was shown that, for certain 2-knotsK andK ′ in S 4,

there exists a self-diffeomorphismϕ of Q such thatE(P+ ]K) ∪ϕ −E(P+ ]K ′)
is diffeomorphic toS 4. Furthermore, in [KS] it was shown that, ifP andP ′ are
topologically locally flatly embedded projective planes inS 4 with the same nor-
mal Euler number and such that eitherP or P ′ is the connected sum ofP0 and a
locally flat topological 2-knot inS 4, then there exists a self-homeomorphismϕ of
Q such thatE(P ) ∪ϕ −E(P ′) is homeomorphic toS 4.

Remark 3.11. Theorem 0.2 (or Lemma1.1) showsthat one can construct infi-
nitely many mutually nonisotopic smooth embeddings of the quaternion spaceQ

intoS 4. Conversely, letf : Q→ S 4 be an arbitrary smooth embedding. In [KS] it
was shown that the closure of each connected component ofS 4−f(Q) is homeo-
morphic to the exterior of some topologically locally flatly embedded projective
plane inS 4.

4. Gluck Surgery in an Arbitrary 4-Manifold

LetM be a connected smooth 4-manifold andK a smoothly embedded 2-sphere
in M with trivial normal bundle. Furthermore, letP0 be a smoothly embedded
projective plane inM such that (i) it is contained in a 4-diskD4 in M, (ii) it is
standard as an embedding intoD4, and (iii) it has normal Euler number±2. Note
thatP0 is uniquely determined up to isotopy ifM is nonorientable and that there
are exactly two isotopy classes corresponding to the normal Euler numbers±2
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if M is orientable. We denote byP0 ]K the connected sum ofP0 with K in M.
Note that∂N(P0 ]K) is diffeomorphic toQ, whereN(P0 ]K) is a tubular neigh-
borhood ofP0 ]K in M.

Our main result of this section is the following.

Theorem 4.1. LetM,K, andP0 be as before. Then there exists a self-diffeomor-
phismϕ ofQ such that the4-manifold5(P0 ]K)ϕ obtained by the Price surgery
alongP0 ]K with respect toϕ is diffeomorphic to the4-manifold6(K) obtained
by the Gluck surgery alongK.

Proof. We may assume thatP0 = P+. LetD4
0 be a smoothly embedded 4-disk in

M such that the following conditions hold:

(1) the 2-sphereK and∂D4
0 intersect transversely along a circle; and

(2) the pair(D4
0,D

4
0 ∩K) is a standard disk pair.

Let M1 denote the closure ofM − D4
0 and letT1 be a tubular neighborhood of

K ∩M1 inM1. Note that the closureE ′(K) ofM1− T1 inM1 is diffeomorphic to
the exterior ofK inM and thatT1 is considered to be a 2-handle attached toE ′(K).

LetD ′ be a properly embedded 2-disk inD4
0 which does not intersectK ∩∂D4

0,

such that(D4
0,D

′) is a standard disk pair and the link∂D ′ ∪ (K ∩ ∂D4
0) is as in

the left-hand side of Figure 1, where the dotted circle corresponds toK ∩ ∂D4
0.

Let T ′ denote a small tubular neighborhood ofD ′ in D4
0. Note thatT ′ is also

considered to be a 2-handle attached toM1 (see Figure 7) and thatE(P+ ]K) ∼=
E ′(K) ∪ T ′. We denote byE0 the closure ofD4

0 − T ′ in D4
0. Then the operation

of a Price surgery alongP+ ]K is to cut offE0 ∪ T1 fromM and then reglue it
using a self-diffeomorphism ofQ.

Figure 7
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Then (by an argument similar to that in the proof of Theorem 0.2) we see that,
by a self-diffeomorphismϕ ofQ ∼= ∂(E0∪T1) corresponding tof10, the 2-handle
T1 is attached toE ′(K) along a circle in∂D4

0∩E ′(K) that corresponds to the circle
with framingn in Figure 5. By an argument similar to the proof of Theorem 0.2
and Lemma A.2, we see that the resulting 4-manifoldE ′(K) ∪ T1 is diffeomor-
phic to6(K)◦ and that the union ofE0 andT ′ is diffeomorphic toD4. Hence
the result of the Price surgery alongP+ ]K with respect toϕ is diffeomorphic to
6(K). This completes the proof.

Remark 4.2. Akbulut [Ak1; Ak2] constructed an example of an embedded 2-
sphereK in a 4-manifoldM such that6(K) is homeomorphic but is not diffeo-
morphic toM. Such an example, together with our Theorem 4.1, gives an example
of a smoothly embedded projective plane in a 4-manifold such that a Price surgery
gives an exotic 4-manifold.

Appendix: Framed Link Representation of666(K )

In this section we introduce a method to describe a 2-knot exterior by a framed
link in S3, and we also describe the homotopy 4-sphere6(K) obtained by the
Gluck surgery along a 2-knotK in S 4 by using such framed links.

Let (D4,D2
0) be a standard disk pair; that is,D2

0 is an unknotted 2-disk prop-
erly embedded in the 4-diskD4. LetK be a 2-knot inS 4. We considerK to be
embedded in the interior ofD4 and letD2

0 ]K denote the connected sum ofD2
0

andK in the interior ofD4. LetN(D2
0 ]K) be a tubular neighborhood ofD2

0 ]K

inD4. Note that the closureE ′(K) ofD4−N(D2
0 ]K) inD4 is diffeomorphic to

the exteriorE(K) of K in S 4.

Definition A.1. We denote the compact 4-manifoldE ′(K) by the framed link
consisting of an unknotted circle inS3 with a dot and with symbolK attached to
it (see Figure A1). In the framed link representation, the exterior of the unknotted
circle inS3 coincides with∂D4 ∩ E ′(K).

Figure A1

When the 2-knotK is unknotted,E ′(K) is diffeomorphic toS1 × D3 and the
framed link representation ofE ′(K) as in the preceding definition (but without
the symbolK) coincides with the usual framed link representation of a 1-handle
attached to a 0-handle (see e.g. [Kir2, I, Sec. 2]). In other words, Definition A.1
is a generalization of the framed link representation of a 1-handle.

Our main result of this appendix is the following.
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Lemma A.2. For an integern and a2-knotK in S 4, consider the compact4-
manifoldM(K, n) represented by the framed link as in Figure A2. In other words,
M(K, n) is obtained fromE ′(K) by attaching a2-handle along the undotted cir-
cle in ∂E ′(K) as in Figure A2 with framingn. ThenM(K, n) is diffeomorphic
toD4 if n is even and to6(K)◦ if n is odd, where6(K) denotes the homotopy
4-sphere obtained by the Gluck surgery alongK and6(K)◦ = 6(K)− IntD4.

Figure A2

This lemma may already be a “folklore” fact. However, we include a proof here
for completeness.

Proof of Lemma A.2. First we considerK to be embedded inS 4. Take a small
4-diskD4

0 in S 4 such that the following conditions hold:

(1) the 2-knotK and∂D4
0 intersect transversely along a circle; and

(2) the pair(D4
0,D

4
0 ∩K) is a standard disk pair.

Let the closure ofS 4−D4
0 be denoted byD4

1 . Then letTi ∼= D2×D2 (i = 0,1)
be a tubular neighborhood ofD4

i ∩ K in D4
i such thatT0 ∩ ∂D4

0 = T1 ∩ ∂D4
1 =

T0∩T1 is a tubular neighborhood ofK∩∂D4
0 in ∂D4

0. Note thatT0∪T1
∼= S2×D2

is a tubular neighborhood ofK in S 4 and that the closure ofD4
1 −T1 is diffeomor-

phic toE ′(K).
Considerτn = τ n,whereτ is the self-diffeomorphism ofS2×S1= Ĉ×S1 as in

Section 0. We identify the boundary ofT0∪T1 with S2×S1 so thatT0∩∂(T0∪T1)

(resp.T1∩ ∂(T0∪ T1)) corresponds toD2
+ × S1 (resp.D2

− × S1), whereD2
+ (resp.

D2
−) is the unit disk inC (resp. the complement of the open unit disk inC together

with {∞}).
Then consider the surgery operation of cutting offT0∪ T1 from S 4 = D4

0 ∪D4
1

and regluingT0 ∪ T1
∼= S2 × D2 by usingτn. By [G], the resulting 4-manifold

M is diffeomorphic toS 4 if n is even and to6(K) if n is odd. Since the diffeo-
morphismτn preserves the decompositionS2 × S1 = (D2

+ × S1) ∪ (D2
− × S1),

this 4-manifold decomposes asM0 ∪M1, whereMi (i = 0,1) is the 4-manifold
obtained by the surgery operation of cutting offTi from D4

i and regluingTi ∼=
D2 ×D2 by usingτn restricted to(Ti ∩ ∂(T0 ∪ T1)).

Since(D4
0,D

4
0 ∩K) is a standard disk pair, it is easy to show thatM0 is always

diffeomorphic to the 4-diskD4. On the other hand, the closure ofD4
1 − T1 is dif-

feomorphic toE ′(K) andT1
∼= D2×D2 can be regarded as a 2-handle attached to

E ′(K). The attaching circle ofT1 is isotopic to the undotted circle shown in Fig-
ure A2 in∂E ′(K) and the framing is equal ton, since we useτn for the attaching
map. Thus we have shown thatM1 is diffeomorphic toM(K, n).
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Summarizing these observations, we have thatM(K, n)∪D4 is diffeomorphic
to S 4 if n is even and to6(K) if n is odd. Thus we have the conclusion, which
completes the proof of Lemma A.2.

If a compact 4-manifoldM is represented by a framed link that has dotted circles
with a symbolK, then one can obtain a usual framed link representation of the
boundary 3-manifold∂M by the following lemma.

Lemma A.3. Suppose that a framed linkL has an unknotted circled with a dot
and with aK. LetL′ denote the framed link obtained fromL by removing the dot
and the symbolK from the componentd and replacing them with a0 as a fram-
ing number. Then the boundary3-manifolds of the4-manifolds represented byL
andL′ are diffeomorphic to each other.

Proof. We use the same notation as in the paragraph just before Definition A.1.
Let ν : D2×D2→ N(D2

0 ]K) be a diffeomorphism withν(D2×{0}) = D2
0 ]K

such thatN(d) = ν(∂D2 × D2) is a tubular neighborhood ofd in ∂D4, where
0 is the center of the diskD2. Note that the framing number corresponding to
the diffeomorphismν|∂D2×D2 is equal to 0, sinced and the parallel circled ′ =
ν(∂D2 × {p}) bound disjoint disks inD4, wherep is a point on∂D2.

Let W denote the 3-manifold represented by the framed linkL − d, which
coincides with that represented byL′ − d. Then we see that the boundary of the
4-manifold represented byL is diffeomorphic to(W −N(d)) ∪ ν(D2 × ∂D2).

Since the framing number corresponding to the diffeomorphismν|∂D2×D2 is equal
to 0, we see that the boundary 3-manifold is also represented by the framed link
L′. This completes the proof.
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