Birational Maps, Positive Currents,
and Dynamics

JEFFREY DILLER

1. Introduction

There has been a great deal of recent research in multivariable complex dynamics,
most of it devoted to either polynomial diffeomorphisms@f or holomorphic

maps ofP”. Pluripotential theory plays a prominent supporting role in nearly all
this work. Our concern in this paper and its predecessor [Dil] is to extend the ap-
plication of pluripotential theory to study dynamics of birational mapB &f

Anyone who seeks to understand the dynamics of a birational fnap? —

P2 faces an immediate problem: birational maps are not generally maps. That is,
except whenf, has degred = 1, there exists a finite non-empty st of points
where f, cannot be defined continuously. In a precise sefiséblows up” each

of these points of indeterminacy to an entire algebraic curve. Nevertheless, we be-
lieve that it is worthwhile to pretend as far as possible that birational maps really
are diffeomorphisms.

Maintaining this pretense means (among other things) that we must generalize
operations like pushforward and pullback that are natural for diffeomorphisms.
Since we intend to use pluripotential theory, it is particularly important to make
sense of these operations as they apply to positive currents. Already in [Dil] we
observed that there are at least two reasonable ways for a birational map to act on
a positive closed1, 1) currentT. In order to distinguish between these actions,
we refer to them as pushforwaydl. T and pullbackf T, respectively. Intuitively
speaking, the first action discounts any contribution from the indeterminacy set
whereas the second (defined by pulling back a potential function) takes the fullest
possible account of such contributions. Theorem 2.3 gives a precise condition for
agreement between pushforward by a birational map and pullback by its inverse.
Namely, one has agreement if and only if the so-called Lelong numbé&rvaih-
ish at each point id ™.

Our first application of Theorem 2.3 is to a natural current associated with iter-
ates of a birational map. By pulling back and rescaling the Fubini—-Study Kéhler
form ®, one obtains a positive closétl 1) current

wt = lim i

n—o00 "

fire.
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That this limit exists was proven in [Dil]. Itis immediate, moreover, tfig" =
d - wt. Here we show (Theorem 2.9) that is extremal—that is, the only pos-
itive closed(l, 1) currents dominated byt are multiples ofu*. Aside from its
dynamical significance as a sort of ergodicity property:tf Theorem 2.9 pro-
vides a new source of naturally arising, nonalgebraic extremal currents.

Bedford and Smillie [BS1; BS2] considered the action of polynomial automor-
phisms on certainonclosed3, 1) currents and thereby obtained many useful dy-
namical results. Following their lead, in Section 3 we consider the action of a
birational map on a current of the forn7, wherey : P2 — C is a cutoff func-
tion andT is a positive closedL, 1) current. We show under fairly general condi-
tions that the sequenc#/d”) f, (¥ T) converges to a multiple of~, that is, the
invariant current associated with the inversefof The main novelties in this sec-
tion are the definition and means we provide for making sengé¢ af/ 7). Once
these are in place, Theorem 2.9 and the methods of Bedford and Smillie combine
to give the desired results.

In the final section of the paper, we give several applications of the results from
Section 3. We show that supg is nowhere dense unless it contains supp
With stronger hypotheses gfy, we are able to generalize some results of Bed-
ford and Smillie for polynomial diffeomorphisms. Namely, sypp coincides
with the boundary of the basin of any attracting periodic point and with the clo-
sure of the stable manifold of any saddle periodic point. In a somewhat different
vein, we show that supp"™ N suppu™ consists only of nonwandering points and
exhibit another ergodic-type property @f that fails even in fairly simple exam-
ples outside the birational setting.

2. Birational Maps Acting on Positive Closed (11) Currents

Let7: C3\ {0} — P? be the canonical projection giving homogeneous coordi-
nates orP2. Any rational mapf : P? — P? can be regarded as the natural relation
induced by a homogeneous polynomial mapC3? — C3. Clearly, f does not
change if we multiply each of the coordinates iy the same homogeneous
polynomial. Therefore, we will assume thAtis aminimal representative fof

in the sense that the coordinate functiong dfave lowest possible degree. Under
this assumption, we define the (algebraic) degreg tf be the degree of .

The critical setC of f is an algebraic curve equal to the image undesf the
critical set of f. It can happen thaf ~1(0) is nontrivial even whery is minimal.
In this casef ( (p)) is ill-defined whenevef () = 0. The setl = 7 (f%(0)) C
P2 of all suchpoints of indeterminacig always finite, and we will persist in writ-
ing f: P2 — P2 asif f were well-defined everywhere.

A rational mapf,. : P2 — P? is birational if there exists another rational map
f-: P2 = P?and an algebraic curv€ such thatf, o f_. = f_o f,. = id on
P2\ V. The use ofi-/— superscripts to distinguish a birational map from its ra-
tional inverse emphasizes the fact thfatand f_ are not, strictly speaking, set
theoretic inverses. We will usg/— subscripts and superscripts in all of what fol-
lows to distinguish objects correspondingftofrom objects corresponding tf. .
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For instance/ ~ denotes the indeterminacy set ffir. The following proposition
(see [Dil] for a proof) describes the relationship between indeterminacy and crit-
ical sets for a birational map.

ProrosiTioN 2.1. The following statements are true for any birational map

P2 — P2,

(1) 1+ c C*, and each irreducible component 6f" contains a point of *.

(2) Given any irreducible curv& c C*, f.(V)is asingle pointin/ —; likewise,
givenanyp~ el Jr‘l(p*) is a component of .

(3) f.: P2\ Ct — P2\ C" is abiholomorphism.

We make an important technical distinction between the image of a closé&d set
under f, and its preimage undet_. We declare thay, (K) = f.(K \ IT) and

“YK) ={peP2\I-: f-(p)€K}. Ingeneral,f.(K) C fXK), but the
inclusion can be strictiK N I+ # @.

Degree-1 birational maps &2 are dynamically rather simple, so we assume
in what follows that all birational maps under consideration have degree greater
than 1. Such maps will necessarily have non-empty critical sets and thus (by Propo-
sition 2.1) non-empty indeterminacy sets as well. Therefore, one must be rather
careful when using a birational map to transform an analytic object such as a form
or a current.

We want specifically to consider actions of birational maps on positive closed
(1,2) currents. Before doing so, however, we fix some notation and recall a couple
of facts about positive currents &¥. For more thorough background on positive
currents, we refer the reader to the book by Klimek [KIi] and survey articles by
Demailly [Dem] and Skoda [Sko].

Themassof a positive currenf” on a setk C P?is

Mk[T] =sup(T(p) : |¢| <1, suppp C K }.

Of course, this definition implies the choice of an Hermitian metric on a neighbor-

hood ofK, but for any two such choices the resulting mass norms are comparable.
Where we do not indicate otherwise, we imply the use of the Fubini—study metric
onP?, letting ® denote the associated Kahler form. It turns out that

1T E M po[T] =/ T AO.
p2

A positive closed(l, 1) current can be expressed locally @&$“u for some
plurisubharmonia. Fornaess and Sibony [FS2] have in fact observed thatthereisa
correspondence between positive cloged)-currentsl” onP? andhomogeneous
potentials—that is, plurisubharmonic functioris: C® — R U {—o0} satisfying
i(Ap) = u(p) + clog|r| for everyr € C, p € C® and some: > 0. They show
that, givenT, there exists @ such thatt*T = dd‘u. It follows thatc = || T|| and
i is unique up to addition of a constant. Likewise, any homogeneous poténtial
induces a positive closed, 1) current” onP?. If U c P?ando: U — Clisa
holomorphic section, thefi|, is given bydd‘(ii o o). Homogeneity guarantees
that this definition does not depend on the choice of section.
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In [Dil] we discussed two actions of a birational m#p: P2 — P2 on a posi-
tive closed(, 1) current” with homogeneous potential First of all, we defined
the “pullback” byr*f* T = dd‘(iio f). Besides its consistency with notation used
in related papers (e.g. [HuPa; FS2]), this definitiory¢" has the advantage that
mass transforms predictably according to the forilaT | = (deg /)T ||. As
we hope will emerge in what followg/# T is in some sense the largest reasonable
notion of the preimage df, generalizing the notion of the total transform of an
algebraic curve by a rational map.

We also defined the pushforward Bfby f. . Taking advantage of the fact that
f+1P2\C* — P?\C~ is abiholomorphism, we first push the restrictiblpz, ¢+
forward to a positive closed., 1) current onP? \ C~. We then extend" by zero
acrossC~. Thanks to an extension theorem of Harvey and Polking [HaPo], the
result is a well-defined positive clos€tl 1) current onP2. We denote this cur-
rent by /.. T. It should be clear thaf, .T is the smallest reasonable notion of
the image ofT, analogous to the proper transform of a curve by a rational map.
Before stating the next proposition, we recall tifais extremalamong positive
closed(l, 1) currents if every decompositich = T1 + T, into a sum of positive
closed currents is trivial, that is, f; = ¢;T.

ProrosiTiON 2.2. If T is extremal, then so ig, . T. If T|¢c+ = 0and f,.T is
extremal, then so i¥.

Proof. First assume thaf is extremal. Letf,,T = S; + S, be a decomposition
in which S; dominates no positive multiple of_. 7. It is clear that pushforward
acts linearly and preserves positivity, so item (5) of Proposition 4.7 in [Dil] gives
thatT > f_, fi. T > f .S1. Thatis,T = f_.S1+ (T — f_,S1), SO f_S1=cT.
Using the same fact from [Dil], we then conclude tSat> ¢f..T and therefore
¢ = 0. The only nontrivial elements in the kernel ff, are supported o6, and
by definition £, ,T has no support on this set. Henge= 0.

Now assume thaf, . T is extremal and thaf has no mass concentrated@®h.
Let T = T+ T, be a decomposition, and note that, 7 = f .71+ fi+T>.
It follows that f,.T1 = cf..T. From the aforementioned fact in [Dil], we have
T1=cT. O

As with images and preimages of closed sets, it is not always the cagg {iat=

f*T. The main result of this section is a necessary and sufficient condition for
equality. To state it, we recall that thelong numbeof a positive closed current

T atp € P?is given in local coordinatescentered ap by

. 1
@ =im [ T

llzll<r

whered = dd¢||z||?. If T = dd‘u nearp, then the Lelong number can be com-
puted fromu by

v(T, p) =sup{y = 0:u(g’) < ylogdist(p,q) + O} @
(see [Dem, eq. (5.5e)]).
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THEOREM 2.3. Suppose thal is a positive closedd, 1) current onP? and that
f+: P? — P?is birational. Thenf*T — f,.T is a nonnegative linear combi-
nation of currents of integration over componentsCof. Furthermore, f, . T =
f*T ifand only if v(T, p) = 0 foreveryp e It.

This theorem is a consequence of the following result about Lelong numbers.

THEOREM 2.4. Suppose thaf is a positive closedl, 1) current onP?. Then
v(f*T, p) # 0if and only if eitherp € I~ or v(T, f_(p)) # 0.

An earlier version of this paper contained a proof of this result. However, recent
papers of Favre [Fa2] and Kiselman [Kis] generalize the result to arbitrary ratio-
nal maps ofP”, so for brevity’'s sake we refer the reader to those papers for the
proof.

Proof of Theorem 2.3Sincef, : P2\C*™ — P2\ (" is a biholomorphismf, T
andf* T coincide with the usual notions of pushforward and pullbacRékhC .

In particular, they coincide with each other on this set. Hefic& — f,.T

is supported or€ . The restriction off,,.T to C~ is trivial by definition, so
f*T — f1,T is positive. Awell-known theorem [Siu] implies thgt 7 — f,,T =

Y vee- cv[V], whereV C C~ is an irreducible component amg > 0. If ¢y >

0 thenu(T, p) > 0O for everyp € V. Therefore, we can apply Theorem 2.4 to any
p €V \ I~ and conclude that(7, f_(p)) > 0. Sincef_(p) € I'", the “only if”
portion of the theorem holds.

If, on the other handf*T = f,.T, then it follows that the restriction of *T
toC~ is trivial. Thus, by Siu’s results again( f* 7, p) = 0 for everyp € C~ out-
side a countable subset. Egek I is the f_-image of some nontrivial algebraic
curve inC—, by Proposition 2.1—in particulap = f_(g) for someg such that
v(f*T, q) = 0. Therefore, Theorem 2.4 implies thatT, p) = 0 as well. O

2.1. Application: Invariant Currents are Extremal

We now present a dynamical application of Theorem 2.3. For this, it is necessary
to recall some results from [Dil].

ProrosiTION 2.5. The following statements are equivalent for a birational map
f+: P2 — P2 with degreed > 2 and inversef_:

(1) deg f!) =d" forall n;
(2) I N fr~) =9 forall n;
@) frahHn ey =g foralln,m> 0.

We will call a birational magalgebraically stabléf it satisfies any of the equiv-
alent conditions in the conclusion of this proposition. This accords with a recent
survey article [Sib] wherein the term is applied to any rational map whose iterates
have maximal degree growth. It turns out that an algebraically stable map admits
a dynamically invarianGreen’s function.
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THEOREM 2.6. If f. is algebraically stable, then the sequence
1 ~
Nim % 1oglL

converges pointwise and itk _ to a plurisubharmonic functio&* satisfying

loc
(1) G*o fi(p) =d-G*(p) and
(2) G*(Ap) = G (p) + log|A|
forall peC2andallx eC.

Green'’s functions for holomorphic mapsBf were first introduced by Hubbard
and Papadopol [HuPa] and further studied in the more general setting of rational
maps by Fornaess and Sibony [FS2]. In [Dil] we proved the theorem just stated,
and then Favre [Fal] gave a quite different proof. Sibony [Sib] has recently given
a very elegant proof for existence of a Green’s function that appliasyalge-
braically stable rational map &t".

We note thatf, determinesG* only up to an additive constant. By replacing
f+ with a small multiple off.., one can arrange that the sequence defigings
actually decreasing. We refer to the unique induced currént = dd°G™* as
the escape currenfor f,. We showed in our previous paper that transforms
well under £, and thatu™ attracts a large set of currents under pullback.

TueoreM 2.7. The currentu for an algebraically stable birational map has the
following properties

(1) u* has no support concentrated on any algebraic cysee[FS2]);

(2) ut = fiut)d = fut/d =d- frout.

Suppose thay c P?is a(possibly empfyopen set containing all superattracting
periodic points of an algebraically stable birational mgp: P? — P2. Suppose

that {7, } is a sequence of positive closédl1) currents such thasuppZ, " W =
¢ and that| 7;,|| = ¢ is constant with respect to. Then

. 1
lim — f*7, = cu’.

n—o0 "

Forany 1< n < oo, setll = Uj;(,lff(1+). An immediate consequence of
Theorem 2.3 and Theorem 2.7(2) is the following.

COROLLARY 2.8. If f,: P2 — PZis algebraically stable, them(u*, p) = 0
foreachp e I.

Another consequence of Theorems 2.3 and 2.7—and the main result of this sec-
tion—is an “ergodic” property fop™.

COROLLARY 2.9. If f,: P? - P2?is algebraically stable, thep™ is extremal in
the cone of positive closed, 1) currents.
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This corollary is proven for Hénon maps in [FS1, Sec. VI1.3]. Our proof is a gen-
eralization of the one given there.

Proof. Suppose that™ dominates a positive closed curreht (We will show
T = cpu™.) It follows from Theorems 2.7 and 2.3 that bofli, 7 and f*T are
dominated by multiples o for all » > 0. Consequently, Corollary 2.8 implies
thatv(f},7, p) = 0 at every pointin/_.

We showed in [Dil] that" — f"_f!',T is positive and concentrated on an alge-
braic curve. Sincect concentrates no support on any algebraic curve, we must
actually haveT = f" f*.T for all n. Theorem 2.3 implies further that =

fr.T. In particular,

ITI =TI =d" - T

Hubbard and Papadopol [HuPa] showed that, if iterates farm a normal fam-
ily on an open seW, then suppe™ N W = @. Therefore, there is a neighborhood
W of any superattracting cycle such that

(suppf{,T)NW C (suppu®) N W = ¢

for all n. We can now apply the last part of Theorem 2.7 to the sequé&nee
d"fi.T to conclude that

1 1 n*x nrn
17l = lim - f@" f2,7) = 7. O

3. Pushforwards of Nonclosed Positive Currents

For many purposes, the last part of Theorem 2.7 is not strong enough. In this
section we will extend that statement to include closed currents that have been
“truncated” by contraction with cutoff functions. That is, for birational maps we
will prove the analog of Theorem 1.6 in [BS2]. Actually, we will prove two such
analogs: one imposes a weak hypothesis on the map but a somewhat restrictive
hypothesis on the current; the other places less restriction on the current but only
in exchange for a stronger hypothesis concerning the map. Substantial technical
details aside, the proof that we give—especially Lemmas 3.2 and 3.3—largely
follows the one given in [BS2]. However, at the conclusion of the proof, our ap-
proach diverges from [BS2] and instead follows [FS1, Sec. VII.3] more closely.
Throughout this section, léf ¢ P2 be a given open sef, a positive closed
(1,2) current onU, ¥: U — C a smooth function with compact support, and
f+: P? — P2 abirational map. First, we borrow an idea from [RS] to provide a
workable definition off, . (' T). LetT" ¢ P2 x P2 be the irreducible analytic sub-
variety obtained as the closure of the graptfofpz +. Leta, B: P? x P2 — P2
be projection onto the first and second coordinates. Sinoéght be singular, we
consider a desingularizatidh— I of I'. Abusing notation slightly, we continue
to usea and B to denote the pullback tb of the projection functions. It is evi-
dent that the exceptional set@f I' — P2 is the 1-dimensional “vertical” curve
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o X(I). Itis also clear thatr: T\ « %(I*) — P2\ IT is a biholomorphism.
Therefore, we can liff’ to a positive closedL, 1) currente*T ona%(U) C T by
pushing forward wittx > on U \ I and then extending trivially across*(/*).
The extension theorem of [HaPo] guarantees #idt is positive and closed on
a~XU). We definef,,(¥T) by its action on test forms:

([ T), @) = (@"T, (Y o) B"p).

In what follows we may assume, with no loss of generality, th# real and non-
negative. Clearly, this assumption implies that bgthand f, . (¥ T) are positive
currents.

If U = P2 andys = 1, then the definition of pushforward we have just given
coincides with the one given in Section 2. In fact, more is true.

ProposiTioN 3.1.  Suppose thag;: P? — [0, 1] are smooth functions such that
x; vanishes on a neighborhood 6f~ and supp(1— x ;) decreasest6~ asj —
oo. Then, for any test form, we have

(f+(WT), ¢) = i'L”;O(fHT, Xj(W o fe) = jli_)ngO(WTv Fi(x9).

The pushforward in the middle expression and the pullback in the right-hand ex-
pression can be understood to take place with respect to a biholomorphic map.

Proof. What is needed is to show thAt . (v 7) concentrates no mass 6n. Note
that3~X(C~) = «X(C*) can be divided into two component§=1(C~\ I-) =

a Y(ItyandBXI7) = «~L(C* \ I+). We have that* T concentrates no sup-
port on the first component by definition, aftly is identically zero on the second
component. Therefore, the restrictioncdf(y/T) to f~1(C~) contributes nothing
to the pairingla*(y¥T), B*p). O

In order to state and prove the following lemma, we recall that one can sometimes
use an “integration by parts” construction to define wedge products of positive
closed currents (see [BT; FS3] for details). Namely if= ddu andS = ddv

are positive closedl, 1) currents on an open subdét- C2 and ifu is continuous,

then one declares

/ oT NS (S, uddy)
U

for anyg € C3°(U). This continuously extends the usual notion of wedge prod-
uct of smooth currents in the sense thaty;ibndv; are smooth plurisubharmonic
functions decreasing (resp.) ioandv, thendd“u; A dd‘v; — S A T weakly.

In particular,T A S is a positive Borel measure. For purposes of this paper, we
will say that a wedge produdt A S of positive closed currents edmissibleif,

near each point, at least one of the currents has a continuous local potential. In
particular, a necessary condition for admissibility7oi u* is thatT have con-
tinuous potentials in a neighborhood of each point indgkiended indeterminacy

setZt = I%.
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LemMa 3.2. Suppose thaf, is algebraically stable of degre¢and thatT ad-
mits a wedge product with™. Then

lim —f fL.WTYA® = /1//TAM

n—o0 "

In particular, there is a constar@ such thatMpz[ /7, (¢ T)] < Cd" for all n.

Proof. LetC; = Uy f71(C*) andC; denote the critical sets of and f”,
respectively. Lety;: P2 — [0, 1] be a sequence of smooth functions such that
x; = 0in a neighborhood of, and suppl — x;) decreases t6, . Then, by
Proposition 3.1, we have

- L), e) = Jim W (xjo [ f1*O)
Local potentials forf *® are unbounded only at pointsif, soT admits a wedge
product with f*® (viewed as a positive clos€d, 1) current). Recall further that
local potentials for1/d") f*® may be taken to decrease to local potentials for
wt. Therefore, we continue to compute

. 1 . 1
lim = (T, (x, o f1)F1°0) = lim — / (x) 0 ST A F1°0
j—oo dn j—oo d" p2

1 nx +
< — YT A f7O — YT A’
d" P2 p2

Itremains to show that the last inequality is actually an equality—in other words,
that the measurg A f'*® concentrates no mass 6fi = (ff)‘l(Cn‘). Note first
that f*© is smooth everywhere exceptigt. Therefore, it follows directly from
the integration-by-parts definition of wedge product thiat f*® will not con-
centrate mass afi \ /.- unlessI” does. ButifT concentrates mass @i}, then
the theorem of Siu (mentioned in the proof of Theorem 2.3) impliesthddm-
inates a multiple of the current of integration over some componefif ofThis
would be inconsistent with the assumption that local potential¥ fare continu-
ous near points ifif . Therefore, we need worry only about mass focused at points
in I;F. However, continuous local potentials férnear/;" rule out point masses,
which can be established by essentially the same argument used to prove Corol-
lary 2.5in [BT]. O

Lemma 3.3.  Given the hypotheses of Lemma 3.2, the sequeheeSof;, (v T)
and (1/d")dd‘f},(¢T) tend to zero in the mass normas— oo.

Proof. Let A be a test 1-form ofP?2 such that|)|. < 1 LetI' be the desin-
gularization of the graph of’, with coordinate projections and 8. Choose a
compactly supported smooth functign: U — [0, 1] such thatyy = 1 on a
neighborhood of supp. Then
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(fEUT. dL)] = [ T.d(¥ o) A B4
< (o T a*(dy) Ao d Y)Y (@ T, —i(Yroa)B*A A B1)Y2
= (T dy AdY)2(f1, (T, —ir A2
< Cdn/z

The first inequality is essentially Schwarz’s inequality. The second equality fol-
lows from the facts thal’ concentrates no mass dri, that by definitiono* T
concentrates no mass en(/*), and thatw: I' \ « X(/T) — P2\ IT is a bi-
holomorphism. Thuga*T, a*(dy A d°v¥)) = (T, dy A d°y), as asserted. The
last inequality follows from the previous lemma. SinEetends toco with n, we
see thatl/d")df}, (¥ T) tends to zero at a rate independentefthat is, in the
mass norm.

If p: P2 — Cis a test function with|p||c < 1 then we have

fE T, ddp)l = (™ T, (p o B)dd (Y o))
=((@"T) A (ddY), po B)
< M[a*T A a*dd V]
= M[T Addy].

The last equality holds becaus&T A a*dd v puts no mass oa~1(/*). Divid-
ing through byd" finishes the proof. O

We continue to assume that the hypotheses of Lemma 3.2 hol& demnote the
set of all limit points of the sequence of currefiy/d”) /!, (¥T)}. Lemma 3.3
implies that all elements & are closed. Lemma 3.2 implies th&is non-empty
and that anys € S satisfies

IS = / VT At
p2

The first of our two convergence theorems addresses the case Wiwedefined
on all of P?.

THEOREM 3.4. Suppose thaf., is algebraically stable and” extends to a pos-
itive closed current oP?. If T admits a wedge product with* (at least near
suppy) then, in the weak topology on currents, we have

.1
lim — fI . (yT) = / YT Ap’ ).
n—oo " p2
Proof. Clearly 4T is dominated byj|v|.T. Remark 4.16 from [Dil] (a variant
on the last part of Theorem 2.7) implies that
1
lim —

n—oo "

n H 1 n* —
FIT = Jim T = T -y
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Therefore, any element &fis dominated by 7'|| - |||l - #~. Corollary 2.9 then
implies that any element & is a multiple ofu—; thatis,S = ||S|| - u~. The re-
marks preceding the statement of this theorem deteritfijainiquely. O

The second of our convergence theorems addresses the caselWwhei glob-
ally defined orP?, but our proof requires that, becompletely separatinghat
the iterates off_ form a normal family on a neighborhood ®f". We recall from
[Dil] that this condition automatically implies thaf, is algebraically stable, but it
allows for stronger conclusions abaqutt. In particular, iterates of-. form a nor-
mal family on the complement of supg, and any positive closed, 1) current
with support contained in supp™ is actually a multiple ofu™.

THEOREM 3.5. If f, iscompletely separating, then the conclusion of Theorem 3.4
remains true for any" that admits a wedge product wih".

Proof. Since iterates of, act normally orP? \ suppu*, it is clear that currents
in S all have support contained in supp. Hence all currents its are multiples
of u™ with total mass determined by Lemma 3.2. O

4. More Applications: Support of ut

Following Proposition 2.1, we described an action of a birational map on the col-
lection of closed subsets &2. There is, however, no reasonable sense in which

a birational mapf,.: P2 — P? sends open sets to open sets. In fadl] if P?is

open then it is not hard to show that (U) is open if and only ifU either avoids

or containsC*. On the other handf, does preservelosures ofopen sets. It

is always true thaf, (U) = int £, (U). Moreover, this action is bijective, since
fi(f-(U)) = U. Therefore, it makes sense to talk about open sets whose clo-
sures are invariant under a birational map. Theorem 3.4 implies that such sets can
intersect the supports @ft andy™ in only a rather limited number of ways.

THEOREM 4.1. Suppose that/ c P? is an open set whose closure is invari-
ant under an algebraically stable birational map. $uppu™ N U # ¢, then
suppu” C U.

Proof. Assume there is a point € suppu®™ N U. Pick a smooth functiony:
P2 — [0, 1] such that supg ¢ U andy(p) = 1 Then

¢ & YO Aut > 0.
p2
Hence, by Theorem 3.4,

1

Tn 5 (P O) = cu™

since suppfy, (¥ ®) C U for everyn, we have supp~ C U as well. O
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We do not yet know whether sets life", suppu™, and so forth can have interior.
The theorem just proved shows that if such skthave interior then the maf,
must be rather special.

CoroLLARY 4.2. The following are true for an algebraically stable birational

map.

(1) If suppu™ omits one point irsuppu~, thensuppu™ is nowhere dense.

(2) If Z* omits one point irsuppu™ (or, more particularly, inZ ~), thenZ* is
nowhere dense.

(3) If both suppu™ and suppu™ have non-empty interior, then

suppu’ = intsupput = intsuppu~ = suppu”.

(4) If both Z* and Z~ have non-empty interior, thesupput = suppu™ =
It=1".

Proof. (1) The complement of supp' is an open set with invariant closure. If
suppw~ intersects this set, then supp is contained in its closure. (2) The com-
plement ofZ * is another open set with invariant closure. If syppintersects this
set, therZ * C suppu™ lies in its boundary. Statements (3) and (4) follow imme-
diately from (1) and (2). O

Stronger conclusions are possible if we impose stronger hypotheses concerning
separation of the indeterminacy setsfaf and f_. We call a birational mag,
separatingif Z* N Z~ = @. By Proposition 2.5 and the paragraph preceding
Theorem 3.5, it is clear that this requirement falls somewhere in between the con-
ditions thatf be algebraically stable and thitbe completely separating. We
remark that examples from [Dil] show that the three categories of birational maps
are actually, as well as apparently, different.

CoroLLARY 4.3. If f, is separating ang is an attracting periodic point, then
suppu™ lies in the boundary of any connected component of the basin tf
particular, suppu™ is nowhere dense.

Proof. Iterates off, form a normal family on the interior of the basin pf so
supput does not intersect the interior of the basin. On the other hand, we showed
in [Dil] that attracting periodic points of separating birational maps belong to
suppu™. Since the closure of the basin pfis invariant underf,, Theorem 4.1
implies that suppc™ lies in the closure of the basin. Applying this reasoning to
ff (wherek is the period ofp) shows that supp™ lies in the boundary of any
connected component of the basingof O

CoroLLARY 4.4. If f, is completely separating, theuppu~ is nowhere dense.
Moreover,supput is equal to the boundary of any connected component of any
attracting basin.

Proof. Since iterates off_ form a normal family in a neighborhood @ft, we
have thatZ ™ N suppu™ is empty. On the other hand,” c suppu™. Thus, the
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first statement follows from Corollary 4.2. The second statement follows from
Corollary 4.3, the remarks about completely separating maps preceding Theo-
rem 3.5, and the fact that iterates ff do not form a normal family on any open

set intersecting the boundary of an attracting basin. O

For completely separating birational maps, we can apply Theorem 3.5 instead of
Theorem 3.4. This gives a description of sygpin terms of stable manifolds.

CoroLLARY 4.5. Suppose thay, is completely separating. Thesuppu~ is
equal to the closure of the unstable manifold of any saddle periodic point.

Proof. Let p be a saddle periodic point, and léf..(p) be a local unstable man-
ifold through p. Let x: P2 — [0, 1] be a smooth function supported in a small
neighborhood op and such that suppN W3 ( p) is relatively compact it (p).
Since f, is completely separating, we know that¢ Z* (iterates off_ can-
not form a normal family neap). From [Dil] we know thatG* is continuous
over points inP2 \ Z* (this is true even for separating maps). Therefore, the cur-
rent of integration oveiV,%.(p) admits a wedge product with*. On the other
hand, we also showed in [Dil] that+ cannot be pluriharmonic an Y (W.(p)).
Therefore,

c= /;’2 x[Wise(P)] A uwt > 0.

We apply Theorem 3.5 to conclude that

H 1 kn u -
n||—>moo dkn f+*(X[VV|oc(p)]) =Ccu ,
wherex is the period ofp. Since f¥(x[W“.(p)]) is supported on the global un-
stable manifold ofp for all n, we have thaj.~ is supported on the closure of the
unstable manifold. The opposite inclusion was proved in [Dil] for separating bi-
rational maps. O

REMARK 4.6. The previous theorem is not true for all algebraically stable bira-
tional maps. Example 7.9 in [Dil] presents an algebraically stable map with a sad-
dle fixed point whose unstable manifold has closure equal to a liRé.ifence,

by Theorem 2.7(1), sup@g™ must contain points not included in the closure of this
unstable manifold. We wonder if there are examples similar to this one except that
the unstable manifold is not contained in an algebraic curve.

We now return to the theme of recurrence and ergodicity touched on in the latter
part of Section 2, recalling the notion of a nonwandering point.fL.eX — X be

a continuous map of a metric spaXeWe define a pre-ordex for points inX by
saying that; < p if, for any neighborhood# > p andV > ¢, there exist arbitrar-

ily large n such thatf"(U) intersectsV. We call p € X nonwanderingf p < p.

We extend these definitions to birational magfas P? — P?2 by disregarding any
points of indeterminacy foy;' in the intersectiory!(U) N V.
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CoRrOLLARY 4.7. Given an algebraically stable birational maf, : P? — P?,
we havey < p for everyp € suppu™ andg € suppu. In particular, every point
in suppu™ N suppu™ is nonwandering.

Proof. Let U > p andV > ¢ be neighborhoods, and l¢t be a positive test func-
tion supported o/ and nonvanishing gt. Then({u", ¥ ®) is positive. Hence,
by Theorem 3.4,

. 1
lim — f!. (¥y®) =cu~ forsomec > 0.
n—oo "

Therefore, we must havé # f(suppy) NV C fI(U) NV for n sufficiently
large. This proves the first statement in the corollary. The second statement fol-
lows by takingp = ¢ in the first. O

We close this paper with another ergodiclike result—similar to and depending on
Corollary 2.9—foru™ and two related examples. If, is separating then the
wedge producit = u™ A u~ is admissible. This follows from the fact from
[Dil] that, for separating maps; * is continuous omr ~(P2\ Z*). We intend to
study the measurg in its own right in a later paper, but for now we observe the
following.

COROLLARY 4.8. Suppose thaf_ is separating and thay : P2 — C is smooth.

Then 2 )
i L) (/ ) _
nl—>moo degff p2 w“ n

in the weak topology on currents.

Proof. Since f, is separating, so ig_. In particular, local potentials fox~ are
continuous on a neighborhood of every poinfih. Therefore, all hypotheses of
Theorem 3.4 are fulfilled by setting = u—. O

ExaMmPLE 4.9. It is important in Corollary 4.8 that we require some regularity
from . Suppose thaif, is a polynomial diffeomorphism o€? with at least
two attracting periodic points. Then supp intersects the basins of both points.
If x is the characteristic function for one of the basins, we have jfhat =

S+« xu~/degfs is a nontrivial forward invariant current.

ExampLE 4.10. Itis also important that, be birational. We illustrate this point
with an example in whicht plays the role that~ played in Corollary 4.8. Con-
sider the holomorphic map: P? — P2 whose restriction t€? is f(x, y) =
(x2, y?). The restriction of the current™ (usually denoted by in this con-
text) toC2 is dd° logmax1, | x|, |y|}. In particular, the restriction of* to U =
{Ix] < 1 is dd°log"|y|, which simply doubles under pullback bg.. Let p:
[0,1] — [0, 1] be any smooth function such that0) = 1 andp(1) = 0. If ¢ =
o(]x]) then we have thay o f” tends uniformly to 1 on compact subsetstof
Sinceu™ has finite mass, we hav&*(yut)/2" — ut|y asn tends to infinity.
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