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1. Introduction

There has been a great deal of recent research in multivariable complex dynamics,
most of it devoted to either polynomial diffeomorphisms ofC2 or holomorphic
maps ofPn. Pluripotential theory plays a prominent supporting role in nearly all
this work. Our concern in this paper and its predecessor [Dil] is to extend the ap-
plication of pluripotential theory to study dynamics of birational maps ofP2.

Anyone who seeks to understand the dynamics of a birational mapf+ : P2→
P2 faces an immediate problem: birational maps are not generally maps. That is,
except whenf+ has degreed = 1, there exists a finite non-empty setI+ of points
wheref+ cannot be defined continuously. In a precise sense,f+ “blows up” each
of these points of indeterminacy to an entire algebraic curve. Nevertheless, we be-
lieve that it is worthwhile to pretend as far as possible that birational maps really
are diffeomorphisms.

Maintaining this pretense means (among other things) that we must generalize
operations like pushforward and pullback that are natural for diffeomorphisms.
Since we intend to use pluripotential theory, it is particularly important to make
sense of these operations as they apply to positive currents. Already in [Dil] we
observed that there are at least two reasonable ways for a birational map to act on
a positive closed(1,1) currentT . In order to distinguish between these actions,
we refer to them as pushforwardf+∗T and pullbackf ∗+T, respectively. Intuitively
speaking, the first action discounts any contribution from the indeterminacy set
whereas the second (defined by pulling back a potential function) takes the fullest
possible account of such contributions. Theorem 2.3 gives a precise condition for
agreement between pushforward by a birational map and pullback by its inverse.
Namely, one has agreement if and only if the so-called Lelong numbers ofT van-
ish at each point inI+.

Our first application of Theorem 2.3 is to a natural current associated with iter-
ates of a birational map. By pulling back and rescaling the Fubini–Study Kähler
form2, one obtains a positive closed(1,1) current

µ+ = lim
n→∞

1

d n
f n∗+ 2.
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That this limit exists was proven in [Dil]. It is immediate, moreover, thatf ∗+µ
+ =

d · µ+. Here we show (Theorem 2.9) thatµ+ is extremal—that is, the only pos-
itive closed(1,1) currents dominated byµ+ are multiples ofµ+. Aside from its
dynamical significance as a sort of ergodicity property ofµ+, Theorem 2.9 pro-
vides a new source of naturally arising, nonalgebraic extremal currents.

Bedford and Smillie [BS1; BS2] considered the action of polynomial automor-
phisms on certainnonclosed(1,1) currents and thereby obtained many useful dy-
namical results. Following their lead, in Section 3 we consider the action of a
birational map on a current of the formψT, whereψ : P2 → C is a cutoff func-
tion andT is a positive closed(1,1) current. We show under fairly general condi-
tions that the sequence(1/d n)f n+∗(ψT ) converges to a multiple ofµ−, that is, the
invariant current associated with the inverse off+. The main novelties in this sec-
tion are the definition and means we provide for making sense off n+∗(ψT ). Once
these are in place, Theorem 2.9 and the methods of Bedford and Smillie combine
to give the desired results.

In the final section of the paper, we give several applications of the results from
Section 3. We show that suppµ+ is nowhere dense unless it contains suppµ−.
With stronger hypotheses onf+, we are able to generalize some results of Bed-
ford and Smillie for polynomial diffeomorphisms. Namely, suppµ+ coincides
with the boundary of the basin of any attracting periodic point and with the clo-
sure of the stable manifold of any saddle periodic point. In a somewhat different
vein, we show that suppµ+ ∩ suppµ− consists only of nonwandering points and
exhibit another ergodic-type property ofµ+ that fails even in fairly simple exam-
ples outside the birational setting.

2. Birational Maps Acting on Positive Closed (1,1) Currents

Let π : C3 \ {0} → P2 be the canonical projection giving homogeneous coordi-
nates onP2. Any rational mapf : P2→ P2 can be regarded as the natural relation
induced by a homogeneous polynomial mapf̃ : C3 → C3. Clearly,f does not
change if we multiply each of the coordinates off̃ by the same homogeneous
polynomial. Therefore, we will assume thatf̃ is aminimal representative forf
in the sense that the coordinate functions off have lowest possible degree. Under
this assumption, we define the (algebraic) degree off to be the degree of̃f .

The critical setC of f is an algebraic curve equal to the image underπ of the
critical set off̃ . It can happen that̃f −1(0) is nontrivial even whenf̃ is minimal.
In this casef(π(p̃)) is ill-defined whenever̃f(p̃) = 0. The setI = π(f̃ −1(0)) ⊂
P2 of all suchpoints of indeterminacyis always finite, and we will persist in writ-
ing f : P2→ P2 as iff were well-defined everywhere.

A rational mapf+ : P2→ P2 is birational if there exists another rational map
f− : P2 → P2 and an algebraic curveV such thatf+ B f− = f− B f+ = id on
P2 \ V. The use of+/− superscripts to distinguish a birational map from its ra-
tional inverse emphasizes the fact thatf+ andf− are not, strictly speaking, set
theoretic inverses. We will use+/− subscripts and superscripts in all of what fol-
lows to distinguish objects corresponding tof+ from objects corresponding tof−.
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For instance,I− denotes the indeterminacy set forf−. The following proposition
(see [Dil] for a proof ) describes the relationship between indeterminacy and crit-
ical sets for a birational map.

Proposition 2.1. The following statements are true for any birational mapf+:
P2→ P2.

(1) I+ ⊂ C+, and each irreducible component ofC+ contains a point ofI+.
(2) Given any irreducible curveV ⊂ C+, f+(V ) is a single point inI−; likewise,

given anyp− ∈ I−, f −1
+ (p−) is a component ofC+.

(3) f+ : P2 \ C+ → P2 \ C− is a biholomorphism.

We make an important technical distinction between the image of a closed setK

underf+ and its preimage underf−. We declare thatf+(K) = f+(K \ I+) and
f −1
− (K) = {p ∈P2 \ I− : f−(p)∈K }. In general,f+(K) ⊂ f −1

− (K), but the
inclusion can be strict ifK ∩ I+ 6= ∅.

Degree-1 birational maps ofP2 are dynamically rather simple, so we assume
in what follows that all birational maps under consideration have degree greater
than1. Such maps will necessarily have non-empty critical sets and thus (by Propo-
sition 2.1) non-empty indeterminacy sets as well. Therefore, one must be rather
careful when using a birational map to transform an analytic object such as a form
or a current.

We want specifically to consider actions of birational maps on positive closed
(1,1) currents. Before doing so, however, we fix some notation and recall a couple
of facts about positive currents onP2. For more thorough background on positive
currents, we refer the reader to the book by Klimek [Kli] and survey articles by
Demailly [Dem] and Skoda [Sko].

Themassof a positive currentT on a setK ⊂ P2 is

MK [T ] = sup{ T(ϕ) : |ϕ| ≤ 1, suppϕ ⊂ K }.
Of course, this definition implies the choice of an Hermitian metric on a neighbor-
hood ofK̄, but for any two such choices the resulting mass norms are comparable.
Where we do not indicate otherwise, we imply the use of the Fubini–study metric
onP2, letting2 denote the associated Kähler form. It turns out that

‖T ‖ def= M P2 [T ] =
∫

P2
T ∧2.

A positive closed(1,1) current can be expressed locally asddcu for some
plurisubharmonicu. Fornæss and Sibony [FS2] have in fact observed that there is a
correspondence between positive closed(1,1)-currentsT onP2 andhomogeneous
potentials—that is, plurisubharmonic functions̃u : C3 → R ∪ {−∞} satisfying
ũ(λp̃) = ũ(p̃) + c log|λ| for everyλ ∈ C, p̃ ∈ C3 and somec ≥ 0. They show
that, givenT, there exists ãu such thatπ∗T = ddcũ. It follows thatc = ‖T ‖ and
ũ is unique up to addition of a constant. Likewise, any homogeneous potentialũ

induces a positive closed(1,1) currentT on P2. If U ⊂ P2 andσ : U → C3 is a
holomorphic section, thenT |U is given byddc(ũ B σ). Homogeneity guarantees
that this definition does not depend on the choice of section.
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In [Dil] we discussed two actions of a birational mapf+ : P2→ P2 on a posi-
tive closed(1,1) currentT with homogeneous potentialũ. First of all, we defined
the “pullback” byπ∗f ∗+T = ddc(ũBf̃ ). Besides its consistency with notation used
in related papers (e.g. [HuPa; FS2]), this definition off ∗+T has the advantage that
mass transforms predictably according to the formula‖f ∗+T ‖ = (degf+)‖T ‖. As
we hope will emerge in what follows,f ∗+T is in some sense the largest reasonable
notion of the preimage ofT, generalizing the notion of the total transform of an
algebraic curve by a rational map.

We also defined the pushforward ofT by f+. Taking advantage of the fact that
f+ : P2\C+ → P2\C− is a biholomorphism, we first push the restrictionT |P2\C+
forward to a positive closed(1,1) current onP2 \ C−. We then extendT by zero
acrossC−. Thanks to an extension theorem of Harvey and Polking [HaPo], the
result is a well-defined positive closed(1,1) current onP2. We denote this cur-
rent byf+∗T . It should be clear thatf+∗T is the smallest reasonable notion of
the image ofT, analogous to the proper transform of a curve by a rational map.
Before stating the next proposition, we recall thatT is extremalamong positive
closed(1,1) currents if every decompositionT = T1+ T2 into a sum of positive
closed currents is trivial, that is, ifTj = cjT .
Proposition 2.2. If T is extremal, then so isf+∗T . If T |C+ = 0 andf+∗T is
extremal, then so isT .

Proof. First assume thatT is extremal. Letf+∗T = S1+ S2 be a decomposition
in whichS1 dominates no positive multiple off+∗T . It is clear that pushforward
acts linearly and preserves positivity, so item (5) of Proposition 4.7 in [Dil] gives
thatT ≥ f−∗f+∗T ≥ f−∗S1. That is,T = f−∗S1+ (T − f−∗S1), sof−∗S1= cT .
Using the same fact from [Dil], we then conclude thatS1 ≥ cf+∗T and therefore
c = 0. The only nontrivial elements in the kernel off−∗ are supported onC−, and
by definitionf+∗T has no support on this set. HenceS1= 0.

Now assume thatf+∗T is extremal and thatT has no mass concentrated onC+.
Let T = T1 + T2 be a decomposition, and note thatf+∗T = f+∗T1 + f+∗T2.

It follows thatf+∗T1 = cf+∗T . From the aforementioned fact in [Dil], we have
T1= cT .
As with images and preimages of closed sets, it is not always the case thatf+∗T =
f ∗−T . The main result of this section is a necessary and sufficient condition for
equality. To state it, we recall that theLelong numberof a positive closed current
T atp ∈P2 is given in local coordinatesz centered atp by

ν(T, p) = lim
r→0

1

πr 2

∫
‖z‖<r

T ∧ θ,

whereθ = ddc‖z‖2. If T = ddcu nearp, then the Lelong number can be com-
puted fromu by

ν(T, p) = sup{ γ ≥ 0 : u(q ′) ≤ γ log dist(p, q)+O(1) } (1)

(see [Dem, eq. (5.5e)]).
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Theorem 2.3. Suppose thatT is a positive closed(1,1) current onP2 and that
f+ : P2 → P2 is birational. Thenf ∗−T − f+∗T is a nonnegative linear combi-
nation of currents of integration over components ofC−. Furthermore,f+∗T =
f ∗−T if and only if ν(T, p) = 0 for everyp ∈ I+.

This theorem is a consequence of the following result about Lelong numbers.

Theorem 2.4. Suppose thatT is a positive closed(1,1) current onP2. Then
ν(f ∗−T, p) 6= 0 if and only if eitherp ∈ I− or ν(T, f−(p)) 6= 0.

An earlier version of this paper contained a proof of this result. However, recent
papers of Favre [Fa2] and Kiselman [Kis] generalize the result to arbitrary ratio-
nal maps ofPn, so for brevity’s sake we refer the reader to those papers for the
proof.

Proof of Theorem 2.3.Sincef+ : P2\C+ → P2\C− is a biholomorphism,f+∗T
andf ∗−T coincide with the usual notions of pushforward and pullback onP2\C−.
In particular, they coincide with each other on this set. Hencef ∗−T − f+∗T
is supported onC−. The restriction off+∗T to C− is trivial by definition, so
f ∗−T −f+∗T is positive. A well-known theorem [Siu] implies thatf ∗−T −f+∗T =∑

V⊂C− cV [V ], whereV ⊂ C− is an irreducible component andcV ≥ 0. If cV >
0 thenν(T, p) > 0 for everyp ∈ V. Therefore, we can apply Theorem 2.4 to any
p ∈ V \ I− and conclude thatν(T, f−(p)) > 0. Sincef−(p) ∈ I+, the “only if ”
portion of the theorem holds.

If, on the other hand,f ∗−T = f+∗T, then it follows that the restriction off ∗−T
to C− is trivial. Thus, by Siu’s results again,ν(f ∗−T, p) = 0 for everyp ∈ C− out-
side a countable subset. Eachp ∈ I+ is thef−-image of some nontrivial algebraic
curve inC−, by Proposition 2.1—in particular,p = f−(q) for someq such that
ν(f ∗−T, q) = 0. Therefore, Theorem 2.4 implies thatν(T, p) = 0 as well.

2.1. Application: Invariant Currents are Extremal

We now present a dynamical application of Theorem 2.3. For this, it is necessary
to recall some results from [Dil].

Proposition 2.5. The following statements are equivalent for a birational map
f+ : P2→ P2 with degreed ≥ 2 and inversef−:

(1) deg(f n+) = d n for all n;
(2) I+ ∩ f n+(I−) = ∅ for all n;
(3) f n−(I

+) ∩ f m+ (I−) = ∅ for all n,m ≥ 0.

We will call a birational mapalgebraically stableif it satisfies any of the equiv-
alent conditions in the conclusion of this proposition. This accords with a recent
survey article [Sib] wherein the term is applied to any rational map whose iterates
have maximal degree growth. It turns out that an algebraically stable map admits
a dynamically invariantGreen’s function.
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Theorem 2.6. If f+ is algebraically stable, then the sequence

lim
n→∞

1

d n
log‖f̃ n+‖

converges pointwise and inL1
loc to a plurisubharmonic functioñG+ satisfying

(1) G̃+ B f̃+(p̃) = d · G̃+(p̃) and
(2) G̃+(λp̃) = G̃+(p̃)+ log|λ|
for all p̃ ∈C3 and all λ∈C.

Green’s functions for holomorphic maps ofPn were first introduced by Hubbard
and Papadopol [HuPa] and further studied in the more general setting of rational
maps by Fornæss and Sibony [FS2]. In [Dil] we proved the theorem just stated,
and then Favre [Fa1] gave a quite different proof. Sibony [Sib] has recently given
a very elegant proof for existence of a Green’s function that applies toanyalge-
braically stable rational map ofPn.

We note thatf+ determinesG̃+ only up to an additive constant. By replacing
f̃+ with a small multiple off̃+, one can arrange that the sequence definingG̃+ is
actually decreasing. We refer to the unique induced currentπ∗µ+ = ddcG̃+ as
theescape currentfor f+. We showed in our previous paper thatµ+ transforms
well underf+ and thatµ+ attracts a large set of currents under pullback.

Theorem 2.7. The currentµ+ for an algebraically stable birational map has the
following properties:

(1) µ+ has no support concentrated on any algebraic curve(see[FS2]);
(2) µ+ = f ∗+µ+/d = f−∗µ+/d = d · f+∗µ+.
Suppose thatW ⊂ P2 is a(possibly empty) open set containing all superattracting
periodic points of an algebraically stable birational mapf+ : P2→ P2. Suppose
that {Tn} is a sequence of positive closed(1,1) currents such thatsuppTn ∩W =
∅ and that‖Tn‖ = c is constant with respect ton. Then

lim
n→∞

1

d n
f n∗+ Tn = cµ+.

For any 1≤ n ≤ ∞, set I+n =
⋃n−1
j=0 f

n
−(I
+). An immediate consequence of

Theorem 2.3 and Theorem 2.7(2) is the following.

Corollary 2.8. If f+ : P2 → P2 is algebraically stable, thenν(µ+, p) = 0
for eachp ∈ I−∞.
Another consequence of Theorems 2.3 and 2.7—and the main result of this sec-
tion—is an “ergodic” property forµ+.

Corollary 2.9. If f+ : P2→ P2 is algebraically stable, thenµ+ is extremal in
the cone of positive closed(1,1) currents.
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This corollary is proven for Hénon maps in [FS1, Sec. VII.3]. Our proof is a gen-
eralization of the one given there.

Proof. Suppose thatµ+ dominates a positive closed currentT . (We will show
T = cµ+.) It follows from Theorems 2.7 and 2.3 that bothf n+∗T andf n∗+ T are
dominated by multiples ofµ+ for all n ≥ 0. Consequently, Corollary 2.8 implies
thatν(f n+∗T, p) = 0 at every point inI−∞.

We showed in [Dil] thatT − f n−∗f n+∗T is positive and concentrated on an alge-
braic curve. Sinceµ+ concentrates no support on any algebraic curve, we must
actually haveT = f n−∗f

n
+∗T for all n. Theorem 2.3 implies further thatT =

f n∗+ f
n
+∗T . In particular,

‖T ‖ = ‖f n∗+ f n+∗T ‖ = d n · ‖f n+∗T ‖.
Hubbard and Papadopol [HuPa] showed that, if iterates off form a normal fam-
ily on an open setW, then suppµ+ ∩W = ∅. Therefore, there is a neighborhood
W of any superattracting cycle such that

(suppf n+∗T ) ∩W ⊂ (suppµ+) ∩W = ∅
for all n. We can now apply the last part of Theorem 2.7 to the sequenceTn =
d nf n+∗T to conclude that

‖T ‖µ+ = lim
n→∞

1

d n
f n∗+ (d

nf n+∗T ) = T .

3. Pushforwards of Nonclosed Positive Currents

For many purposes, the last part of Theorem 2.7 is not strong enough. In this
section we will extend that statement to include closed currents that have been
“truncated” by contraction with cutoff functions. That is, for birational maps we
will prove the analog of Theorem 1.6 in [BS2]. Actually, we will prove two such
analogs: one imposes a weak hypothesis on the map but a somewhat restrictive
hypothesis on the current; the other places less restriction on the current but only
in exchange for a stronger hypothesis concerning the map. Substantial technical
details aside, the proof that we give—especially Lemmas 3.2 and 3.3—largely
follows the one given in [BS2]. However, at the conclusion of the proof, our ap-
proach diverges from [BS2] and instead follows [FS1, Sec. VII.3] more closely.

Throughout this section, letU ⊂ P2 be a given open set,T a positive closed
(1,1) current onU, ψ : U → C a smooth function with compact support, and
f+ : P2→ P2 a birational map. First, we borrow an idea from [RS] to provide a
workable definition off+∗(ψT ). Let0 ⊂ P2×P2 be the irreducible analytic sub-
variety obtained as the closure of the graph off+|P2\I+ . Letα, β : P2×P2→ P2

be projection onto the first and second coordinates. Since0 might be singular, we
consider a desingularizatioñ0→ 0 of 0. Abusing notation slightly, we continue
to useα andβ to denote the pullback tõ0 of the projection functions. It is evi-
dent that the exceptional set ofα : 0̃ → P2 is the 1-dimensional “vertical” curve
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α−1(I+). It is also clear thatα : 0̃ \ α−1(I+) → P2 \ I+ is a biholomorphism.
Therefore, we can liftT to a positive closed(1,1) currentα∗T onα−1(U) ⊂ 0̃ by
pushing forward withα−1 onU \ I+ and then extending trivially acrossα−1(I+).
The extension theorem of [HaPo] guarantees thatα∗T is positive and closed on
α−1(U). We definef+∗(ψT ) by its action on test forms:

〈f+∗(ψT ), ϕ〉 = 〈α∗T, (ψ B α)β∗ϕ〉.
In what follows we may assume, with no loss of generality, thatψ is real and non-
negative. Clearly, this assumption implies that bothψT andf+∗(ψT ) are positive
currents.

If U = P2 andψ ≡ 1, then the definition of pushforward we have just given
coincides with the one given in Section 2. In fact, more is true.

Proposition 3.1. Suppose thatχj : P2→ [0,1] are smooth functions such that
χj vanishes on a neighborhood ofC− andsupp(1− χj ) decreases toC− asj →
∞. Then, for any test formϕ, we have

〈f+∗(ψT ), ϕ〉 = lim
j→∞
〈f+∗T, χj(ψ B f−)ϕ〉 = lim

j→∞
〈ψT, f ∗+(χjϕ)〉.

The pushforward in the middle expression and the pullback in the right-hand ex-
pression can be understood to take place with respect to a biholomorphic map.

Proof. What is needed is to show thatf+∗(ψT ) concentrates no mass onC−. Note
thatβ−1(C−) = α−1(C+) can be divided into two components:β−1(C− \ I−) =
α−1(I+) andβ−1(I−) = α−1(C+ \ I+). We have thatα∗T concentrates no sup-
port on the first component by definition, andβ∗ϕ is identically zero on the second
component. Therefore, the restriction ofα∗(ψT ) to β−1(C−) contributes nothing
to the pairing〈α∗(ψT ), β∗ϕ〉.
In order to state and prove the following lemma, we recall that one can sometimes
use an “integration by parts” construction to define wedge products of positive
closed currents (see [BT; FS3] for details). Namely, ifT = ddcu andS = ddcv
are positive closed(1,1) currents on an open subsetV ⊂ C2 and ifu is continuous,
then one declares ∫

U

ϕT ∧ S def= 〈S, u ddcϕ〉

for anyϕ ∈ C∞0 (U). This continuously extends the usual notion of wedge prod-
uct of smooth currents in the sense that, ifuj andvj are smooth plurisubharmonic
functions decreasing (resp.) tou andv, thenddcuj ∧ ddcvj → S ∧ T weakly.
In particular,T ∧ S is a positive Borel measure. For purposes of this paper, we
will say that a wedge productT ∧ S of positive closed currents isadmissibleif,
near each point, at least one of the currents has a continuous local potential. In
particular, a necessary condition for admissibility ofT ∧ µ+ is thatT have con-
tinuous potentials in a neighborhood of each point in theextended indeterminacy

setI + = I+∞.
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Lemma 3.2. Suppose thatf+ is algebraically stable of degreed and thatT ad-
mits a wedge product withµ+. Then

lim
n→∞

1

d n

∫
P2
f n+∗(ψT ) ∧2 =

∫
P2
ψT ∧ µ+.

In particular, there is a constantC such thatM P2 [f n+∗(ψT )] ≤ Cdn for all n.

Proof. Let C+n =
⋃n−1

0 f −1
+ (C+) andC−n denote the critical sets off n+ andf n−,

respectively. Letχj : P2 → [0,1] be a sequence of smooth functions such that
χj ≡ 0 in a neighborhood ofC−n and supp(1− χj ) decreases toC−n . Then, by
Proposition 3.1, we have

1

d n
〈f n+∗(ψT ),2〉 = lim

j→∞
1

d n
〈ψT, (χj B f n+)f n∗+ 2〉.

Local potentials forf n∗+ 2 are unbounded only at points inI+n , soT admits a wedge
product withf n∗+ 2 (viewed as a positive closed(1,1) current). Recall further that
local potentials for(1/d n)f n∗+ 2 may be taken to decrease to local potentials for
µ+. Therefore, we continue to compute

lim
j→∞

1

d n
〈ψT, (χj B f n+)f n∗+ 2〉 = lim

j→∞
1

d n

∫
P2
(χj B f n+)ψT ∧ f n∗+ 2

≤ 1

d n

∫
P2
ψT ∧ f n∗+ 2→

∫
P2
ψT ∧ µ+.

It remains to show that the last inequality is actually an equality—in other words,
that the measureT ∧f n∗+ 2 concentrates no mass onC+n = (f n+)−1(C−n ). Note first
thatf n∗+ 2 is smooth everywhere except atI+n . Therefore, it follows directly from
the integration-by-parts definition of wedge product thatT ∧ f n∗+ 2 will not con-
centrate mass onC+n \ I+n unlessT does. But ifT concentrates mass onC+n , then
the theorem of Siu (mentioned in the proof of Theorem 2.3) implies thatT dom-
inates a multiple of the current of integration over some component ofC+n . This
would be inconsistent with the assumption that local potentials forT are continu-
ous near points inI+n . Therefore, we need worry only about mass focused at points
in I+n . However, continuous local potentials forT nearI+n rule out point masses,
which can be established by essentially the same argument used to prove Corol-
lary 2.5 in [BT].

Lemma 3.3. Given the hypotheses of Lemma 3.2, the sequences(1/d n)∂f n+∗(ψT )
and (1/d n)ddcf n+∗(ψT ) tend to zero in the mass norm asn→∞.

Proof. Let λ be a test 1-form onP2 such that‖λ‖∞ ≤ 1. Let 0̃ be the desin-
gularization of the graph off n+, with coordinate projectionsα andβ. Choose a
compactly supported smooth functionψ1 : U → [0,1] such thatψ1 ≡ 1 on a
neighborhood of suppψ. Then
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|〈f n+∗ψT, dλ〉| = |〈α∗T, d(ψ B α) ∧ β∗λ〉|
≤ 〈α∗T, α∗(dψ) ∧ α∗(d cψ)〉1/2〈α∗T,−i(ψ1 B α)β∗λ ∧ β∗λ̄〉1/2

= 〈T, dψ ∧ dcψ〉1/2〈f n+∗(ψ1T ),−iλ ∧ λ̄〉1/2

≤ Cdn/2

The first inequality is essentially Schwarz’s inequality. The second equality fol-
lows from the facts thatT concentrates no mass onI+, that by definitionα∗T
concentrates no mass onα−1(I+), and thatα : 0̃ \ α−1(I+) → P2 \ I+ is a bi-
holomorphism. Thus〈α∗T, α∗(dψ ∧ dcψ)〉 = 〈T, dψ ∧ dcψ〉, as asserted. The
last inequality follows from the previous lemma. Sinced n tends to∞ with n, we
see that(1/d n)∂f n+∗(ψT ) tends to zero at a rate independent ofλ—that is, in the
mass norm.

If ρ : P2→ C is a test function with‖ρ‖∞ ≤ 1, then we have

|〈f n+∗(ψT ), ddcρ〉| = 〈α∗T, (ρ B β)ddc(ψ B α)〉
= 〈(α∗T ) ∧ α∗(ddcψ), ρ B β〉
≤ M[α∗T ∧ α∗ddcψ ]

= M[T ∧ ddcψ ].

The last equality holds becauseα∗T ∧ α∗ddcψ puts no mass onα−1(I+). Divid-
ing through byd n finishes the proof.

We continue to assume that the hypotheses of Lemma 3.2 hold. LetS denote the
set of all limit points of the sequence of currents{(1/d n)f n+∗(ψT )}. Lemma 3.3
implies that all elements ofS are closed. Lemma 3.2 implies thatS is non-empty
and that anyS ∈S satisfies

‖S‖ =
∫

P2
ψT ∧ µ+.

The first of our two convergence theorems addresses the case whereT is defined
on all of P2.

Theorem 3.4. Suppose thatf+ is algebraically stable andT extends to a pos-
itive closed current onP2. If T admits a wedge product withµ+ (at least near
suppψ) then, in the weak topology on currents, we have

lim
n→∞

1

d n
f n+∗(ψT ) =

(∫
P2
ψT ∧ µ+

)
· µ−.

Proof. ClearlyψT is dominated by‖ψ‖∞T . Remark 4.16 from [Dil] (a variant
on the last part of Theorem 2.7) implies that

lim
n→∞

1

d n
f n+∗T = lim

n→∞
1

d n
f n∗− T = ‖T ‖ · µ−.
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Therefore, any element ofS is dominated by‖T ‖ · ‖ψ‖∞ ·µ−. Corollary 2.9 then
implies that any element ofS is a multiple ofµ−; that is,S = ‖S‖ · µ−. The re-
marks preceding the statement of this theorem determine‖S‖ uniquely.

The second of our convergence theorems addresses the case whereT is not glob-
ally defined onP2, but our proof requires thatf+ becompletely separating: that
the iterates off− form a normal family on a neighborhood ofI +. We recall from
[Dil] that this condition automatically implies thatf+ is algebraically stable, but it
allows for stronger conclusions aboutµ+. In particular, iterates off+ form a nor-
mal family on the complement of suppµ+, and any positive closed(1,1) current
with support contained in suppµ+ is actually a multiple ofµ+.

Theorem 3.5. If f+ is completely separating, then the conclusion of Theorem 3.4
remains true for anyT that admits a wedge product withµ+.

Proof. Since iterates off+ act normally onP2 \ suppµ+, it is clear that currents
in S all have support contained in suppµ+. Hence all currents inS are multiples
of µ+ with total mass determined by Lemma 3.2.

4. More Applications: Support of µµµ+++

Following Proposition 2.1, we described an action of a birational map on the col-
lection of closed subsets ofP2. There is, however, no reasonable sense in which
a birational mapf+ : P2→ P2 sends open sets to open sets. In fact, ifU ⊂ P2 is
open then it is not hard to show thatf+(U) is open if and only ifU either avoids
or containsC+. On the other hand,f+ does preserveclosures ofopen sets. It

is always true thatf+(Ū) = int f+(Ū). Moreover, this action is bijective, since
f+(f−(Ū)) = Ū. Therefore, it makes sense to talk about open sets whose clo-
sures are invariant under a birational map. Theorem 3.4 implies that such sets can
intersect the supports ofµ+ andµ− in only a rather limited number of ways.

Theorem 4.1. Suppose thatU ⊂ P2 is an open set whose closure is invari-
ant under an algebraically stable birational map. Ifsuppµ+ ∩ U 6= ∅, then
suppµ− ⊂ Ū.

Proof. Assume there is a pointp ∈ suppµ+ ∩ U. Pick a smooth functionψ :
P2→ [0,1] such that suppψ ⊂ U andψ(p) = 1. Then

c
def=
∫

P2
ψ2 ∧ µ+ > 0.

Hence, by Theorem 3.4,
1

d n
f n+∗(ψ2)→ cµ−;

since suppf n+∗(ψ2) ⊂ Ū for everyn, we have suppµ− ⊂ Ū as well.
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We do not yet know whether sets likeI +, suppµ+, and so forth can have interior.
The theorem just proved shows that if such setsdo have interior then the mapf+
must be rather special.

Corollary 4.2. The following are true for an algebraically stable birational
map.

(1) If suppµ+ omits one point insuppµ−, thensuppµ+ is nowhere dense.
(2) If I + omits one point insuppµ− (or, more particularly, inI −), thenI + is

nowhere dense.
(3) If both suppµ+ andsuppµ− have non-empty interior, then

suppµ+ = int suppµ+ = int suppµ− = suppµ−.

(4) If both I + and I − have non-empty interior, thensuppµ+ = suppµ− =
I + = I −.

Proof. (1) The complement of suppµ+ is an open set with invariant closure. If
suppµ− intersects this set, then suppµ+ is contained in its closure. (2) The com-
plement ofI + is another open set with invariant closure. If suppµ− intersects this
set, thenI + ⊂ suppµ+ lies in its boundary. Statements (3) and (4) follow imme-
diately from (1) and (2).

Stronger conclusions are possible if we impose stronger hypotheses concerning
separation of the indeterminacy sets off+ andf−. We call a birational mapf+
separatingif I + ∩ I − = ∅. By Proposition 2.5 and the paragraph preceding
Theorem 3.5, it is clear that this requirement falls somewhere in between the con-
ditions thatf be algebraically stable and thatf be completely separating. We
remark that examples from [Dil] show that the three categories of birational maps
are actually, as well as apparently, different.

Corollary 4.3. If f+ is separating andp is an attracting periodic point, then
suppµ+ lies in the boundary of any connected component of the basin ofp. In
particular, suppµ+ is nowhere dense.

Proof. Iterates off+ form a normal family on the interior of the basin ofp, so
suppµ+ does not intersect the interior of the basin. On the other hand, we showed
in [Dil] that attracting periodic points of separating birational maps belong to
suppµ−. Since the closure of the basin ofp is invariant underf+, Theorem 4.1
implies that suppµ+ lies in the closure of the basin. Applying this reasoning to
f k+ (wherek is the period ofp) shows that suppµ+ lies in the boundary of any
connected component of the basin ofp.

Corollary 4.4. If f+ is completely separating, thensuppµ− is nowhere dense.
Moreover,suppµ+ is equal to the boundary of any connected component of any
attracting basin.

Proof. Since iterates off− form a normal family in a neighborhood ofI +, we
have thatI + ∩ suppµ− is empty. On the other hand,I + ⊂ suppµ+. Thus, the
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first statement follows from Corollary 4.2. The second statement follows from
Corollary 4.3, the remarks about completely separating maps preceding Theo-
rem 3.5, and the fact that iterates off+ do not form a normal family on any open
set intersecting the boundary of an attracting basin.

For completely separating birational maps, we can apply Theorem 3.5 instead of
Theorem 3.4. This gives a description of suppµ+ in terms of stable manifolds.

Corollary 4.5. Suppose thatf+ is completely separating. Thensuppµ− is
equal to the closure of the unstable manifold of any saddle periodic point.

Proof. Let p be a saddle periodic point, and letWu
loc(p) be a local unstable man-

ifold throughp. Let χ : P2 → [0,1] be a smooth function supported in a small
neighborhood ofp and such that suppχ∩Wu

loc(p) is relatively compact inWu
loc(p).

Sincef+ is completely separating, we know thatp /∈ I + (iterates off− can-
not form a normal family nearp). From [Dil] we know thatG̃+ is continuous
over points inP2 \ I + (this is true even for separating maps). Therefore, the cur-
rent of integration overWu

loc(p) admits a wedge product withµ+. On the other
hand, we also showed in [Dil] that̃G+ cannot be pluriharmonic onπ−1(W u

loc(p)).

Therefore,

c =
∫

P2
χ[Wu

loc(p)] ∧ µ+ > 0.

We apply Theorem 3.5 to conclude that

lim
n→∞

1

dkn
f kn+∗(χ[Wu

loc(p)]) = cµ−,

wherek is the period ofp. Sincef kn+∗(χ[Wu
loc(p)]) is supported on the global un-

stable manifold ofp for all n, we have thatµ− is supported on the closure of the
unstable manifold. The opposite inclusion was proved in [Dil] for separating bi-
rational maps.

Remark 4.6. The previous theorem is not true for all algebraically stable bira-
tional maps. Example 7.9 in [Dil] presents an algebraically stable map with a sad-
dle fixed point whose unstable manifold has closure equal to a line inP2. Hence,
by Theorem 2.7(1), suppµ+ must contain points not included in the closure of this
unstable manifold. We wonder if there are examples similar to this one except that
the unstable manifold is not contained in an algebraic curve.

We now return to the theme of recurrence and ergodicity touched on in the latter
part of Section 2, recalling the notion of a nonwandering point. Letf : X→ X be
a continuous map of a metric spaceX. We define a pre-order≺ for points inX by
saying thatq ≺ p if, for any neighborhoodsU 3p andV 3 q, there exist arbitrar-
ily largen such thatf n(U) intersectsV. We callp ∈X nonwanderingif p ≺ p.
We extend these definitions to birational mapsf+ : P2→ P2 by disregarding any
points of indeterminacy forf n+ in the intersectionf n+(U) ∩ V.
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Corollary 4.7. Given an algebraically stable birational mapf+ : P2 → P2,

we haveq ≺ p for everyp ∈ suppµ+ andq ∈ suppµ−. In particular, every point
in suppµ+ ∩ suppµ− is nonwandering.

Proof. LetU 3 p andV 3 q be neighborhoods, and letψ be a positive test func-
tion supported onU and nonvanishing atp. Then〈µ+, ψ2〉 is positive. Hence,
by Theorem 3.4,

lim
n→∞

1

d n
f n+∗(ψ2) = cµ− for some c > 0.

Therefore, we must have∅ 6= f n+(suppψ) ∩ V ⊂ f n+(U) ∩ V for n sufficiently
large. This proves the first statement in the corollary. The second statement fol-
lows by takingp = q in the first.

We close this paper with another ergodiclike result—similar to and depending on
Corollary 2.9—forµ+ and two related examples. Iff+ is separating then the
wedge productµ = µ+ ∧ µ− is admissible. This follows from the fact from
[Dil] that, for separating maps,̃G+ is continuous onπ−1(P2 \ I +). We intend to
study the measureµ in its own right in a later paper, but for now we observe the
following.

Corollary 4.8. Suppose thatf− is separating and thatψ : P2→ C is smooth.
Then

lim
n→∞

f n+∗(ψµ
−)

degf n+
=
(∫

P2
ψµ

)
· µ−

in the weak topology on currents.

Proof. Sincef+ is separating, so isf−. In particular, local potentials forµ− are
continuous on a neighborhood of every point inI +. Therefore, all hypotheses of
Theorem 3.4 are fulfilled by settingT = µ−.
Example 4.9. It is important in Corollary 4.8 that we require some regularity
from ψ. Suppose thatf+ is a polynomial diffeomorphism ofC2 with at least
two attracting periodic points. Then suppµ− intersects the basins of both points.
If χ is the characteristic function for one of the basins, we have thatχµ− =
f+∗χµ−/degf+ is a nontrivial forward invariant current.

Example 4.10. It is also important thatf+ be birational. We illustrate this point
with an example in whichµ+ plays the role thatµ− played in Corollary 4.8. Con-
sider the holomorphic mapf : P2 → P2 whose restriction toC2 is f(x, y) =
(x2, y2). The restriction of the currentµ+ (usually denoted byT in this con-
text) toC2 is ddc log max{1, |x|, |y|}. In particular, the restriction ofµ+ to U =
{|x| < 1} is ddc log+|y|, which simply doubles under pullback byf+. Let ρ:
[0,1]→ [0,1] be any smooth function such thatρ(0) = 1 andρ(1) = 0. If ψ =
ρ(|x|) then we have thatψ B f n tends uniformly to 1 on compact subsets ofU.

Sinceµ+ has finite mass, we havef n∗(ψµ+)/2n→ µ+|U asn tends to infinity.
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