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1. Introduction

In this paper we study the boundary behavior of analytic discs near the zero set of
a nonnegative plurisubharmonic function or a totally real submanifold ofCn.

Our main result is the following.

Theorem 1.1. Let� be a complex manifold,ρ a plurisubharmonic function in
�, andf : 1→ � a holomorphic map of the unit disc1 ⊂ C into� such that
ρ B f ≥ 0 and ρ B f(ζ) → 0 as ζ ∈ 1 tends to an open arcγ ⊂ ∂1. Assume
that, for a certain pointa ∈ γ, the cluster setC(f, a) contains a pointp ∈ �
such thatρ is strictly plurisubharmonic in a neighborhood ofp. Thenf extends
to a Hölder1/2-continuous mapping in a neighborhood ofa on1 ∪ γ. If, more-
over,ρ ≥ 0 and the functionρθ is plurisubharmonic in a neighborhood ofp for
someθ ∈ [1/2,1], thenf is Hölder1/2θ -continuous(Lipschitz , if θ = 1/2) in a
neighborhood ofa on1 ∪ γ.
Although this result is new even in the case when the functionρ is of classC∞,
we note thatρ is supposed only to be upper semicontinuous. In what follows we
write p.s.h. for plurisubharmonic. A functionρ is calledstrictly p.s.h. in a neigh-
borhood ofp with local coordinatesz if, for someε > 0, the functionρ− ε|z|2 is
p.s.h. in a neighborhood ofp; ρ is called strictly p.s.h. in� if it is strictly p.s.h.
at each point of�.

It seems that the assertion of Theorem 1.1 is new even in the case when� is
a domain in the complex planeC (i.e., f is a usual holomorphic function in1).
Some comments on the conditions of the theorem may be listed as follows.

(1) The manifold� cannot be arbitrary because of the existence condition of the
described functionρ. For instance, it implies that all the manifolds� ∩ {ρ < c},
c > 0, are hyperbolic at the pointp by a theorem of Sibony [14].

(2) It is enough to assume thatρ is p.s.h. in a neighborhood of its zero set only.
Then, replacing� by this neighborhood andf by f B φ whereφ : 1→ V ∩1 is
a conformal mapping for a suitable neighborhoodV ⊃ γ, we are in the setting of
the theorem.

(3) If f is known to be continuous at the pointa, then the situation becomes
purely local and we can work with� as a domain inCn. But one of the essential
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difficulties is thatC(f, a) can bea priori unbounded in�, and we can localize
the situation at the very end of the proof. Thus, the important special case when
� is a domain inCn is not simpler than the general case.

Nevertheless, a typical situation in the theorem is when� is a domain inCn
andf is a bounded holomorphic map with cluster set contained in the zero set of
ρ. In this case we have the following.

Corollary 1.2. LetD be a domain inCn, ρ a p.s.h. function inD with the zero
setX = ρ−1(0), andf : 1→ D+ := {ρ ≥ 0} a bounded analytic disc such that
the cluster setC(f, γ ) on an open arcγ ⊂ ∂1 is contained inX. Assume that,
for a certain pointa ∈ γ, the cluster setC(f, a) contains a pointp ∈X such that,
for someε > 0, the functionρ(z)− ε|z|2 is p.s.h. in a neighborhood ofp. Then
f extends to a Hölder1/2-continuous mapping in a neighborhood ofa on1∪ γ.
If, moreover,ρ ≥ 0 andρθ is p.s.h. in a neighborhood ofp for someθ ∈ [1/2,1],
thenf is Hölder1/2θ -continuous in a neighborhood ofa on1 ∪ γ.
Indeed, it is sufficient to note that, for any closed subarcγ ′ ⊂ γ, the cluster set
is a compact set contained inX; sinceρ is upper semicontinuous, we obtain that
ρ(z)→ 0 asz→ γ ′.

We emphasize that there is no assumption of boundedness type in our main
theorem.

The regularity of analytic discs was studied by many authors. Our approach is
quite elementary and is partially inspired by some ideas of [12] and [14]; it is based
on estimates of the Kobayashi–Royden infinitesimal metric in a “tube” neighbor-
hood of a maximal totally real manifold and on the technique of boundary contin-
uous extension of holomorphic mappings between domains inCn which we adapt
to our case. From this point of view one can consider our main result as an analog
of the Forstneric–Rosay theorem [6] on the boundary continuity of holomorphic
mappings between strictly pseudoconvex domains inCn.

In formulating Theorem 1.1 we had in mind two important special cases. The
first one concerns analytic discs in the complement of a strictly pseudoconvex do-
main. In this case we have the following.

Corollary 1.3. Letρ be a strictly p.s.h. function in�, and letf : 1→ �+ :=
{ρ ≥ 0} be an analytic disc such thatρ B f(ζ) → 0 as ζ → γ and the inter-
sectionC(f, a) ∩ � is not empty for eacha ∈ γ. Thenf extends to a Hölder
1/2-continuous map on1 ∪ γ.
This result is new even for� = Cn andρ(z) = |z|2−1, that is, for analytic discs
in the exterior of the unit ball inCn. (Note the deep contrast with the boundary
behavior of analytic discs properly embedded in the ball, which can be wild in
general.)

The second main case is about the behavior of analytic discs near totally real
manifolds and their generalizations, which we introduce as follows. A closed sub-
setX in a complex manifold� is calledtotally real if there exists a strictly p.s.h.



On Boundary Regularity of Analytic Discs 273

nonnegative functionρ in a neighborhoodU ofX such thatX = U ∩ρ−1(0). This
definition is justified by the following well-known assertion about strictly p.s.h.
functions of classC2.

(i) Let X = ρ−1(0) be the zero set of a nonnegative strictly p.s.h. function of
classC2 in a complex manifold. ThenX is locally contained in a maximal
totally real manifold of classC1.

(ii) Conversely, ifM is a totally real submanifold of classC1 in �, thenM can
be represented as the zero set of a certainC2 strictly p.s.h. nonnegative func-
tion ρ of classC2 in a neighborhood ofM. Moreover, for everyθ : 1/2 <
θ ≤ 1 there exists a neighborhoodU of M in � such thatρθ is p.s.h. inU.

See [7] for the proof of (i) and [4; 9] for (ii), where the statements are proved for
domains inCn; the general case follows in an obvious way by a partition of unity.

As another corollary of Theorem1.1, weobtain the following statement.

Corollary 1.4. LetM be a totally realC1-submanifold of�, and letf : 1→
� be an analytic disc such thatf(1) ⊂⊂ � and the cluster setC(f, γ ) is con-
tained inM. Thenf is Hölderα-continuous on1 ∪ γ for anyα < 1.

In Cn, a somewhat less restrictive condition can be assumed as follows.

Corollary 1.5. LetM be a totally realC1-submanifold of a domain� ⊂ Cn,
and letf : 1→ � be a bounded analytic disc such thatC(f, γ ) is contained in
M. Thenf is Hölderα-continuous on1 ∪ γ for anyα < 1.

Classical examples from the one-variable theory show that this result is precise in
terms of Hölder classes (in general,f is not Lipschitz). For the case whereM is
of smoothness> 1, similar results were obtained in [1; 4].

We note also that our method allows one to control the Hölder constants and to
obtain compactness theorems for families of analytic discs. One can control the
constants under perturbations ofM as well.

If the defining strictly p.s.h. functionρ is notC2-smooth, then the structure of
the totally real setX : ρ = 0 can be more complicated. Even for a functionρ with
Lipschitz first partial derivatives, the zero setX can have corners. For instance, it
was shown in [5] that the union of two real rays inC issued from the origin is a
totally real set iff the angle between them is strictly larger thanπ/2 (rays can be
replaced by smooth curves). Nevertheless, in these cases also, Theorem 1.1 guar-
antees theC1/2-smoothness up toγ.

If � is a Runge domain inCn andX is a compact subset of�, then the con-
ditionX = ρ−1(0) for some nonnegative p.s.h. function in� is equivalent to the
polynomial convexity ofX (see [8]). Hence, the structure of the zero set of a non-
negative p.s.h. function (not necessarily strictly p.s.h.) can be rather complicated,
and we need additional assumptions onρ in order to have the boundary regularity
of attached discs.
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2. An Estimate of the Kobayashi Metric

In what follows we need estimates of the Kobayashi metric in a “tube” neighbor-
hood of a totally real set. Our approach is based on the technique of Sibony [14],
who proved a global assertion that we localize here with uniform estimates. We
remark also that our proof is partially inspired by some ideas of [3; 16; 17].

In what follows,KD(z, ξ) denotes the value of the Kobayashi–Royden infin-
itesimal metric in a domainD ⊂ � on the pair(z, ξ), wherez ∈ D and ξ ∈
Tz�. Denote byB the Euclidean unit ball inCn. The following estimate of the
Kobayashi metric is of crucial importance for our approach.

Proposition 2.1. Let D be a domain in�, let z : U → 3B be a coordinate
neighborhood in�with the center atp ∈D (z(p) = 0), and let|ξ| be the norm of
a vector inT�|U induced by the Euclidean norm inCn. Letu be a negative p.s.h.
function inD such that the functionu − ε|z|2 is p.s.h. inD ∩ U and |u| ≤ B in
D ∩ z−1(2B) for some constantsε, B > 0. Then there exists a positive constant
M = M(ε,B) (independent ofu) such that

KD(w, ξ) ≥ M|ξ| · |u(w)|−1/2

for eachw ∈D ∩ z−1(B) and ξ ∈ Tw�.
The coordinate neighborhoodU is not assumed to be contained inD; the main
point here is just the behavior ofKD near the boundary ofD in �. Note also that
we do not assume any condition of the boundedness or hyperbolicity type.

Proof. We begin with an estimate of the Kobayashi metric that is not precise
enough but does allow us to localize the metric. Letψ(x) be a smooth nonde-
creasing function onR+ such thatψ(x) = x for 0 ≤ x ≤ 1/2 andψ(x) = 1
for x ≥ 3/4. For any pointq with |z(q)| < 2, we define the function9q =
ψ(|z− z(q)|2)eλu in D ∩U and9q = eλu in D \U ; the positive constantλ will
be chosen later. Then the function log9q = logψ(|z − z(q)|2) + λu is p.s.h. in
D\{|z − z(q)|2 ≤ 3/4}. There exists a constantA > 0 depending only on the
functionψ such that the function logψ(|z− z(q)|2)+A|z|2 is p.s.h. inU. On the
other hand, it follows by the assumption onu that the functionu− ε|z|2 is p.s.h.
onD ∩ {|z − z(q)| ≤ 1}. Hence, takingλ = A/ε we obtain the function log9q,
which is p.s.h. onD ∩ {|z− z(q)| ≤ 1} and therefore everywhere inD.

Let now g : 1 → D be a holomorphic map such thatg(0) = q ∈ U with
|z(q)| < 2. Then the functionv(ζ) = 9q(g(ζ))/|ζ|2 is defined in the punctured
unit disc1\{0} and bounded from above by 1 asζ tends to the unit circle. It is sub-
harmonic on1\{0}, and lim supζ→0 v(ζ) = |g ′(0)|2 exp(Au(q)/ε) (as usual, we
denote byg ′(0) the imagedg0(1̄) of the unit vector̄1= 1 in T01 ' C). Hence,
v is subharmonic in1 and it follows by the maximum principle that|g ′(0)|2 ≤
exp(−Au(q)/ε). By the definition of the Kobayashi metric it follows that, for any
q in D ∩ z−1(2B) andξ in Tq�, one has
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KD(q, ξ) ≥ exp(Au(q)/2ε)|ξ| ≥ N(ε, B)|ξ|, (1)

whereN = N(ε, B) = exp(−AB/2ε).
Let dD be the Kobayashi pseudodistance inD and letBD(q, δ) = { z ∈ D :

dD(q, z) < δ } be the Kobayashi ball of radiusδ in D centered inq. We will use
the estimate (1) in order to compare the Kobayashi ball with a suitable Euclidean
ball; this allows us to control the distortion of holomorphic discs centered nearp.

Lemma 2.2. For any pointq in D ∩ z−1(B) and anyδ ≤ N, the Kobayashi ball
BD(q, δ) is contained inD ∩ {|z− z(q)| < δ/N}.
Proof. Letw be a point ofD and let0(q,w) be the set of all differentiable paths
γ : [0,1] → D joining q andw, with γ (0) = q andγ (1) = w. Recall that, by
[13], the Kobayashi infinitesimal metricKD(w, ξ) is upper semicontinuous on the
holomorphic tangent bundle ofD and

dD(q,w) = inf
γ∈0(q,w)

∫ 1

0
KD(γ (t), γ

′(t)) dt. (2)

SettingG = {w ′ ∈U : |z(w ′)− z(q)| < 1}, we have (using (1) and (2)):

dD(q,w) ≥ inf
γ∈0(q,w)

∫
γ−1(G)

KD(γ (t), γ
′(t)) dt ≥ N inf

γ∈0(q,w)

∫
γ−1(G)

|γ ′(t)| dt.

For anyγ ∈ 0(q,w), the last integral represents the Euclidean length of the
part of γ contained inG. Hence, ifw is in G then the last inf is not less than
|z(w) − z(q)|. Indeed, if the pathγ is contained inG then its length is≥
|z(w) − z(q)|; if γ intersects the boundary of this ball then the length of its
connected component joiningq and a boundary point ofG is≥ 1≥ |z(w)−z(q)|.
If w is not inG (in particular, ifw is not inU), then the length can be simply
estimated from below by 1.

Thus, we have

dD(w, q) ≥ N min{1, |z(w)− z(q)|}, w ∈D ∩ U,
and dD(w, q) ≥ N, w /∈U. (3)

In view of (3), the relationw ∈BD(q, δ) implies thatw ∈U and|z(w)− z(q)| <
δ/N. Note also that, for any 0< δ ≤ N, the Kobayashi ballBD(q, δ) is nonempty
because we have the trivial upper estimate of the Kobayshi distance inD by the
Kobayashi distance in a Euclidean ball centered atq and contained inD ∩U.
Now we continue the proof of Proposition 2.1. Letψ be as before, withψ(x) = x
for x ≤ 1/2 andψ(x) = 1 for anyx ≥ 1. Forw ∈D∩ z−1(B) andλ, β > 0 we set
8λ,β,w = ψ(|z− z(w)|2/β2)eλu inD ∩U. The function8λ,β,w is well-defined in
D∩U and takes its values in [0,1]. There exists a constantC > 0 depending only
on the functionψ such that the function log8λ,β,w + (C/β2− λε)|z|2 is p.s.h. in
D∩U. Settingλ = 1/|u(w)| andβ2 = C|u(w)|/ε, we obtain a function8w such
that log8w is p.s.h. inD ∩ U.
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Sets = (e2N − 1)/(e2N + 1) (so the Poincaré radius of the disc{|ζ| < s} in
1 is equal toN). It follows by Lemma 2.2 that, for any holomorphic mapping
g : 1→ D such thatg(0) = w is inD ∩ z−1(B), one has the inclusiong(s1) ⊂
D ∩ z−1(2B). Let f : 1→ D be a holomorphic map withf(0) = w andf ′(0) =
ξ/α for ξ ∈ Tw�. Thenv(ζ) = 8w(f(ζ))/|ζ|2 is a well-defined subharmonic
function ons1\{0}, and lim supζ→0 v(ζ) = ε|ξ|2/eC|u(w)|α2. Hence,v is sub-
harmonic ins1 and the maximum principle givesα ≥ ε1/2s|ξ|(eC|u(w)|)−1/2.

By the definition of the Kobayashi metric, it follows that

KD(w, ξ) ≥ ε1/2s|ξ|(eC|u(w)|)−1/2.

This estimate completes the proof of Proposition 2.1.

Note the difference of the obtained estimate from standard estimates of the Kobay-
ashi metric near boundary points of pseudoconvex domains. In our case, we do
the estimates in interior points but the uniformity of constants allows to “move” a
domain; we will use this feature in the next section.

3. Boundary Continuity and Regularity

This section is devoted to the proof of Theorem1.1, so weassume that we are in
the setting of this theorem. We begin with the following lemma, which is well
known.

Lemma 3.1. Let φ be a positive subharmonic function in1 such thatφ(ζ)→ 0
asζ tends to an arcγ ⊂ ∂1. Then, for every compact subsetK ⊂ 1 ∪ γ, there
exists a constantCK such thatφ(ζ) < CK(1− |ζ|) for anyζ ∈K ∩1.
Proof. Let V be a neighborhood ofγ ∩K such thatW = V ∩1 is simply con-
nected andφ < 1 inW, and letg : 1 → W be a conformal mapping. Then, by
the reflection principle,g−1 extends holomorphically acrossγ. Hence, replacing
φ by φ B g, we reduce the question to the case of a function that is uniformly
bounded in1. But then the assertion follows by an obvious estimate of the Pois-
son kernel.

Fix a constantδ > 0 small enough so that the intersectionγ ∩ (a + δ1̄) is com-
pact inγ ; we denote by�δ the intersection1 ∩ (a + δ1). By Lemma 3.1, there
exists a constantC > 0 such that, for anyz in �δ, one has

ρ B f(ζ) ≤ C(1− |ζ|). (4)

By hypothesis, the functionρ is strictly p.s.h. in a neighborhood ofp; hence we
can assume there are local coordinatesz : U → 3B centered atp and a constant
ε > 0 such that the functionρ − ε|z|2 is p.s.h. inD ∩ U.
Lemma 3.2. There exists a constantA > 0 with the following property: If ζ is
an arbitrary point of�δ/2 such thatf(ζ) is inD ∩ z−1(B), then

|f ′(ζ)| ≤ A(1− |ζ|)−1/2.
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Proof. Setd = 1− |ζ|. Then the discζ + d1 is contained in�δ. Define the
domainDd = {w ∈ D : ρ(w) < 2Cd }. Then it follows by (4) that the image
f(ζ + d1) is contained inDd, where the p.s.h. functionud(w) = ρ(w) − 2Cd
is negative. By Proposition 2.1, there exists a constantM > 0 (independent of
d ) such that, for anyw in D ∩ z−1(B) and anyξ in Tw�, one hasKDd (w, ξ) ≥
M|ξ| · |ud(w)|−1/2. On another hand, for the Poincaré metric in the discζ + d1,
we haveKζ+d1(ζ, τ ) = |τ |/d for anyτ in Tζ1 ∼ C. By the decreasing property
of the Kobayashi metric, for anyτ one has

M|f ′(ζ)| · |τ | · |ud(f(ζ))|−1/2 ≤ KDd (f(ζ), f ′(ζ)τ ) ≤ Kζ+d1(ζ, τ ) = |τ |/d.
Therefore,|f ′(ζ)| ≤ M−1|ud(f(ζ))|1/2/d. As −2Cd ≤ ud(f(ζ)) < 0, this im-
plies the desired statement withA = M−1(2C)1/2.

Lemma 3.2 implies thatf extends continuously to the pointa in view of an inte-
gration argument (as in [2]) that is a variation of the classical Hardy–Littlewood
theorem.

Indeed, since the cluster setC(f, a) containsp, there exists a sequence of
pointsaν ∈ 1 converging toa and such thatf(aν) → p. Assume to the con-
trary that there exists a constantr > 0 and a sequence{bν} ⊂ 1 converging to
a such thatd(f(aν), f(bν)) ≥ r for all ν. (Hered(·, ·) is the distance in� in-
duced by the metric from Proposition 2.1 which is Euclidean inU ∩ z−1(B),where
z : U → 3B is the coordinate neighborhood ofp, z(p) = 0.) Chooseν so large
thatd(f(aν), p) < 1/2. Consider the piecewise linear pathIν (oriented fromaν
to bν) in 1 formed by three segments: the first one is [aν, a

′
ν ], wherea ′ν ∈ [0, aν ]

and |aν − a ′ν | = |aν − bν |; the second one is [a ′ν, b
′
ν ], whereb ′ν ∈ [0, bν ] and

|bν − b ′ν | = |bν − aν |; and the last one is [b ′ν, bν ]. Let cν ∈ Iν be the closest
point toaν alongIν such thatd(f(aν), f(cν)) ≥ min(1/2, r), and letJν be the
path inIν betweenaν andcν. Thenf(Jν) is contained inU ∩ z−1(B). Because
the metric inU is Euclidean with respect to the coordinatesz, we have|f ′(ζ)| =
|g ′(ζ)| = (∑|g ′j(ζ)|2)1/2

for ζ ∈ V = f −1(U), whereg = z B f : V → Cn and
g = (g1, . . . , gn). By Lemma 3.2 and the construction ofJν, we have|g ′(ζ)| ≤
A(1− |ζ|)−1/2 for all ζ ∈ Jν. Thus, integrating alongJν, we obtain

|g(cν)− g(aν)| ≤ A
∫ |aν |
|a ′ν |

dt

(1− t)1/2
+ A |a

′
ν − b ′ν |

|aν − bν |1/2
+ A

∫ |bν |
|b ′ν |

dt

(1− t)1/2

≤ 6A|aν − bν |1/2,

a contradiction. Hence,f extends continuously on1∪ {a}; in particular, there is
a neighborhoodV ′ 3 a such thatf(1 ∩ V ′) ⊂ U ∩ z−1(B).

Choose nowδ > 0 so small that the disc|ζ − a| < 3δ is contained inV ′,
and setW = 1 ∩ {|ζ − a| < δ}. Then, for arbitraryζ, η ∈ W, we choose (as
before)ζ ′ ∈ [0, ζ ] and η ′ ∈ [0, η] such that|ζ − ζ ′| = |η − η ′| = |ζ − η|;
we denote byI the path [ζ, ζ ′ ] ∪ [ζ ′, η ′ ] ∪ [η ′, η]. Since I ⊂ W, we have
|g ′(τ )| ≤ A(1− |τ |)−1/2 on I. Hence, integrating alongI, we obtain as before
thatd(f(ζ), f(η)) = |g(ζ)− g(η)| ≤ 6A|ζ − η|1/2. It follows thatf extends to
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a Hölder 1/2-continuous map on1 ∪ {|ζ| = 1, |ζ − a| < δ}. This completes the
proof of the first part of Theorem1.1.

For the proof of the regularity part we can assumef to be continuous on1∪γ ;
we then need show only that the 1/2θ -Hölderness ifρθ is still plurisubharmonic.
The compositionρθ B f is defined in a neighborhoodV (depending onθ) of the
arcγ in 1. Replacing (if necessary)f by the composition with a biholomorphic
mapping betweenV ∩1 and1,we can assume without loss of generality that the
compositionρθ B f is defined in1. Applying Lemma 3.1 to the functionρθ we
obtain that, for anyζ in 1, one hasρ B f(ζ) ≤ C(1− |ζ|)1/θ , where the positive
constantC depends onθ.

Now it remains to repeat the former argument. Letζ be a point in1 (suffi-
ciently close toa) and letd = 1− |ζ|. Then the imagef(ζ + d1) is contained in
the domainDd = {w ∈D : ud(w) ≡ ρ(w)− 2Cd1/θ < 0 }. Repeating the proof
of Lemma 3.2, we obtain that|f ′(ζ)| ≤ M−1|ud(f(ζ))|1/2/d. As −2Cd1/θ ≤
ud(f(ζ)) < 0, this implies the estimate|f ′(ζ)| ≤ A(1− |ζ|)1/2θ−1 in a neighbor-
hood ofa in1; hence,f is Hölder 1/2θ -continuous on1∪ γ neara by the same
integration argument as before.

This completes the proof of the theorem.

In conclusion we would like to indicate two possible applications of our results.
(1) Using Corollary 1.5, we derive that the area of an analytic discf(1) at-

tached to aC1 smooth totally real manifoldM is finite (for other proofs, see [4;
15]). Moreover, the area off({1− δ < |ζ| < 1}) is estimated byC(ε)δ1−ε when
δ→ 0 for arbitraryε > 0.

(2) Corollary 1.5 and Lempert’s theory [10; 11] imply that any extremal disc for
the Kobayashi metric of a strongly convex domain withC2 boundary is Hölder
α-continuous up to the boundary for everyα < 1. (Lempert established the Hölder
1/2-continuity.)
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