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1. Introduction

Graph groupsare groups with presentations where the only relators are commu-
tators of the generators. Graph groups were first investigated by Baudisch [1],
and much subsequent foundational work was done by Droms, B. Servatius, and
H. Servatius [3; 4; 5]. Later, the more general constructiograph products
(Definition 2.1) was introduced and developed by Green [7]. (Graph products are
to free products as graph groups are to free groups.) Graph groups have also been
of recent interest because of their geometric properties (Hermiller and Meier [8]
and VanWyk [13]) and the cohomological properties of their subgroups (Bestvina
and Brady [2]).

In this paper, by embedding graph products in Coxeter groups, we obtain short
proofs of several fundamental properties of graph products. Specifically, after
listing some preliminary definitions and results in Section 2, we show in Sec-
tion 3 that the graph product of subgroups of Coxeter groups is a subgroup of
a Coxeter group (Theorem 3.2). It follows that many classes of graph products
are linear, including graph groups (a result of Humphries [11]) and that the graph
product of residually finite groups is residually finite (a result of Green [7]). In
Section 4, we also include a new and more geometric proof of Green’s normal
form theorem for graph products. Finally, in Section 5, we list some related open
problems.

2. Graph Products

In this section, we review some basic definitions and results on graph products.
For a simplicial grapi, we letI"° denote the vertices df, we letI'! denote
the edges of’, and we let |, w] denote the edge between the verticendw.

DerFINITION 2.1, LetT™ be a finite simplicial graph, and for eache I'° let G,
be a group called theertex groupof v. The graph produdf'G, is defined to be
the free product of th&,,, subject to the relations

[gv. gw] =1 forall g,€G,, g»€G, suchthat{, w]el™ ()
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In particular, ifG, = Z for all v € I'° thenI"G, is called agraph groupor
right-angled Artin grouplf G, = Z/2 for allv € I'° thenI'G,, is a Coxeter group
with all edges labeled either 2 ot; such groups are known aght-angled Cox-
eter groups.

DEeFINITION 2.2. LetI" be a finite simplicial graph, and I&€t, andC, be two
sets of vertex groups far such that there exists some homomorphism G, —

C, for eachv € I'°. Thenatural mapfrom I'G, to I'C, is the unique homomor-
phism that restricts tp, on each of th&s,. (The existence of such a map follows
easily from the definition of graph product.)

Now, by definition, any elemerg of a graph product’G, can be represented
as a producgigz . . . g,, Where eacly; is an element of some vertex grodRy .
Definition 2.3, Definition 2.4, and Theorem 2.5 describe how to do so in the “short-
est” possible way.

DErINITION 2.3.  If g is an element of a graph produet;,, then we may repre-
sentg by a productV = g1g». .. g, of elements;, each of which is an element
of some vertex groug,. W is called avord representing, and theg; are called
thesyllablesof W. The number of syllables i# is called thdengthof W.

Note that each of the following “moves” changes a given witdo a word W’
that represents the same elemeni’6f, as W does and has length less than or
equal to the length ofV.

1. Remove a syllablg; = 1.

2. Replace consecutive syllablgsandg; ., in the same vertex groug, with the
single syllable(g; g;11).

3. For consecutive syllableg € G, andg;,1 € G, such that §, w] € I'%, ex-
changeg; andg; 1.

DEeFINITION 2.4. If g is represented by a word that cannot be changed to a
shorter word using any sequence of the moves just listed, Whénsaid to be a
normal formfor g.

We give a geometric proof of the following theorem of Green [7] in Section 4. For
the moment, we will be content just to quote it.

THEOREM 2.5. A normal form in a graph product represents the trivial element
if and only if it is the empty word.

Finally, we need the following definition.

DEFINITION 2.6. LetA andI” be simplicial graphs, and I€t, (resp.G,,) be ver-
tex groups forA (resp.I'). A fullinclusionis aninclusiorp: A — T of simplicial
graphs such that, for any two verticesv € A, if [ p(u), p(v)] e T then |, v] €
AL If p: A — T is afull inclusion andG, = G, forallve A% thenAG, is



On Linear and Residual Properties of Graph Products 253

called afull subgroupof I'G,,. Note thatAG, is indeed a subgroup &fG,,, since
the homomorphism induced ymaps normal forms to normal forms.

3. Graph Products of Coxeter Subgroups
DEerINITION 3.1. By aCoxeter subgroupre mean a subgroup of a Coxeter group.

For example, any finite grou@ is a Coxeter subgroup, sin€gis a subgroup of
some symmetric group; and any (possibly infinite) cyclic graujs a Coxeter
subgroup, sincé& is a subgroup of some (possibly infinite) dihedral group. Note
that since Coxeter groups are linear (subgroups of(®ly) and residually finite,

so are Coxeter subgroups.

THEOREM 3.2. The graph product of Coxeter subgroups is a Coxeter subgroup.

Proof. LetI'G, be a graph product such that, for eacb I'°, G, is a subgroup
of the Coxeter groug, with reflection generatorg,;}. Consider the Coxeter
groupC with reflection generatorg-,;}, wherev runs over al € I'°, and Cox-
eter relations
order(r,;ry;) in C, for v =w,
order(ryiry;) = 2 for v # w, [v, w] €T}, 2
00 for v # w, [v,w] ¢T'L
By the definition of graph producg is the graph produdiC,. Since the natural

map fromI'G, to I'C, sends normal forms to normal forms, the theorem follows.
O

ReMaRK 3.3. Note that Droms and Servatius [6] used a similar construction, in
the special case of a graph product of infinite cyclic groups, to show that the Cay-
ley graphs of graph groups are isomorphic (as undirected graphs) to the Cayley
graphs of right-angled Coxeter groups. However, their graph isomorphism is not
equivariant and does not come from a group homomorphism, so it is quite differ-
ent from our group embedding.

ExampLE 3.4. LetI'G, be the graph group shown on the left-hand side of Fig-
ure 1; or, in other words, |e&fG, be the indicated graph product of the infinite
cyclic groups(a;) (1 < i < 4). Let C be the Coxeter group whose Coxeter dia-
gram is shown on the right-hand side of Figure 1, using the convention that all
edges are labelled witko. Finally, since any infinite cyclic group is a subgroup of

the Coxeter groupﬁo, let ¢ be the homomorphism fromiG, to C that embeds

each(a;) in the vertical (thick-line)oﬁo group labelleda;) on the right-hand

side of Figure 1. Following the recipe given by (2), we see ¢hamnbedd G, as a
subgroup ofC. (Note that, since graph products and Coxeter groups have opposite
graph conventions for commuting relatiogssends joined vertices to nonjoined

(0.¢] .
e—e groups, and vice versa.)
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(a1) (az) (a3) (aa)

(a3) (a1) {(a4) (a2)

Figure 1 Embedding a graph group in a Coxeter group.

Theorem 3.2 allows us to conclude that many graph products are Coxeter sub-
groups and thus are linear, residually finite, and so on. For instance, we have the
following corollary.

CoroLLARY 3.5. The graph product of finite groups and cyclic groups is a Cox-
eter subgroup and is therefore linear and residually finite.

In particular, we recover the following result of Humphries [11].
CoroLLARY 3.6. Right-angled Artin groups, or graph groups, are linear.

In fact, we have actually shown that every right-angled Artin group genera-
tors is a subgroup of a right-angled Coxeter group emgénerators.

We may also use Theorem 3.2 (or Corollary 3.5) to obtain a short proof of the
following theorem of Green [7].

THEOREM 3.7. The graph product of residually finite groups is residually finite.

Proof. LetI"G, be a graph product, and suppose that eagcls residually finite.
We wish to show that, for 2 ¢ € I'G,, g survives in some finite quotient of
I'G,. Supposeg has some normal form = g1¢>. . . g,. Choose finite quotients
0, of each of theG, such that all of the; survive in their respective quotients.
The natural homomorphisip: I'G, — I'Q, sendsg to an element with a non-
trivial normal form, which means that(g) # 1 Then, sincd’Q, is residually
finite (Corollary 3.5), there is some finite quotientia®,, in which¢(g) survives,
and the theorem follows. O

Recall that theorofinite topologyon a groupG is the topology whose closed basis
consists of cosets of finite index subgroupsGofNote thatG is residually finite
if and only if {15} is a closed subset and, more generally, a subgiws G is
closed if and only ifH is the intersection of finite index subgroups®f Finally,
note that a homomorphism of groups is a continuous map relative to their profinite
topologies. See Higgins [9] for more about the profinite topology.

Green also extended Theorem 3.7 as follows.

THEOREM 3.8 (Green). LetG be a graph product of residually finite groups, and
let H be a full subgroup of;. ThenH is closed in the profinite topology 6.

We now extend Theorem 3.7 further (Theorem 3.10), using the following lemma.
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LemMma 3.9. LetG be a residually finite group, and let: G — G be a retrac-
tion map(i.e.,? = ¢). Then

(1) ¢(G) is closed in the profinite topology of.

(2) Any closed subgroup @f(G) in the profinite topology on(G) is also closed
as a subgroup o&. In other words, the inclusion map(G) — G is a ho-
meomorphism with respect to the profinite topologies of the two groups.

Proof. Since H = ¢(G) is a retract ofG, if N = kerp thenG = NH and
N N H = 1. Using the residual finiteness 6f, let G; be a sequence of finite in-
dex normal subgroups @ whose intersection is 1, and I8 = N N G;. Then,
since

[G:NH]=[NH :NH]=[N:N]=<I[G:G{], )

it follows that V; H is a sequence of finite index subgroupsiofHowever, since
any element ofG is uniquely expressed as a produét(n € N, h € H), the in-
tersection of theV; H is preciselyH. Statement (1) follows.

As for (2), let K denote the subgroup(G) equipped with its own profinite
topology, and lef. be a closed subgroup &f. Since the homomorphisg: G —
K is continuousy (L) is the preimage of a closed setfofand is therefore closed
in G. Then, sinceL is the intersection of the closed subgroupsande (L) of
G, L must also be closed i&. The lemma follows. O

THEOREM 3.10 (Green). Let A be a full subgraph of” (Definition 2.6, and for

v e I'% let G, be residually finite. Then the inclusion af5, as a full subgroup

of I'G, is a homeomorphism with respect to the profinite topologies of the two
groups.

Proof. For eachw € T'°, let y,: G, — G, be the identity ifv € A® and trivial
otherwise. Then the resulting natural majs a retraction fronT'G, onto AG,,
and the theorem follows from Lemma 3.9. O

ReMark 3.11. In afuture paper [10], we will provide a more extensive answer to
the question of which subgroups of a graph gréup, are closed. Specifically,
we hope to show that any subgrouplad, that has finitely generated intersection
with every conjugate of every full subgroup B, is closed inCG,.

4. Proof of the Normal Form Theorem

In this section we give a proof of Theorem 2.5 based on the geometry of van Kam-
pen diagrams. Throughout this section, we fix a graph prodagtand use the
presentation of'G, obtained by combining the “multiplication table” presenta-
tions of theG, and the commutators in (1), Definition 2.1. Relators of the first
type we callmultiplication relators,and relators of the second type we gathph
relators.

Throughout this section, we consider a wavd(Definition 2.3) that represents
the trivial element of G, and avan Kampen diagran® for W. That s, following
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Lyndon and Schupp [12], we consider a singular disc diagbatwith basepoint
d € 9D) made by “sticking together” relators from the presentatiol@f, such
that W is the label of a closed path arouft beginning and ending at (Note
that, because of our chosen basepdinthere is a well-defined notion of being
“between” two syllables 06D.)

DErFINITION 4.1, Forv € I'°, we define the diagram, to be the disjoint union
of all 2-cells of D that correspond to 2-cells coming either from a multiplication
relator inG, or from a graph relatorg,, g.,] (g, € G,), identifying two 2-cells
along an edge if and only if their images irD intersect along.

DErFINITION 4.2.  We define a-componenbf D to be a component db,. For a
v-component, we defined, C (the “outer boundary” o) to be the set of edges
of dC which are mapped téD and which also correspond to elementgigf

/:1@ — Qﬁy éi\\h\b

Figure 2 A v-component mapped intd.

—

Note that av-componentC is not necessarily a subdiagram bf since extra
identifications may occur it along 0-cells ofC. Figure 2 gives an example of a
v-componentthat has such extra identifications when mappe®intsolid edges
correspond to elements 6f,, and dashed edges correspond to other elements.)
Note also that, for a-componentC, 3,C may be a disconnected, proper subset
of dC. Nevertheless, since the cyclic orderingddn determines a cyclic ordering
of the edges 0d..C, by concatenating the edgesi{” we obtain a closed directed
pathd,C (the “closed outer boundary” @f). Now, since each of the edgest”
is labelled by an element @, 3,C represents a conjugacy class®f. We can
therefore state the following key lemma.

LemMma 4.3. If Cis av-component, thed, C represents the trivial element 6f,.

Proof. Let ¢ be the map defined by quotienting each of the 2-cell€ @if the
form [g,, gw] to a 1-cellg, or, in other words, by retracting each graph relator
[2v, gw] @long its twog,, sides. Itis easy to see that the resulting quoti€at) is

a diagram made by sticking together multiplication relators f@m Therefore,

it is enough to show that all of the edges in the boundagy6f) come from edges

in 9,C, for thend(g(C)) has one componeng(C) is a van Kampen diagram in
the presentation af,, andd(¢(C)) = 9,C. (Note that the cyclic ordering of the
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Figure 3 Are there boundary edges on the insidebst

edges ob,.C determined byD is the same as the cyclic ordering of these edges
in d(q(C)).)

Now, if there is some edgein the boundary of (C) such tha;~(e) N 9,C =
@, theng~1(e) must include some edge such that the image ef in D is on the
boundary of the image af and also on the inside dd, as shown by the heavy
edges in Figure 3. However, since any edge on the inside adrresponding to
an element o&, must border a 2-cell coming either from a multiplication relator
of G, or from a graph relatorg,, g.,] (g, € G,) on both sides, no such edge
exists. The lemma follows. O

Proof of Theorem 2.5Let W be a word that represents the trivial element6f,.

First, reducé¥ as much as possible by moves of type 1 and 2 (see the list before
Definition 2.4). IfC, is av-component then it follows—becau8eC, = 1in G,
(Lemma 4.3) andv cannot be further reduced by moves of type 1 and 2—that the
image ofd,C, in D is not connected. We may therefore choose sormé& ° and
somev-component, with syllablesg,, g/ € 3,.C, such thafg, andg, areinner-

most that is, such that there is no syllable fréagC, betweeryg, andg,, and there

is now-component,, such thab, C,, contains syllableg,, andg/, both between

g» andg;.
d ’

2"

Figure 4 Other components must pass through
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Now let g,, be a syllable betweeg, andg;, and letC,, be thew-component
containingg,,. As before, sincé,C, = 1in G,, 9,C, must have at least two
components. Furthermore, only one componert,6f, can be betweep, and
g.. sinceg, andg, are innermost. The image 6f, must therefore intersect the
image ofC, at a 2-cell (see Figure 4), which implies that {v] € I'%. In other
words, for all syllableg,, betweerg, andg/, we see thag,, commutes withg,.

Therefore, using moves of type 3, we may chaiigw awordW’ = ... g,g, ...

and then, using a move of type 2, we may malkeshorter. The theorem follows

by induction on the length oi. O
5. Problems

In closing, we raise two questions.

1. Is the finite graph product of finitely generated linear groups linear? Clearly
the direct product of linear groups is linear, and it is also known that the free prod-
uct of linear groups is linear (Wehrfritz [14]).

2. Are Artin groups linear? Are they residually finite? Note that a special case
of the first question is the long-standing open question of whether braid groups
are linear. Also, an affirmative answer to either of these questions would produce
a solution to the word problem for Artin groups. More speculatively, we ask: Are
Artin groups Coxeter subgroups?

References

[1] A. Baudisch,Subgroups of semifree grouh.D. thesis, Akademie der Wis-
senschaften der DDR Zentralinstitut for Mathematik und Mechanik, 1979.

[2] M. Bestvina and N. BradyMorse theory and finiteness properties of groups,
Invent. Math. 129 (1997), 445—470.

[3] C. Droms,lsomorphisms of graph groupBroc. Amer. Math. Soc. 100 (1987),
407-408.

[4] , Subgroups of graph groupd, Algebra 110 (1987), 519-522.

[5] C. Droms, B. Servatius, and H. Servatid$e finite basis extension property
and graph groupsTopology and combinatorial group theory (Hanover, NH,
1986/1987; Enfield, NH, 1988), Lecture Notes in Math., 1440, pp. 52-58,
Springer-Verlag, Berlin, 1990.

[6] C. Droms and H. Servatiughe Cayley graphs of Coxeter and Artin groups,
Proc. Amer. Math. Soc. 118 (1993), 693-698.

[7] E. Green,Graph productsPh.D. thesis, Univ. of Warwick, 1991.

[8] S. Hermiller and J. MeierAlgorithms and geometry for graph products of
groups,J. Algebra 171 (1995), 230-257.

[9] P. J. Higgins,An introduction to topological group4,ondon Math. Soc. Lecture
Note Ser., 15, Cambridge University Press, 1974.

[10] T. Hsu and D. WiseSubgroup separability of graph grouigs preparation).

[11] S. P. HumphriesOn representations of Artin groups and the Tits conjecture,
J. Algebra 169 (1994), 847-862.

[12] R. Lyndon and P. Schup@ombinatorial group theorySpringer-Verlag, New
York, 1977.




On Linear and Residual Properties of Graph Products 259

[13] L. VanWyk, Graph groups are biautomatid. Pure Appl. Algebra 94 (1994),
341-352.

[14] B. A. F. Wehrfritz, Generalized free products of linear groug&oc. London
Math. Soc. (3) 27 (1973), 402-424.

T. Hsu D. T. Wise

Department of Mathematics Department of Mathematics
Pomona College Cornell University
Claremont, CA91711 Ithaca, NY 14853

timhsu@pccs.cs.pomona.edu daniwise@math.cornell.edu



